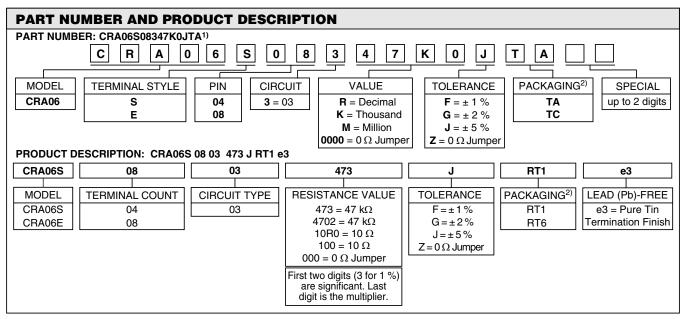

Vishay

Thick Film Resistor Array

CRA06E and CRA06S Thick Film resistor arrays are constructed on a high grade ceramic body with convex terminations. A small package enables the design of high density circuits. The single component reduces board space, component counts and assembly costs.

FEATURES

- Convex terminal array available with either scalloped corners (E version) or square corners (S version)
- Wide ohmic range: 10R to 1M0
- · 4 or 8 terminal package with isolated resistors
- Lead (Pb)-free solder contacts on Ni barrier layer
- Pure tin plating provides compatibility with Lead (Pb)-free and lead containing soldering processes
- Compatible with "Restriction of the use of Hazardous Substances" (RoHS) directive 2002/95/EC (issue 2004)


STANDARD ELECTRICAL SPECIFICATIONS								
MODEL	CIRCUIT	POWER RATING P _{70 °C} W	LIMITING ELEMENT VOLTAGE MAX. V≅	TEMPERATURE COEFFICIENT ppm/K	TOLERANCE %	RESISTANCE RANGE Ω	E-SERIES	
CRA06E CRA06S	03	0.063	50	± 100 ± 200	± 1 ± 2; ± 5	10R - 1M0	24 + 96 24	
0		Zero-Ohm-Resistor available; $R_{max} = 50 \text{ m}\Omega$, $I_{max} = 1 \text{ A}$						

TECHNICAL SPECIFICATIONS							
PARAMETER	UNIT	CRA06E & S					
Rated Dissipation at 70 °C ²⁾	W per element	0.063					
Limiting Element Voltage ¹⁾	V≅	50					
Insulation Voltage (1 min)	V _{dc/ac peak}	100					
Category Temperature Range	°C	- 55/+ 125 (+ 155)					
Insulation Resistance	Ω	> 10 ⁹					

Notes

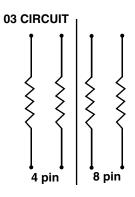
1. Rated voltage: $\sqrt{P \times R}$

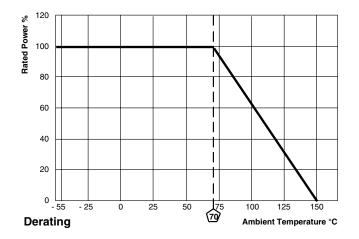
2. The power dissipation on the resistor generates a temperature rise against the local ambient, depending on the heat flow support of the printed-circuit board (thermal resistance). The rates dissipation applies only if the permitted film temperature of 155 °C is not exceed.

Notes

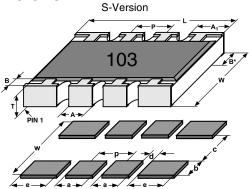
1. Preferred way for ordering products is by use of the PART NUMBER

2. Please refer to table PACKAGING, see next page

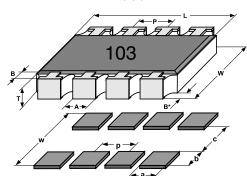



AVAILABLE TYPES AND RANGES								
MODEL	TERMINAL COUNT CIRCUIT		TEMPERATURE COEFFICIENT	TOLERANCE				
	04	03	± 100 ppm/K	±1%				
CRA06S	04	03	± 200 ppm/K	± 5 %; ± 2 %				
CHAU03	08	03	± 100 ppm/K	±1%				
	00	03	± 200 ppm/K	± 5 %; ± 2 %				
	08	02	± 100 ppm/K	±1%				
CRA06E	00	03	± 200 ppm/K	± 5 %; ± 2 %				

PACKAGING


					PACKAGI	NG CODE	
MODEL	TAPE WIDTH	DIAMETER	PITCH	PIECES/REEL	PAPER TAPE		
					PART NUMBER	PRODUCT DESCRIPTION	
CRA06 8 mm	9 mm	180 mm/7"	4 mm	5000	TA	RT1	
	0 11111	330 mm/13"	4 mm	20 000	TC	RT6	

