MAC8D, MAC8M, MAC8N

Preferred Device

Triacs

Silicon Bidirectional Thyristors

Designed for high performance full-wave ac control applications where high noise immunity and high commutating di/dt are required.

Features

- Blocking Voltage to 800 Volts
- On-State Current Rating of 8.0 Amperes RMS at $100^{\circ} \mathrm{C}$
- Uniform Gate Trigger Currents in Three Quadrants
- High Immunity to dv/dt - $250 \mathrm{~V} / \mu \mathrm{s}$ minimum at $125^{\circ} \mathrm{C}$
- Minimizes Snubber Networks for Protection
- Industry Standard TO-220AB Package
- High Commutating di/dt $-6.5 \mathrm{~A} / \mathrm{ms}$ minimum at $125^{\circ} \mathrm{C}$
- Pb-Free Packages are Available*

MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Value	Unit
Peak Repetitive Off- State Voltage, (Note 1) ($\mathrm{T}_{\mathrm{J}}=-40$ to $125^{\circ} \mathrm{C}$, Sine Wave, 50 to 60 Hz , Gate Open) MAC8D MAC8M MAC8N	VRM, $V_{\text {RRM }}$	$\begin{aligned} & 400 \\ & 600 \\ & 800 \end{aligned}$	V
On-State RMS Current, (Full Cycle Sine Wave, $60 \mathrm{~Hz}, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$)	$\mathrm{I}_{\mathrm{T} \text { (RMS) }}$	8.0	A
Peak Non-Repetitive Surge Current (One Full Cycle Sine Wave, $\left.60 \mathrm{~Hz}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}\right)$	${ }_{\text {ITSM }}$	80	A
Circuit Fusing Consideration ($\mathrm{t}=8.3 \mathrm{~ms}$)	${ }^{12} \mathrm{t}$	26	$\mathrm{A}^{2} \mathrm{~S}$
Peak Gate Power (Pulse Width $\leq 1.0 \mu \mathrm{~s}, \mathrm{~T}_{\mathrm{C}}=80^{\circ} \mathrm{C}$)	P_{GM}	16	W
Average Gate Power $\left(\mathrm{t}=8.3 \mathrm{~ms}, \mathrm{~T}_{\mathrm{C}}=80^{\circ} \mathrm{C}\right)$	$\mathrm{P}_{\mathrm{G}(\mathrm{AV})}$	0.35	W
Operating Junction Temperature Range	T_{J}	-40 to +125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	- 40 to +150	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. $V_{\text {DRM }}$ and $V_{\text {RRM }}$ for all types can be applied on a continuous basis. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.
[^0]
ON Semiconductor ${ }^{\circledR}$

http://onsemi.com
TRIACS
8 AMPERES RMS
400 thru 800 VOLTS
MT2

x = D, M, or N
A = Assembly Location
Y = Year
WW = Work Week
$\mathrm{G}=\mathrm{Pb}$-Free Package

PIN ASSIGNMENT	
1	Main Terminal 1
2	Main Terminal 2
3	Gate
4	Main Terminal 2

ORDERING INFORMATION

Device	Package	Shipping
MAC8D	TO-220AB	50 Units / Rail
MAC8DG	TO-220AB (Pb-Free)	50 Units / Rail
MAC8M	TO-220AB	50 Units / Rail
MAC8MG	TO-220AB (Pb-Free)	50 Units / Rail
MAC8N	TO-220AB	50 Units / Rail
MAC8NG	TO-220AB (Pb-Free)	50 Units / Rail

Preferred devices are recommended choices for future use and best overall value.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	$\mathrm{R}_{\theta \mathrm{JC}}$	2.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction-to-Ambient	$\mathrm{R}_{\theta \mathrm{JA}}$	62.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Lead Temperature for Soldering Purposes $1 / 8^{\prime \prime}$ from Case for 10 Seconds	T_{L}	260	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted; Electricals apply in both directions)

Characteristic		Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS						
Peak Repetitive Blocking Current ($\mathrm{V}_{\mathrm{D}}=$ Rated $\mathrm{V}_{\mathrm{DRM}}$, $\mathrm{V}_{\mathrm{RRM}}$; Gate Open)	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{J}=125^{\circ} \mathrm{C} \end{aligned}$	IDRM, IRRM			$\begin{gathered} \hline 0.01 \\ 2.0 \end{gathered}$	mA

