SCBS208C - FEBRUARY 1991 - REVISED APRIL 1997 - **Members of the Texas Instruments** Widebus™ Family - State-of-the-Art *EPIC-IIB™* BiCMOS Design Significantly Reduces Power Dissipation - Latch-Up Performance Exceeds 500 mA Per **JEDEC Standard JESD-17** - Typical V_{OLP} (Output Ground Bounce) < 1 V at $V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C}$ - Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise - Flow-Through Architecture Optimizes PCB Layout - High-Drive Outputs (-32-mA I_{OH}, 64-mA I_{OI}) - Package Options Include Plastic 300-mil Shrink Small-Outline (DL), Thin Shrink Small-Outline (DGG), and Thin Very Small-Outline (DGV) Packages, and 380-mil Fine-Pitch Ceramic Flat (WD) Package **Using 25-mil Center-to-Center Spacings** #### description The SN54ABT16540 and SN74ABT16540A are inverting 16-bit buffers/drivers composed of two 8-bit sections with separate output-enable gates. These buffers and bus drivers provide a high-performance bus interface for wide data paths. The 3-state control gate is a 2-input AND gate with active-low inputs so that if either output-enable $(\overline{OE1} \text{ or } \overline{OE2})$ input is high, all corresponding outputs are in the high-impedance state. SN54ABT16540 . . . WD PACKAGE SN74ABT16540A...DGG, DGV, OR DL PACKAGE (TOP VIEW) To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. The SN54ABT16540 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ABT16540A is characterized for operation from -40°C to 85°C. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Widebus and EPIC-IIB are trademarks of Texas Instruments Incorporated. ## FUNCTION TABLE (each 8-bit section) | | INPUTS | OUTPUT | | |-----|--------|--------|---| | OE1 | OE2 | Α | Y | | L | L | L | Н | | L | L | Н | L | | Н | X | Χ | Z | | Х | Н | Χ | z | ## logic symbol† [†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. ## logic diagram (positive logic) SCBS208C - FEBRUARY 1991 - REVISED APRIL 1997 ### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† | Supply voltage range, V _{CC} | 0.5 V to 7 V | |--|-------------------------| | Input voltage range, V _I (see Note 1) | $-0.5\;V$ to 7 V | | Voltage range applied to any output in the high or power-off state, VO | \dots –0.5 V to 5.5 V | | Current into any output in the low state, IO: SN54ABT16540 | 96 mA | | SN74ABT16540A | 128 mA | | Input clamp current, I _{IK} (V _I < 0) | –18 mA | | Output clamp current, I _{OK} (V _O < 0) | –50 mA | | Package thermal impedance, θ _{JA} (see Note 2): DGG package | 89°C/W | | DGV package | 93°C/W | | DL package | 94°C/W | | Storage temperature range, T _{stq} | 65°C to 150°C | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. ### recommended operating conditions (see Note 3) | | | | | Γ16540 | SN74ABT16540A | | UNIT | |--|---|-----------------|-----|--------|---------------|-----|------| | | | | MIN | MAX | MIN | MAX | UNII | | Vcc | V _{CC} Supply voltage | | | | 4.5 | 5.5 | V | | V _{IH} High-level input voltage | | | | EM | 2 | | V | | V _{IL} | L Low-level input voltage | | | 0.8 | | 0.8 | V | | ٧ _I | V _I Input voltage | | | Vcc | 0 | VCC | V | | loh | I _{OH} High-level output current | | | -24 | | -32 | mA | | loL | Low-level output current | 200 | 48 | | 64 | mA | | | Δt/Δν | Input transition rise or fall rate | Outputs enabled | BA | 10 | | 10 | ns/V | | TA | Operating free-air temperature | | -55 | 125 | -40 | 85 | °C | NOTE 3: Unused inputs must be held high or low to prevent them from floating. NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. ^{2.