Vishay Dale

Wirewound Resistors, Precision Power, Low Value, Commercial, Military, MIL-PRF-49465 Type RLV, Axial Lead

FEATURES

 Ideal for all types of current sensing applications including switching and linear power supplies, instruments and power amplifiers

- Proprietary processing technique produces extremely low resistance values
- Excellent load life stability
- Low temperature coefficient
- Low inductance
- Cooler operation for high power to size ratio

RoHS*

STANDARD ELECTRICAL SPECIFICATIONS									
GLOBAL MODEL	HISTORICAL MODEL	MIL-PRF-49465 TYPE	POWER RATING P _{25 °C} W	RESISTANCE RANGE $\Omega^{(1)}$ ± 1 %, ± 3 %, ± 5 %, ± 10 %	TECHNOLOGY				
LVR01	LVR-1	=	1	0.01 - 0.1 ⁽²⁾	Metal Strip				
LVR03	LVR-3	=	3	0.005 - 0.2	Metal Strip				
LVR0326	LVR-3-26	RLV30 (M4946506)	3	0.01 - 0.2	Metal Strip				
LVR05	LVR-5	=	5	0.005 - 0.3	Metal Strip				
LVR0526	LVR-5-26	RLV30 (M4946507)	5	0.01 - 0.3	Metal Strip				
LVR10	LVR-10	=	10	0.01 - 0.8	Coil Spacewound				

Notes

(1) Resistance is measured 3/8" [9.52 mm] from the body of the resistor, or at 1.183" [30.05 mm], 1.315" [33.40 mm], 1.675" [42.545 mm] or 2.575" [65.405 mm] spacing for the LVR01, LVR03, LVR05 and LVR10 respectively.

(2) Standard resistance values are 0.01Ω , 0.015Ω , 0.02Ω , 0.025Ω , 0.03Ω , 0.033Ω , 0.04Ω , 0.05Ω , 0.051Ω , 0.06Ω , 0.068Ω , 0.07Ω , 0.08Ω , 0.09Ω and 0.1Ω with 1 % tolerance. Other resistance values may be available upon request.

TECHNICAL SPECIFICATIONS							
PARAMETER	UNIT	LVR01	LVR03	LVR05	LVR10		
Rated Power at + 25 °C	W	1	3	5	10		
Operating Temperature Range	°C	- 65/+ 175	'+ 175				
Dielectric Withstanding Voltage	V_{AC}	1000	1000 1000 10				
Insulation Resistance	Ω	10 000 MΩ minimum dry					
Short Time Overload	-		5 x rated power for 5 s 10				
Terminal Strength (minimum)	lb	5	10	10	10		
Temperature Coefficient	ppm/°C	See TCR vs Resistance Value Chart					
Maximum Working Voltage	V	$(P \times R)^{1/2}$					
Weight (maximum)	g	2 2 5 11					

GLOBAL PART NUMBER INFORMATION New Global Part Numbering: LVR055L000FS73 (preferred part number format) **SPECIAL GLOBAL MODEL VALUE TOLERANCE PACKAGING** LVR01 R = Decimal $D = \pm 0.5 \%$ E12 = Lead (Pb)-free bulk (Dash Number) LVR03 $\mathbf{L} = \mathbf{m}\Omega$ $F = \pm 1.0 \%$ E03 = Lead (Pb)-free lacer pack (LVR10) (up to 3 digits) LVR05 E70 = Lead (Pb)-free, tape/reel 1000 pieces (LVR01, 03) From 1 - 999 (values $< 0.010 \Omega$) $G = \pm 2.0 \%$ LVR10 $R1500 = 0.15 \Omega$ $H = \pm 3.0 \%$ E73 = Lead (Pb)-free, tape/reel 500 pieces as applicable **7L000** = 0.007Ω $J = \pm 5.0 \%$ B12 = Tin/lead bulk $K = \pm 10.0 \%$ L03 = Tin/lead lacer pack (LVR10) S70 = Tin/lead, tape/reel 1000 pieces (LVR01, 03) S73 = Tin/lead, tape/reel 500 pieces Historical Part Number example: LVR-5 0.005 Ω 1 % S73 (will continue to be accepted for tin/lead product only) LVR-5 0.005Ω 1 % **S73** HISTORICAL MODEL RESISTANCE VALUE **TOLERANCE CODE PACKAGING**