CIRCUIT



DIMENSIONS

MODEL	PIN	DIMENSIONS [in millimeters]							
MODEL	NO#	L	Α	A ₁	В	B*	Р	Т	W
CRA06S	4	1.6	0.38	0.61	0.3	0.3	0.8	0.5	1.5
CRA06E	8	3.2	0.38	-	0.3	0.3	0.8	0.5	1.5
CRA06S	8	3.2	0.38	0.61	0.3	0.3	0.8	0.5	1.5
	Tol	± 0.15	± 0.15	± 0.15	± 0.15	± 0.15	± 0.1	± 0.1	± 0.15

SOLDER PAD DIMENSIONS [in millimeters]								
MODEL	PINS	С	w	d	р	а	b	е
CRA06S	4	0.8	3.1	0.36		0.44	1.15	
CRA06E CRA06S	8	0.8	3.1	0.36	0.8	0.44	1.15	0.63

TEST PROCEDURES AND REQUIREMENTS							
EN 60115-1							
TEST	CONDITIONS OF TEST	REQUIREMENTS PERMISSIBLE CHANGE (\(\triangle R)^1\)					
(clause)	CONDITIONS OF TEST	STABILITY CLASS 1 OR BETTER	STABILITY CLASS 2 OR BETTER				
	stability for product types:	10.0 15 1 140	10.0 10 1 10.0				
	CRA06E/CRA06S	10 Ω to 1 M Ω	10 Ω to 1 M Ω				
Resistance (4.5)	-	±1%	± 2 %; ± 5 %				
Temperature coefficient (4.8.4.2)	20/- 55/20 °C and 20/125/20 °C	± 100 ppm/K	± 200 ppm/K				
Overload (4.13)	bad (4.13) $U = 2.5 \times (P_{70} \times R)^{1/2} \pm (0.25 \% R + 0.05 \Omega) \pm (0.5 \% R)^{1/2} \pm $						
Solderability (4.17.5) ²⁾	Aging 4 h at 155 °C, dryheat Solder bath method; 235 °C; 2 s Visual examination	Good tinning (≥ 95 % covered) no visible damage					
Resistance to soldering heat (4.18.2)	Solder bath method; $\pm (0.25 \% R + 0.0)$ $(260 \pm 5) \degree$ C; $(10 \pm 1) \$$ $\pm (0.25 \% R + 0.0)$		± (0.5 % <i>R</i> + 0.05 Ω)				
Rapid change of temperature (4.19)	30 min. at LCT = - 55 °C; 30 min. at UCT = 125 °C; 5 cycles	± (0.25 % <i>R</i> + 0.05 Ω)	± (0.5 % <i>R</i> + 0.05 Ω)				
Damp heat, steady state (4.24)	(40 ± 2) °C; 56 days; (93 ± 3) % RH	± (1 % <i>R</i> + 0.05 Ω)	± (2 % <i>R</i> + 0.1 Ω)				
Climatic sequence (4.23)	16 h at UCT = 125 °C; 1 cycle at 55 °C; 2 h at LCT = - 55 °C; 1 h/1 kPa at 15 °C to 35 °C; 5 cycles at 55 °C $U = (P_{70} \times R)^{1/2}$ $U = U_{max}$; whichever is less severe	± (1 % <i>R</i> + 0.05 Ω)	± (2 % <i>R</i> + 0.1 Ω)				
Endurance at 70 °C (4.25.1)	$U = (P_{70} \times R)^{1/2}$ $U = U_{max}$; whichever is less severe 1.5 h on; 0.5 h off; 70 °C; 1000 h	± (1 % <i>R</i> + 0.05 Ω)	± (2 % <i>R</i> + 0.1 Ω)				
Extended endurance (4.25.1.8)	Duration extended to 8000 hours	± (2 % <i>R</i> + 0.1 Ω)	± (4 % <i>R</i> + 0.1 Ω)				
Endurance at upper category temperature (4.25.3)	UCT = 125 °C; 1000 h	± (1 % <i>R</i> + 0.05 Ω)	± (2 % <i>R</i> + 0.1 Ω)				

Notes

1. Figures are given for a single element.

2. Solderability is specified for 2 years after production or requalification. Permitted storage time is 20 years.

APPLICABLE SPECIFICATIONS

• EN 60115-1	Generic Specification
• EN 140400	Sectional Specification
• EN 140401-802	Detail Specification
• IEC 60068-2-X	Variety of environmental test procedures
• EIA 481	Packaging of SMD components

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.