TQS - COMPANY PROPRIETARY INFORMATION	SPEC. NO: REV:	DAT.CLY2 B
SPEC TITLE: CLY2 DATASHEET	PAGE	1 OF 9

REVISION HISTORY

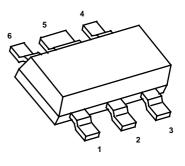
			REVISION HISTORY	T	1
REV	DATE	ECN#	DESCRIPTION OF CHANGE	Internal Web Site?	External Web Site?
A	10-16-03	22355	New release of CLY2 datasheet (formerly DAT.057 rev D); also replaced S-PAR & noise match tables, p. 6 & 7; replaced output charasteristics tables, p. 5; by R. Hamilton.	No	Yes
В	12-06-04	27162	Updated to reflect Ver 1.8, March 4, 2004; revised package name to MW6, p.1; deleted 5V electrical characteristics, p. 7; by M. Rensfeldt	No	Yes
MSW					
NOTE			CONTROLLED DISTRIBUTION:		

NOTE: UNLESS STAMPED WITH A RED "CONTROLLED " STAMP AND STATION NUMBER, THIS IS AN UNCONTROLLED COPY AND WILL NOT BE UPDATED CONFIRM THAT IT IS CURRENT BEFORE USING.

High-Power Packaged GaAs FET

Description:

The CLY2 is a high-breakdown voltage GaAs FET designed for PA driver applications in the 400 MHz to 3 GHz frequency range. It is ideal for portable PA applications in mobile phones and portable WLAN transceivers due to its easy matching and excellent linearity. The CLY2 exhibits +23.5 dBm output power with +3V Vds at 1.8 GHz with an associated gain of 14.5 dB. Power added efficiencies to 55% are achievable.


Features:

- For frequencies up to 3 GHz
- Wide operating voltage range: 2 to 6 V
- P_{OUT} 23.5 dBm typical at V_D=3V, f=1.8GHz
- High efficiency: better than 55 %
- Nfmin 0.79 dB typical at 900 MHz
- Low Cost

Applications:

- Power Amplifiers for WLAN transceivers
- Driver Amplifiers for WLAN or mobile phone basestations
- Low Noise Amplifier for basestations and antenna amplifiers

Package Outline, MW6:

Pin Configuration:

1 & 6: Gate 2 & 5: Source 3 & 4: Drain

Maximum Ratings:

Parameter	Symbol	Values	Unit				
Drain-source voltage	V _{DS}	9	V				
Drain-gate voltage	V <i>D</i> G	12	V				
Gate-source voltage	VGS	-6	V				
Drain current	I _D	600	mA				
Channel temperature	T _{Ch}	150	°C				
Storage temperature	T _{stg}	-55+150	°C				
Total power dissipation (T _S ≤ 50 °C) ¹⁾	P _{tot}	900	mW				
Thermal Resistance							
Channel-soldering point 1)	R _{thChS}	≤110	K/W				

¹⁾T_S: Temperature at soldering point

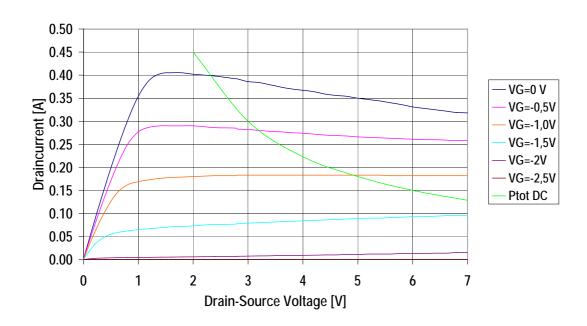
Electrical Specifications:

 $(T_A = 25^{\circ}C$, unless otherwise specified)

Parameter	Symbol	min	typ	max	Unit
Drain-source saturation current	l _{DSS}	300	450	650	mA
$V_{DS} = 3 \text{ V}$ $V_{GS} = 0 \text{ V}$					
Drain-source pinch-off current	/ _D	-	5	50	μΑ
$V_{DS} = 3 \text{ V}$ $V_{GS} = -3.8 \text{ V}$					
Gate pinch-off current	/G	-	5	20	μA
$V_{DS} = 3 \text{ V}$ $V_{GS} = -3.8 \text{ V}$	_				
Pinch-off Voltage	$V_{GS(p)}$	-3.8	-2.8	-1.8	V
V_{DS} = 3 V I_{D} =50 μ A	(17				
Small Signal Gain*)	G	-	15.5	-	dB
$V_{DS} = 5 \text{ V}$ $I_{D} = 180 \text{ mA}$ f = 1.8 GHz					
$P_{in} = -5 \text{ dBm}$					
Small Signal Gain*)	G	-	14.5	-	dB
$V_{DS} = 3 \text{ V}$ $I_{D} = 180 \text{ mA}$ f = 1.8 GHz					
P _{in} = -5 dBm					
Output Power	P_{O}	22.5	23.5	-	dBm
$V_{DS} = 3 \text{ V}$ $I_{D} = 180 \text{ mA}$ f = 1.8 GHz					
P _{in} = 10 dBm					