^{*} Pb containing terminations are not RoHS compliant, exemptions may apply

Wirewound Resistors, Precision Power, Low Value, Commercial, Military, MIL-PRF-49465 Type RLV, Axial Lead

Vishay Dale

DIMENSIONS in inches [millimeters]

	DIMENSIONS in inches [millimeters]								
MODEL	Α	В	C						
	± 0.010 [0.254]	± 0.010 [0.254]	± 0.002 [0.051]						
LVR01	0.427 [10.85]	0.115 [2.92]	0.020 [0.508]						
LVR03	0.560 [14.22]	0.205 [5.21]	0.032 [0.813]						
LVR05	0.925 [23.50]	0.330 [8.38]	0.040 [1.02]						
LVR10	1.828 [46.43]	0.392 [9.96]	0.040 [1.02]						

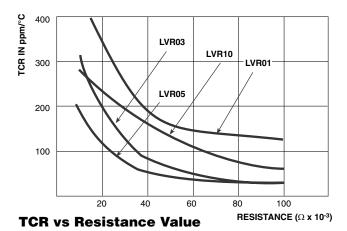
Note

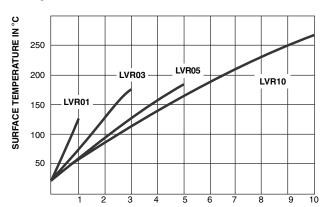
(1) On some standard reel pack methods, the leads may be trimmed to a shorter length than shown.

MATERIAL SPECIFICATIONS

Element: Self-supporting nickel-chrome alloy

(LVR10 also utilizes manganin)


Encapsulation: High temperature mold compound


Terminals: Tinned copper

Part Marking: DALE, model, wattage, value, tolerance,

date code

The improved TCR characteristics of these LVR models from -55 °C to +125 °C (reference to +25 °C) are as follows:

S	Surf	ace	Tei	npe	ra	tui	e ı	/s	Pον	ve	r	P	OWER	R IN W
	120				Ī									
RATED POWER IN %	100													
ATED P(80			1	\exists						LVRO			
æ	60			-	+		\				LVR0 LVR1 			
	40				+		LVI	R01						
	20			<u> </u> 	+									
	0 - 6	5 -	25	<u> </u> 25	 7	7	5	1	25		75] 225	275
D	erat	tina						Α	MBIE	NT T	EMP	ERA	ΓURE	IN °C

PERFORMANCE							
TEST	TEST LIMITS						
Thermal Shock	- 65 °C to + 125 °C, 5 cycles, 15 min at each extrem	\pm (0.2 % + 0.0005 Ω) ΔR					
Short Time Overload	5 x rated power (LVR01, 03, 05), 10 x rated power (LVR10) for 5 s	$\pm (0.5 \% + 0.0005 \Omega) \Delta R$					
Low Temperature Storage	- 65 °C for 24 h	\pm (0.2 % + 0.0005 Ω) ΔR					
High Temperature Exposure	250 h at + 275 °C (+ 175 °C for LVR01)	\pm (2.0 % + 0.0005 Ω) ΔR					
Dielectric Withstanding Voltage	1000 V _{rms} , 1 min	\pm (0.1 % + 0.0005 Ω) ΔR					
Insulation Resistance	MIL-STD-202 Method 302, 100 V	1000 M Ω minimum					
Moisture Resistance	MIL-STD-202 Method 106, 100 7b not applicable	\pm (0.2 % + 0.0005 Ω) ΔR					
Shock, Specified Pulse	MIL-STD-202 Method 213, 100 g's for 6 ms, 10 shocks	$\pm (0.1 \% + 0.0005 \Omega) \Delta R$					
Vibration, High Frequency	Frequency varied 10 to 2000 Hz, 20 g peak, 2 directions 6 h each	\pm (0.1 % + 0.0005 Ω) ΔR					
Load Life	2000 h at rated power, + 25 °C, 1.5 h "ON", 0.5 h "OFF"	\pm (2.0 % + 0.0005 Ω) ΔR					
Solderability	ANSI J-STD-002	95 % cove <i>r</i> age					
Bias Humidity	+ 85 °C, 85 % RH, 10 % bias, 1000 h	\pm (1.0 % + 0.0005 Ω) ΔR					

Document Number: 30206 Revision: 07-Jan-08

Legal Disclaimer Notice

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

www.vishay.com Revision: 08-Apr-05