ON CHARACTERISTICS

Peak On-State Voltage (Note 2), ($I_{\text {тM }}= \pm 11$ A Peak)	$\mathrm{V}_{\text {TM }}$	-	1.2	1.6	V
```Gate Trigger Current (Continuous DC) \(\left(\mathrm{V}_{\mathrm{D}}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega\right)\) MT2(+), G(+) MT2(+), G(-) MT2(-), G(-)```	$\mathrm{I}_{\mathrm{GT}}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 13 \\ & 16 \\ & 18 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 35 \end{aligned}$	mA
Holding Current, ( $\mathrm{V}_{\mathrm{D}}=12 \mathrm{~V}$, Gate Open, Initiating Current $\left.= \pm 150 \mathrm{~mA}\right)$	$\mathrm{I}_{\mathrm{H}}$		20	40	mA
Latching Current ( $\mathrm{V}_{\mathrm{D}}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{G}}=35 \mathrm{~mA}$ ), MT2(+), $\mathrm{G}(+)$; MT2(-), $\mathrm{G}(-)$ MT2(+), G(-)	l L		$\begin{aligned} & 20 \\ & 30 \end{aligned}$	$\begin{aligned} & 50 \\ & 80 \end{aligned}$	mA
```Gate Trigger Voltage (V MT2(+), G(+) MT2(+), G(-) MT2(-), G(-)```	$\mathrm{V}_{\mathrm{GT}}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.69 \\ & 0.77 \\ & 0.72 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$	V
Gate Non-Trigger Voltage ($\mathrm{V}_{\mathrm{D}}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$) MT2(+), G(+); MT2(+), G(-); MT2(-), G(-)	V_{GD}	0.2	-	-	V

DYNAMIC CHARACTERISTICS

$\begin{gathered} \text { Rate of Change of Commutating Current See Figure } 10 .\left(\mathrm{V}_{\mathrm{D}}=400 \mathrm{~V}, \mathrm{I}_{\mathrm{TM}}=4.4 \mathrm{~A},\right. \\ \text { Commutating dv/dt }=18 \mathrm{~V} / \mu \mathrm{s}, \text { Gate Open, } \mathrm{T}_{J}=125^{\circ} \mathrm{C}, \mathrm{f}=250 \mathrm{~Hz}, \mathrm{No} \text { Snubber) } \\ \mathrm{C}_{\mathrm{L}}=10 \mu \mathrm{~F} \\ \mathrm{~L}_{\mathrm{L}}=40 \mathrm{mH} \end{gathered}$	(di/dt) ${ }_{\text {c }}$	6.5	-	-	A/ms
Critical Rate of Rise of Off-State Voltage ($\mathrm{V}_{\mathrm{D}}=$ Rated $\mathrm{V}_{\mathrm{DRM}}$, Exponential Waveform, Gate Open, $\mathrm{T}_{J}=125^{\circ} \mathrm{C}$)	dv/dt	250	-	-	V/us

2. Indicates Pulse Test: Pulse Width $\leq 2.0 \mathrm{~ms}$, Duty Cycle $\leq 2 \%$.

Voltage Current Characteristic of Triacs

(Bidirectional Device)

Quadrant Definitions for a Triac
Quadrant II

All polarities are referenced to MT1.
With in-phase signals (using standard AC lines) quadrants I and III are used.

MAC8D, MAC8M, MAC8N

Figure 1. RMS Current Derating

Figure 3. On-State Characteristics

Figure 2. On-State Power Dissipation

Figure 4. Thermal Response

Figure 5. Hold Current Variation

Figure 6. Gate Trigger Current Variation
(sn/ $/$) ヨפНІІО

Figure 8. Critical Rate of Rise of Off-State Voltage (Exponential)

Figure 7. Gate Trigger Voltage Variation

Figure 9. Critical Rate of Rise of Commutating Voltage

Note: Component values are for verification of rated (di/dt)c. See AN1048 for additional information.
Figure 10. Simplified Test Circuit to Measure the Critical Rate of Rise of Commutating Current (di/dt)

MAC8D, MAC8M, MAC8N

PACKAGE DIMENSIONS

TO-220
CASE 221A-09
ISSUE AE

NOTES

1. DIMENSIONING AND TOLERANCING PER ANS Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH
3. DIMENSION Z DEFINES A ZONE WHERE ALI BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.570	0.620	14.48	15.75
B	0.380	0.405	9.66	10.28
C	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.161	3.61	4.09
G	0.095	0.105	2.42	2.66
H	0.110	0.155	2.80	3.93
J	0.014	0.025	0.36	0.64
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045	--	1.15	---
Z	---	0.080	---	2.04

STYLE 4:
PIN 1. MAIN TERMINAL 1
MAIN TERMINAL 2
GATE
MAIN TERMINAL 2

ON Semiconductor and (Oin are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
"Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

[^0]: *For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

