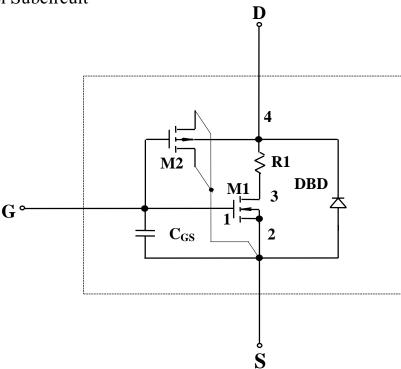


N-Channel 30-V (D-S) Rated MOSFET

Characteristics


- N-channel Vertical DMOS
- Macro-Model (Subcircuit)
- Level 3 MOS
- Applicable for Both Linear and Switch Mode
- Applicable Over a -55 to 125°C Temperature Range
- Models Gate Charge, Transient, and Diode Reverse Recovery Characteristics

Description

The attached SPICE Model describes typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model was extracted and optimized over a 25°C to 125°C temperature range under pulse conditions for 0 to 10 volt gate drives. Saturated output impedance model accuracy has been maximized for gate biases near threshold. A novel gate-to-drain feedback

capacitance network is used to model gate charge characteristics while avoiding convergence problems of switched $C_{\rm gd}$ model. Model parameter values are optimized to provide a best fit to measured electrical data and are not intended as an exact physical description of a device.

Model Subcircuit

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

Siliconix 4/17/01

Document: 70956

N-Channel Device (T_J=25°C Unless Otherwise Noted)

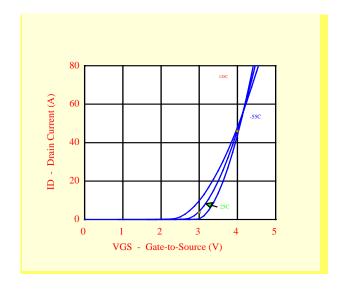
Parameter	Symbol	Test Conditions	Тур	Unit
Static				
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	1.71	V
On-State Drain Current ^b	$I_{D(on)}$	$V_{DS} \ge 5V, V_{GS} = 10V$	652	A
Drain-Source On-State Resistance ^b	$r_{\mathrm{DS(on)}}$	$V_{GS} = 10V, I_D = 12A$	0.007	Ω
		$V_{GS} = 4.5 V, I_D = 9.9 A$	0.011	
Forward Transconductance ^b	$g_{ m fs}$	$V_{DS} = 15V, I_{D} = 12A$	35	S
Diode Forward Voltage ^b	V_{SD}	$I_{S} = 2.3A, V_{GS} = 0V$	0.7	V
Dynamic				
Total Gate Charge	Q_{g}		55	
Gate-Source Charge	Q_{gs}	$V_{DS} = 15V, V_{GS} = 10V,$	15	nC
	_	$I_D = 12A$		
Gate-Drain Charge	Q_{gd}		10	
Turn-On Delay Time	$t_{d(on)}$		24	
Rise Time	t_r	$V_{DD} = 15V, R_L = 15\Omega$	13	
Turn-Off Delay Time	$t_{d(off)}$	$I_D \cong 1A, V_{GEN} = 10V,$	62	ns
		$R_G = 6\Omega$		
Fall Time	t_{f}		46	
Source-Drain Reverse Recovery Time	t_{rr}	$I_F = 2.3A$, di/dt=100A/ μ s	47	

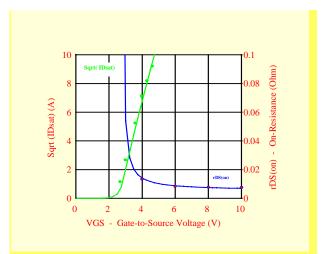
Notes

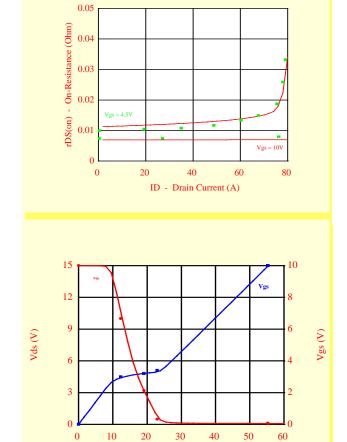
a) Guaranteed by design, not subject to production testing

b) Pulse test: pulse width $\leq 300 \,\mu\text{sec}$, duty cycle $\leq 2\%$

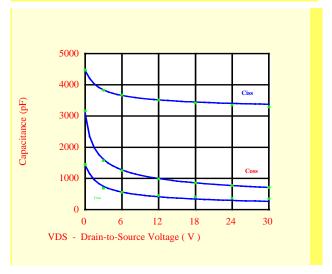
2


Document: 70956





Comparison of Model with Measured Data (T_J=25°C Unless Otherwise Noted)



Qg (nC)

Siliconix 4/17/01 Document: 70956