
SCLS414O - APRIL 1998 - REVISED JANUARY 2011

- 2-V to 5.5-V V_{CC} Operation
- Max t_{od} of 7.1 ns at 5 V
- Typical V_{OLP} (Output Ground Bounce)
 <0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Typical V_{OHV} (Output V_{OH} Undershoot)
 >2.3 V at V_{CC} = 3.3 V, T_A = 25°C
- Support Mixed-Mode Voltage Operation on All Ports
- 8-Bit Serial-In, Parallel-Out Shift

- I_{off} Supports Partial-Power-Down Mode Operation
- Shift Register Has Direct Clear
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

NC - No internal connection

description/ordering information

The 'LV595A devices are 8-bit shift registers designed for 2-V to 5.5-V V_{CC} operation.

ORDERING INFORMATION

T _A	PACK	AGE [†]	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	QFN - RGY	Reel of 1000	SN74LV595ARGYR	LV595A
	0010 D	Tube of 40	SN74LV595ADG3	11/5054
	SOIC - D	Reel of 2500	SN74LV595ADR	LV595A
4000 to 0500	SOP – NS Reel of 2000 SN74LV595ANSR SSOP – DB Reel of 2000 SN74LV595ADBR		SN74LV595ANSR	74LV595A
-40°C to 85°C			LV595A	
		Tube of 90	SN74LV595APW	
	TSSOP - PW	Reel of 2000	SN74LV595APWRG3	LV595A
		Reel of 250	SN74LV595APWT	
	CDIP – J	Tube of 25	SNJ54LV595AJ	SNJ54LV595AJ
–55°C to 125°C	5°C to 125°C		SNJ54LV595AW	SNJ54LV595AW
	LCCC - FK	Tube of 55	SNJ54LV595AFK	SNJ54LV595AFK

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

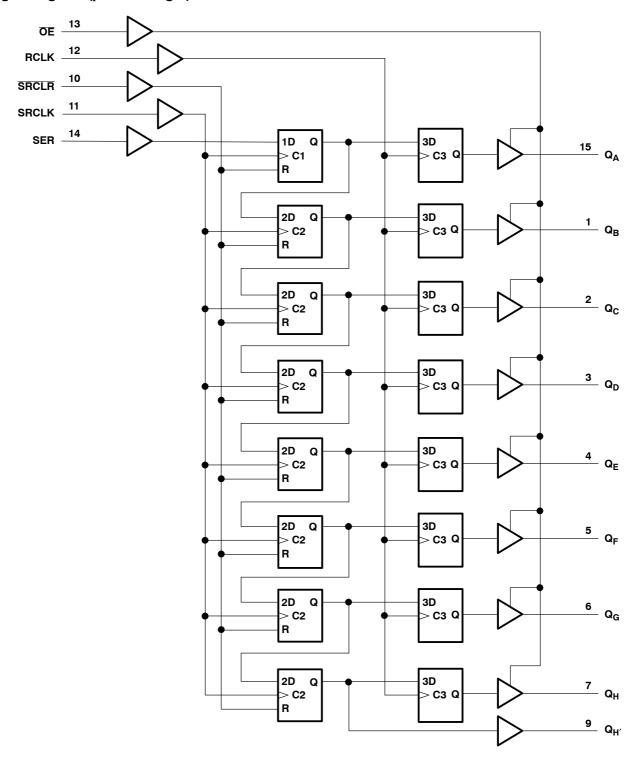
SCLS4140 - APRIL 1998 - REVISED JANUARY 2011

description/ordering information (continued)

These devices contain an 8-bit serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. The storage register has parallel 3-state outputs. Separate clocks are provided for both the shift and storage register. The shift register has a direct overriding clear (\overline{SRCLR}) input, serial (SER) input, and a serial output for cascading. When the output-enable (\overline{OE}) input is high, all outputs except $Q_{H'}$ are in the high-impedance state.

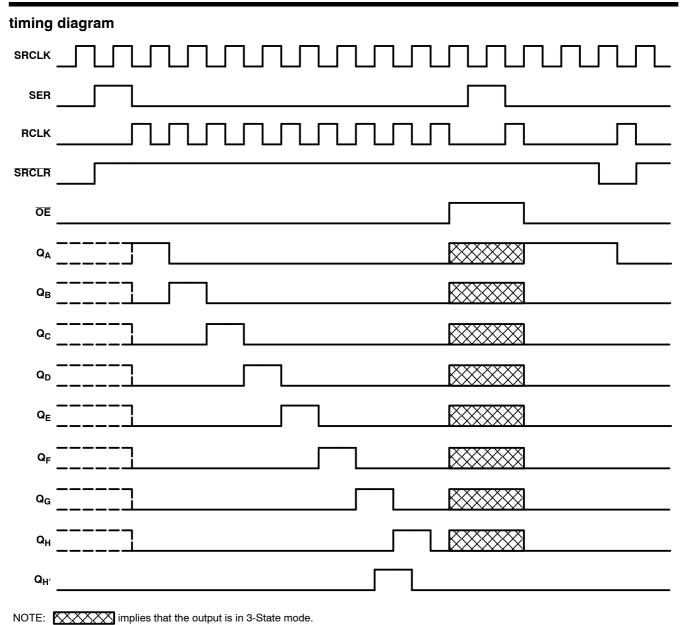
Both the shift register clock (SRCLK) and storage register clock (RCLK) are positive-edge triggered. If both clocks are connected together, the shift register always is one clock pulse ahead of the storage register.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.


These devices are fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down.