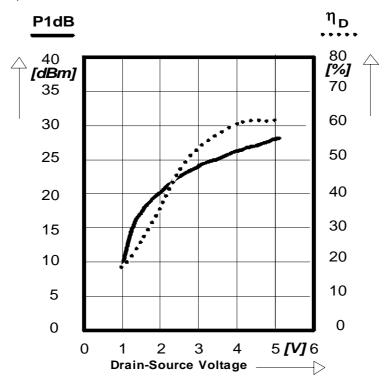
Electrical Specifications, Continued:

1dB-Compression Point	P _{1dB}	-	23.5	-	dBm
$V_{DS} = 3 \text{ V}$ $I_{D} = 180 \text{ mA}$ f = 1.8 GHz					
1dB-Compression Point	P _{1dB}	-	27.0	-	dBm
$V_{DS} = 5 \text{ V}$ $I_{D} = 180 \text{ mA}$ f = 1.8GHz					
Power Added Efficiency	PAE	-	55	-	%
$V_{DS} = 3 \text{ V}$ $I_{D} = 180 \text{ mA}$ f = 1.8 GHz					
P _{in} = 10 dBm					
Noise figure	NF		1.48		dB
$V_{DS} = 3 \text{ V}$ $I_{D} = 180 \text{ mA}$ f = 1.8GHz					


^{*)} Matching conditions for maximum small signal gain (not identical with power matching conditions!)

Source Match: Γ_{ms} : MAG = 0.74, ANG 132°; Load Match: Γ_{ml} : ;MAG 0.61, ANG -153°

^{**)} Power matching conditions: f=1.8GHz:


Electrical Characteristics, Continued:

Output characteristics:

Compression Power vs. Drain-Source Voltage

f = 1.8GHz; IDS = 0.5 Idss

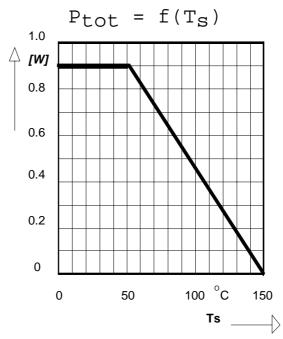
Electrical Characteristics, Continued:

