C²MOS Logic TC74HC/HCT Series

Octal D-Type Flip-Flop with Clear

The TC74HC273A is a high speed CMOS OCTAL D-TYPE FLIP-FLOP fabricated with silicon gate C^2MOS technology.

It achieves the high speed operation similar to equivalent LSTTL while maintaining the CMOS low power dissipation.

Information signals applied to D inputs are transferred to the Q outputs <u>on the positive going edge of the clock pulse</u>.

When the CLEAR input is held low, the Q outputs are at a low logic level independent of the other inputs.

All inputs are equipped with protection circuits against static discharge or transient excess voltage.

Features

- High Speed: $f_{MAX} = 48MHz(Typ.)$ at $V_{CC} = 5V$
- Low Power Dissipation: $I_{CC} = 4\mu A(Max.)$ at Ta = 25°C
- High Noise Immunity: $V_{NIH} = V_{NIL} = 28\% V_{CC}$ (Min.)
- Output Drive Capability: 10 LSTTL Loads
- Symmetrical Output Impedance: $II_{OH}I = I_{OL} = 4mA(Min.)$
- Balanced Propagation Delays: $t_{pLH} = t_{pHL}$
- Wide Operating Voltage Range: V_{CC}(opr) = 2V ~ 6V
- Pin and Function Compatible with 74LS273

IEC Logic Symbol

CLEAR 1 20 V_{CC} 19 Q 8 Q1 2 h 18 D 8 h D1 3 17 D 7 D2 4 П 16 Q 7 Q2 5 D 15 Q 6 Q36 þ C 14 D 6 D3 7 Г 13 D 5 D 4 8 Q4 9 b 12 Q 5 **GND** 10 h 11 CLOCK ٢ (TOP VIEW)

Pin Assignment

Truth Table

	Inputs		Outputs	Functions
CLEAR	D	CLOCK	Q	runctions
L	Х	Х	L	Clear
н	L	ſ	L	-
Н	Н	ſ	Н	-
н	х	l	Q _n	No change

X: Don't Care

The information contained here is subject to change without notice.

The information contained herein is presented only as guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others. These TOSHIBA products are intended for usage in general electronic equipments (office equipment, communication equipment, measuring equipment, domestic electrification, etc.) Please make sure that you consult with us before you use these TOSHIBA products in equipments which require high quality and/or reliability, and in equipments which could have major impact to the welfare of human life (atomic energy control, spaceship, traffic signal, combustion control, all types of safety devices, etc.). TOSHIBA cannot accept liability to any damage which may occur in case these TOSHIBA products were used in the mentioned equipments without prior consultation with TOSHIBA.

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Supply Voltage Range	V _{CC}	-0.5 ~ 7	V
DC Input Voltage	V _{IN}	-0.5 ~ V _{CC} + 0.5	V
DC Output Voltage	V _{OUT}	-0.5 ~ V _{CC} + 0.5	V
Input Diode Current	I	<u>+2</u> 0	mA
Output Diode Current	I _{ОК}	<u>±20</u>	mA
DC Output Current	I _{OUT}	±25	mA
DC V _{CC} /Ground Current	I _{CC}	±50	mA
Power Dissipation	P _D	500(DIP)*/180(MFP)	mW
Storage Temperature	T _{stg}	-65 ~ 150	°C
Lead Temperature 10sec	TL	300	°C

*500mW in the range of Ta = -40°C \sim 65°C. From Ta = 65°C to 85°C a derating factor of -10mW/°C shall be applied until 300mW.

Recommended Operating Conditions

Parameter	Symbol	Value	Unit
Supply Voltage	V _{CC}	2~6	V
Input Voltage	V _{IN}	0 ~ V _{CC}	V
Output Voltage	V _{OUT}	0 ~ V _{CC}	V
Operating Temperature	T _{opr}	-40 ~ 85	°C
Input Rise and Fall Time	t _r , t _f	$\begin{array}{l} 0 \sim 1000(V_{CC} = 2.0V) \\ 0 \sim 500(V_{CC} = 4.5V) \\ 0 \sim 400(V_{CC} = 6.0V) \end{array}$	ns

