components, but particularly in the manufacture of power amplifiers. The company has developed proprietary techniques for mapping thermal profiles of FETs mounted on circuits. This technique provides information on the quality of the die attach on the completed circuit, prior to installation in the case.

Junction temperature measurement techniques also available include:

- Infra-Red Microscope
- Electro-Fluorescent Fiber-Optic Probe
- Liquid Crystal

Reliability and reproducibility are increased through the amplifier alignment technique of removing or changing bonds, rather than adding tuning elements. The circuit construction consists of an all-gold metal system on alumina substrates.

To achieve the highest level of reliability under operational conditions, all military products are screened to the Table I requirements. This 100% screening is based on MIL-STD-883 testing requirements.

Table I MIL-STD-883							
Test	Method	Test Condition					
Pre-Cap Visual Inspection	2017	Modified, QA Doc 950501					
Vacuum Bake/ Weld Seal	1008	B, 16 hrs @ +125°C inert atmosphere					
Temperature Cycling	1010	-55°C to +95°C 30 min. cycles, 5 times					
Pre Burn-In Electrical Test		Celeritek GTP					
Burn-In	1015	B, 48 hrs @ +85°C					
Post Burn-In Electrical Test		Celeritek GTP					
Seal Test	1014	A and C					
Final Electrical Test		Celeritek GTP					
Final QA External Visual	2009	Celeritek 950502					

For those customers and programs requiring full compliance to MIL-STD-883 screening, Celeritek offers additional screening to Table II requirements as an option.

In addition to these standard screening programs, custom screening procedures for specific customer requirements are available.

Celeritek products are designed and manufactured to meet the testing requirements of MIL-E-5400 (airborne), MIL-E-16400 (shipboard) and the EMI requirements of MIL-STD-461.

Table II MIL-STD-883									
Test	Method	Test Condition							
Stabilization Bake	1008	B, 24 hrs @ +150°C							
Temperature Cycling	1010	B, -65°C to +150°C 10 cycles							
Acceleration	2001	B, 5K gs, Y1 axis							
Burn-In	1015	B, 160 hrs @ +125°C							
Fine Leak	1014	A1 1 x 10 ⁻⁷ atm cc/sec He							

PRODUCT SPECIFICATIONS

Specification sheets describing standard products and special capabilities are available.

- GaAs FETs and MMICs
- 0.5 to 8.0 GHz Low-Noise Amplifiers 0.5-4 GHz • 2-4 GHz • 2-6 GHz • 2-8 GHz • 4-8 GHz
- 2.0 to 8.0 GHz Power Amplifiers 2-4 GHz • 2-6 GHz • 2-8 GHz • 4-8 GHz
- 2.0 to18 GHz Low-Noise Amplifiers 2-18 GHz • 6-13 GHz • 6-18 GHz • 8-18 GHz
- 6.0 to 18.0 GHz Power Amplifiers 6-13 GHz • 6-18 GHz • 8-18 GHz
- 18 to 40 GHz Amplifiers 18-26 GHz • 18-40 GHz • 26-40 GHz
- Connectorless (Drop-In) Amplifiers 0.5-4 GHz • 2-6 GHz • 2-8 GHz • 4-16 GHz • 6-18 GHz
- Microwave Front Ends for **Commercial Communications**
- Microwave Integrated Assemblies for **Military Applications**

CUSTOMER SERVICE

Through its quality, reliability, service and value (QRSV) philosophy, Celeritek is committed to providing the highest level of professional and technical service to our customers. This begins with timely quoting and ends with on-time delivery of reliable hardware which meets or exceeds performance specifications. Celeritek personnel are available to support program review meetings, provide ATP's, QTP's, and support other program management functions required by our customers.

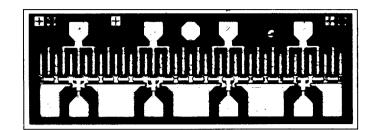
The company believes it offers the technology, fast response time, quality, facilities, people and service to meet the requirements of the military and commercial electronics industry. The marketing and engineering staffs look forward to working with you.

GaAs FETs and MMICs

7-31-25

 0.3-micron GaAs MESFETs for Discrete Devices and MMICs

☐ High Gain: Up to 40 GHz


 \Box Up to +28 dBm P₁ dB at 18 GHz

☐ Military High-Rel Screening

☐ 2-6 GHz MMIC Amplifiers with Low DC Current or Medium Power

□ DC to 18 GHz MMIC SPDT with High Isolation/Low Insertion Loss

□ 2-20 GHz Distributed Amplifier MMICs

CELERITEK GaAs FETs and MMICs

Celeritek GaAs FET and MMIC chips are fabricated from wafers that have ion-implanted or epitaxial active layers. Epitaxy can be from MBE, VPE or MOCVD processes. The gate structure is sub 1/2 micron long and refractory metals are

used. The resistors for the MMIC are active GaAs layers. For crossovers, air bridges are utilized. For good grounding, via hole technology is applied. Silicon Nitride is utilized as the dielectric of the MIM capacitor and as the surface protection and passivation.

Low-Noise and General Purpose GaAs FETs Typical Specifications at 25° C

Power Output @ 1dB Test Noise **Associated** Material Frequency **Gate Width** Fr Compression **Package** Model Range equency **Figure** Gain Type (µm) (GHz) (ďB) (dB) (+dBm) (GHZ) 1-26 12 12 8.5 I/ICF001-01 300 1.6 Chip/A/B 9.5 CF001-02 1-26 300 1.2 17 EPI Chip/A/B Chip/A/B 300 12 0.8 10.5 17 **HEMT** 1-40 CF001-03 22 20 20 1-26 600 12 1.8 8.0 M Chip CF003-01 12 12 Chip/A/B CF003-02 1-26 600 1.4 9.0 EPI ČF003-03 HEMT Chip/A/B 1-26 600 1.0 10.0 18 2.2 7.5 15 VI. Chip CF004-01 1-40 150 Chip 13 CF004-02 1-40 150 18 1.8 9.0 EPI 13 CF004-03 1-40 150 18 10.0 **HEMT** Chip

Medium-Power GaAs FETs Typical Specifications at 25° C

Power Out-Associated Frequency put @ 1dB Material Test Range **Gate Width** Frequency Gain Compression **Package** Model Type (ĠHz) (GHŽ) (dB) (+dBm) (µm) 9.0 22.0 CF003-01 1-20 600 12 1/1Chip/C 10.0 ČF003-02 1-20 12 20.0 ΕΡΙ Chip/A/B 600 12 CF003-03 1-20 600 11.0 20.0 **HEMT** Chip/A/B 1200 12 25.0 CF005-01 1-18 8.5 1/1 Chip/C 12 12 12 27.0 27.0 CF005-11 CF005-21 1200 7.0 Ϊ/I |// Chip/C 1-18 Chip/C 1200 1-18 6.5 CF010-01 2400 8.0 28.0 Chip/C 1-18

Dual-Gate GaAs FETs Typical Specifications at 25° C

Model	Frequency Range (GHz)	Gate Width (μm)	Test Frequency (GHz)	Noise Figure (dB)	Associated Gain (dB)	Power Out- put @ 1dB Compression (+dBm)	Material Type	Package
CF007-01	1-26	300	12	2.2	12.0	16.0	1/1	Chip