Typical Common Source S-Parameters and noise data

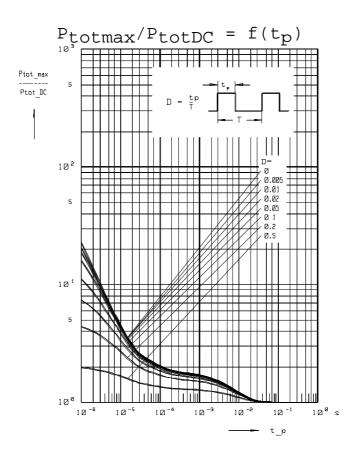
 $V_{DS} = 3 V$

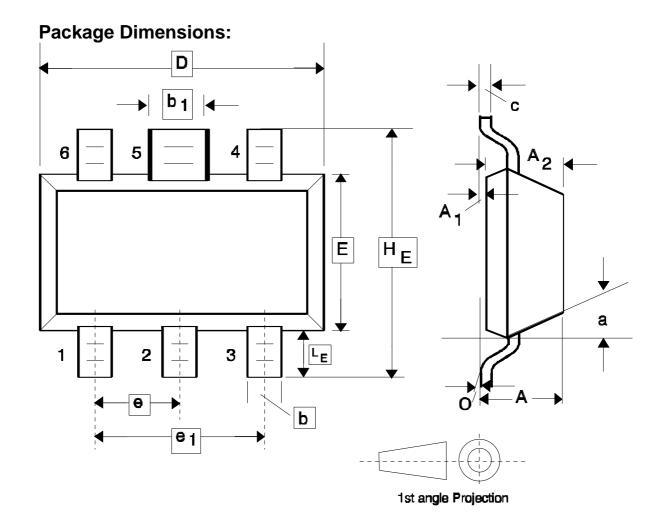
 $I_D = 180 \text{ mA}$

 $Z_0 = 50 \Omega$


Freq. [GHz]	S11	<s11< td=""><td> S21 </td><td><s21< td=""><td> S12 </td><td><s12< td=""><td> S22 </td><td><\$22</td></s12<></td></s21<></td></s11<>	S21	<s21< td=""><td> S12 </td><td><s12< td=""><td> S22 </td><td><\$22</td></s12<></td></s21<>	S12	<s12< td=""><td> S22 </td><td><\$22</td></s12<>	S22	<\$22
100	0.992	-13.3	10.120	170.7	0.008	101.1	0.115	-34.6
200	0.974	-26.4	9.778	162.6	0.014	74.1	0.140	-57.5
300	0.950	-38.6	9.278	154.7	0.021	74.0	0.171	-72.3
400	0.922	-49.5	8.683	147.8	0.025	68.0	0.200	-82.0
500	0.896	-59.1	8.042	141.8	0.031	64.8	0.226	-89.1
600	0.871	-67.1	7.444	137.0	0.033	63.0	0.248	-93.8
700	0.849	-74.0	6.880	132.5	0.036	60.6	0.267	-96.9
800	0.828	-79.9	6.373	129.1	0.038	60.2	0.284	-98.8
900	0.813	-85.0	5.900	125.9	0.039	59.1	0.299	-100.1
1,000	0.800	-89.2	5.485	123.4	0.041	59.5	0.312	-100.4
1,100	0.790	-92.6	5.110	121.3	0.041	59.4	0.323	-100.5
1,200	0.780	-95.5	4.780	119.3	0.043	60.2	0.335	-100.0
1,300	0.773	-97.7	4.498	117.7	0.043	61.6	0.345	-99.3
1,400	0.766	-99.6	4.225	116.2	0.044	62.3	0.354	-98.2
1,500	0.760	-100.9	3.987	115.3	0.045	64.1	0.364	-97.1
1,600	0.754	-102.0	3.769	114.4	0.045	65.9	0.372	-95.7
1,700	0.751	-102.7	3.588	113.6	0.045	67.7	0.380	-94.3
1,800	0.748	-103.3	3.426	112.9	0.046	70.0	0.388	-92.6
1,900	0.743	-103.5	3.268	112.3	0.046	71.8	0.397	-90.9
2,000	0.741	-103.8	3.119	111.7	0.047	74.525	0.404	-89.2

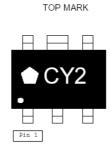
f	F _{min}	$\Gamma_{\sf opt}$		R_n	r _n
GHz	dB	MAG	ANG	Ω	-
0.9	0.79	0.564	61	13.4	0.267
1.8	1.47	0.585	99	13.6	0.272

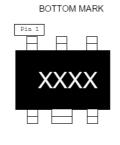

Additional S-Parameter and noise data available on data disc!


Electrical Characteristics, Continued:

Total Power Dissipation

Permissible Pulse Load




Dim.	min.	nom.	max.	Gradient	Remark
Α	\		1.1		
A ₁			0.1		
A_2			1.0		
b		0.3			
b ₁		0.6			
С	0.08		0.15		
D	2.8		3.0		
Е	1.2		1.4		
e		0.95			
e ₁		1.9			
H_{F}			2.6		
L _F			0.6		
а				max 10°	1
q				2°30°	·

1. MSL Rating: 1/260C

2. Pb Free

Package Marking:

Package Orientation on Reel:

Ordering Information:

Type	Marking		Pin Configuration					
	_	. 1	2	3	4	5	6	
CLY 2	CY2	G	S	D	D	S	G	MW 6

ESD: **E**lectro**s**tatic **d**ischarge sensitive device, observe handling precautions!

Additional Information

For latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web: www.triquint.com Tel: (503) 615-9000 Email: info_wireless@tqs.com Fax: (503) 615-8902

For technical questions and additional information on specific applications:

Email: info_wireless@tqs.com

The information provided herein is believed to be reliable; TriQuint assumes no liability for inaccuracies or omissions. TriQuint assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party.

TriQuint does not authorize or warrant any TriQuint product for use in life-support devices and/or systems.

Copyright © 2004TriQuint Semiconductor, Inc. All rights reserved.

Revision 1.8 March 4, 2004