DC Electrical Characteristics

Parameter	Sumbol	Test	Condition		Ta = 25°C			Ta = -40 ~ 85°C		Unit
	Symbol	Test Condition		V _{cc}	Min.	Typ.	Max.	Min.	Max.	
High-Level Input Voltage	V _{IH}		-		1.5 3.15 4.2	- - -		1.5 3.15 4.2		V
Low-Level Input Voltage	V _{IL}	-		2.0 4.5 6.0	- - -		0.5 1.35 1.8		0.5 1.35 1.8	V
High-Level Va	V _{OH}	V _{IN} = V _{IH} or V _{IL}	I _{OH} = -20µА	2.0 4.5 6.0	1.9 4.4 5.9	2.0 4.5 6.0		1.9 4.4 5.9		V
Output Voltage			I _{OH} = -4 mA I _{OH} = -5.2mA	4.5 6.0	4.18 5.68	4.31 5.80		4.13 5.63		
Low-Level	Ve	V_{OL} $V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OL} = 20μΑ	2.0 4.5 6.0	- - -	0.0 0.0 0.0	0.1 0.1 0.1		0.1 0.1 0.1	V
Output Voltage			$I_{OL} = 4 \text{ mA}$ $I_{OL} = 5.2 \text{mA}$	4.5 6.0	-	0.17 0.18	0.26 0.26		0.33 0.33	
Input Leakage Current	I _{IN}	$V_{IN} = V_{CC}$ or GND		6.0	_	-	±0.1	-	±1.0	μA
Quiescent Supply Current	I _{CC}	V _{IN} = '	V _{CC} or GND	6.0	-	-	4.0	-	40.0	μn

Parameter	Symbol	Test Condition		Ta = 25°C		Ta =-40 ~ 85°C	Unit
	Symbol Test Condition		V _{cc}	Typ.	Limit	Limit	Unit
Minimum Pulse Width (CLOCK)	t _{W(L)} t _{W(H)}	-	2.0 4.5 6.0	- - -	75 15 13	95 19 16	
Minimum Pulse Width (CLEAR)	t _{W(L)}	-	2.0 4.5 6.0		75 15 13	95 19 16	
Minimum Setup Time	ts	_	2.0 4.5 6.0		75 15 13	95 19 16	ns
Minimum Hold Time	t _h	-	2.0 4.5 6.0		0 0 0	0 0 0	
Minimum Removal Time (CLEAR)	t _{rem}	-	2.0 4.5 6.0		50 10 9	65 13 11	
Clock Frequency	f	-	2.0 4.5 6.0		6 30 35	5 24 28	MHz

Timing Requirements (Input $t_r = t_f = 6ns$)

AC Electrical Characteristics (C_L = 15pF, V_{CC} = 5V, Ta = 25°C)

Parameter	Symbol	Test Condition	Min.	Typ.	Max.	Unit
Output Transition Time	t _{TLH} t _{THL}	-	-	4	8	
Propagation Delay Time (CLOCK-Q)	t _{pLH} t _{pHL}	-	-	12	22	ns
Propagation Delay Time (CLEAR-Q)	t _{pLH} t _{pHL}	-	-	10	18	
Maximum Clock Frequency	f _{MAX}	-	40	67	-	MHz

AC Electrical Characteristics ($C_L = 50pF$, Input $t_r = t_f = 6ns$)

Parameter	Gumbal	Test Condition		Ta = 25°C			Ta = -40 ~ 85°C		Unit
	Symbol		V _{cc}	Min.	Typ.	Max.	Min.	Max.	
Output Transition Time	t _{TLH} t _{THL}	_	2.0 4.5 6.0		25 7 6	75 15 13	- - -	95 19 16	
Propagation Delay Time (CLOCK-Q)	t _{pLH} t _{pHL}	_	2.0 4.5 6.0		54 18 15	145 29 25	- - -	180 36 31	ns
Propagation Delay Time (CLEAR-Q)	t _{pLH} t _{pHL}	_	2.0 4.5 6.0		60 20 17	160 32 27		200 40 34	
Maximum Clock Frequency	f _{MAX}	_	2.0 4.5 6.0	6 30 35	18 56 66		5 24 28		MHz
Input Capacitance	C _{IN}	-	÷	-	5	10	-	10	nF
Power Dissipation Capacitance	C _{PD} (1)	-		-	43	-	-	-	— pF

Note (1) C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation:

 $I_{CC(opr)} = C_{PD} \bullet V_{CC} \bullet f_{IN} + I_{CC}/8(\text{per Flip-Flop})$ And the total C_{PD} when n pcs. of Flip-Flip operate cane be gained by the following equation:

C_{PD} (total) = 32 + 11 • n