} The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51. ## SN54ABT16540, SN74ABT16540A 16-BIT BUFFERS/DRIVERS WITH 3-STATE OUTPUTS SCBS208C - FEBRUARY 1991 - REVISED APRIL 1997 # electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) | PARAMETER | | TEST CONDITIONS | | T _A = 25°C | | | SN54ABT16540 | | SN74ABT16540A | | UNIT | | |------------------|----------------|--|----------------------------------|-----------------------|------|-------|-----------------|------------|---------------|------|------|--| | PARA | MEIER | TEST CONDITIONS | | MIN | TYP† | MAX | MIN | MAX | MIN | MAX | UNII | | | VIK | | V _{CC} = 4.5 V, | I _I = -18 mA | | | -1.2 | | -1.2 | | -1.2 | V | | | | | $V_{CC} = 4.5 \text{ V},$ | $I_{OH} = -3 \text{ mA}$ | 2.5 | | | 2.5 | | 2.5 | | | | | \/a | | $V_{CC} = 5 V$, | $I_{OH} = -3 \text{ mA}$ | 3 | | | 3 | | 3 | | ٧ | | | VOH | VOH | VCC = 4.5 V | I _{OH} = -24 mA | 2 | | | 2 | | | | | | | | | VCC = 4.5 V | $I_{OH} = -32 \text{ mA}$ | 2* | | | | | 2 | | | | | VOL | | V _{CC} = 4.5 V | $I_{OL} = 48 \text{ mA}$ | | | 0.55 | | 0.55 | | | V | | | VOL | | VCC = 4.5 V | $I_{OL} = 64 \text{ mA}$ | | | 0.55* | | | | 0.55 | V | | | V _{hys} | | | | | 100 | | | | | | mV | | | IĮ | | $V_{CC} = 5.5 \text{ V},$ | $V_I = V_{CC}$ or GND | | | ±1 | | <u></u> ±1 | | ±1 | μΑ | | | lozh | | $V_{CC} = 5.5 \text{ V},$ | $V_0 = 2.7 \text{ V}$ | | | 10 | | 50 | | 10 | μΑ | | | lozL | | $V_{CC} = 5.5 \text{ V},$ | $V_0 = 0.5 V$ | | | -10 | -5 0 | | | -10 | μΑ | | | l _{off} | | $V_{CC} = 0$, | V_I or $V_O \le 4.5 \text{ V}$ | | | ±100 | | ζ | | ±100 | μΑ | | | ICEX | | V _{CC} = 5.5 V,
V _O = 5.5 V | Outputs high | | | 50 | Singo | 50 | | 50 | μΑ | | | IO [‡] | | V _{CC} = 5.5 V, | V _O = 2.5 V | -50 | -100 | -180 | – 50 | -180 | -50 | -180 | mA | | | | | V _{CC} = 5.5 V,
I _O = 0,
V _I = V _{CC} or GND | Outputs high | | | 3 | | 2 | | 3 | | | | Icc | | | Outputs low | | | 34 | | 32 | | 34 | mA | | | | | | Outputs disabled | | | 3 | | 2 | | 3 | | | | | Data
inputs | | Outputs enabled | | | 1 | | 1 | | 1 | mA | | | ΔICC§ Co | | | Outputs disabled | | | 0.05 | | 0.05 | | 0.05 | | | | | Control inputs | V _{CC} = 5.5 V, One input at 3.4 V,
Other inputs at V _{CC} or GND | | | | 1.5 | | 1.5 | | 1.5 | | | | Ci | | V _I = 2.5 V or 0.5 V | V _I = 2.5 V or 0.5 V | | 3.5 | | | | | | pF | | | Co | | V _O = 2.5 V or 0.5 V | | | 7.5 | | | | | | pF | | ^{*} On products compliant to MIL-PRF-38535, this parameter does not apply. ## switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50$ pF (unless otherwise noted) (see Figure 1) | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | V _{CC} = 5 V,
T _A = 25°C | | | SN54ABT16540 | | SN74ABT16540A | | UNIT | |------------------|-----------------|----------------|---|-----|-----|--------------|-----|---------------|-----|------| | | | | MIN | TYP | MAX | MIN | MAX | MIN | MAX | | | ^t PLH | A | Y | 1 | 2.3 | 3.3 | 1 | 4.2 | 1 | 4.1 | ns | | ^t PHL | | | 1.1 | 2.5 | 4.1 | 1.1 | 4.4 | 1.1 | 4.3 | | | ^t PZH | ŌĒ | Y | 1.1 | 3.1 | 4.2 | 1.1 | 5.2 | 1.1 | 5.1 | ns | | ^t PZL | | | 1.6 | 3.7 | 4.8 | 1.6 | 6 | 1.6 | 5.9 | | | ^t PHZ | ŌĒ | Y | 1.6 | 4 | 5 | 01.6 | 5.4 | 1.6 | 5.7 | ne | | t _{PLZ} | | | 1.4 | 3.2 | 4.4 | 1.4 | 4.7 | 1.4 | 4.7 | ns | [†] All typical values are at $V_{CC} = 5 \text{ V}$. [‡] Not more than one output should be tested at a time, and the duration of the test should not exceed one second. [§] This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND. #### PARAMETER MEASUREMENT INFORMATION NOTES: A. C_L includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50~\Omega$, $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns. - D. The outputs are measured one at a time with one transition per measurement. Figure 1. Load Circuit and Voltage Waveforms #### **IMPORTANT NOTICE** Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof. Copyright © 1998, Texas Instruments Incorporated