FUNCTION TABLE

		INPUTS			FUNCTION
SER	SRCLK	SRCLR	RCLK	OE	FUNCTION
Х	Х	Х	Х	Н	Outputs Q _A –Q _H are disabled.
Х	Χ	X	X	L	Outputs Q _A –Q _H are enabled.
Х	Χ	L	Χ	Χ	Shift register is cleared.
L	1	Н	Х	Х	First stage of the shift register goes low. Other stages store the data of previous stage, respectively.
Н	1	Н	X	Х	First stage of the shift register goes high. Other stages store the data of previous stage, respectively.
Х	Х	Х	1	Χ	Shift-register data is stored in the storage register.


logic diagram (positive logic)

Pin numbers shown are for the D, DB, J, NS, PW, RGY, and W packages.

SCLS414O - APRIL 1998 - REVISED JANUARY 2011

SCLS414O - APRIL 1998 - REVISED JANUARY 2011

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†] Supply voltage range, V_{CC} –0.5 V to 7 V Input voltage range, V_I (see Note 1) –0.5 V to 7 V Voltage range applied to any output in the high-impedance Output voltage range applied in the high or low state, V_O (see Notes 1 and 2) -0.5 V to V_{CC} + 0.5 V Continuous current through V_{CC} or GND ±70 mA (see Note 3): DB package 82°C/W (see Note 3): NS package 64°C/W Storage temperature range, T_{stq} –65°C to 150°C

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

- 2. This value is limited to 5.5 V maximum.
- 3. The package thermal impedance is calculated in accordance with JESD 51-7.
- 4. The package thermal impedance is calculated in accordance with JESD 51-5.

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

SCLS414O - APRIL 1998 - REVISED JANUARY 2011

recommended operating conditions (see Note 5)

			SN54L	V595A	SN74L	V595A	
			MIN	MAX	MIN	MAX	UNIT
V_{CC}	Supply voltage		2	5.5	2	5.5	V
		V _{CC} = 2 V	1.5		1.5		
.,		V _{CC} = 2.3 V to 2.7 V	$V_{CC} \times 0.7$		$V_{CC} \times 0.7$.,
V _{IH}	High-level input voltage	V_{CC} = 3 V to 3.6 V	$V_{CC} \times 0.7$		$V_{CC} \times 0.7$		V
		V _{CC} = 4.5 V to 5.5 V	$V_{CC} \times 0.7$		$V_{CC} \times 0.7$		
		V _{CC} = 2 V		0.5		0.5	
.,	La la disa tantan	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		$V_{CC} \times 0.3$		$V_{CC} \times 0.3$.,
V_{IL}	Low-level input voltage	V_{CC} = 3 V to 3.6 V		$V_{CC} \times 0.3$		$V_{CC} \times 0.3$	V
		V _{CC} = 4.5 V to 5.5 V		V _{CC} ×0.3		$V_{CC} \times 0.3$	
VI	Input voltage		0	5.5	0	5.5	V
.,	0.1.1.11	High or low state	0	V _{CC}	0	V _{CC}	.,
V _O	Output voltage	3-state	0 /	5.5	0	5.5	V
		V _{CC} = 2 V	5	-50		-50	μА
١.	High to all a to the const	V_{CC} = 2.3 V to 2.7 V	30	-2		-2	
Іон	High-level output current	$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$	Q	-8		-8	mA
		V _{CC} = 4.5 V to 5.5 V		-16		-16	
		V _{CC} = 2 V		50		50	μΑ
١.	The development of the second	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		2		2	
l _{OL}	Low-level output current	V _{CC} = 3 V to 3.6 V		8		8	mA
		V _{CC} = 4.5 V to 5.5 V		16		16	
		V _{CC} = 2.3 V to 2.7 V		200		200	
Δt/Δν	Input transition rise or fall rate	V _{CC} = 3 V to 3.6 V		100		100	ns/V
		V _{CC} = 4.5 V to 5.5 V		20		20	
T _A	Operating free-air temperature		-55	125	-40	85	°C

NOTE 5: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCLS414O - APRIL 1998 - REVISED JANUARY 2011

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

- DA F	NAMETER	TEGT CONDITIONS	, ,,	SN54	4LV595A	SN74	4LV595A	
PAH	RAMETER	TEST CONDITIONS	s v _{cc}	MIN	TYP MAX	MIN	TYP MA	X UNIT
		$I_{OH} = -50 \mu\text{A}$	2 V to 5.5 V	V _{CC} -0.1		V _{CC} -0.1		
		$I_{OH} = -2 \text{ mA}$	2.3 V	2		2		
.,	$Q_{H'}$	$I_{OH} = -6 \text{ mA}$	0.14	2.48		2.48		.,
V _{OH}	$Q_A - Q_H$	$I_{OH} = -8 \text{ mA}$	3 V	2.48		2.48		
	$Q_{H'}$	$I_{OH} = -12 \text{ mA}$	45)/	3.8		3.8		
	$Q_A - Q_H$	I _{OH} = -16 mA	4.5 V	3.8		3.8		
		I _{OL} = 50 μA	2 V to 5.5 V		0.1		C	.1
		I _{OL} = 2 mA	2.3 V		0.4		C	.4
\ ,	$Q_{H'}$	I _{OL} = 6 mA	0.)/		0.44		0.	14 V
V _{OL}	$Q_A - Q_H$	I _{OL} = 8 mA	3 V		0.44		0.	۷ 14
	$Q_{H'}$	I _{OL} = 12 mA	45)/	100	0.55		0.	55
	$Q_A - Q_H$	I _{OL} = 16 mA	4.5 V	OK O	0.55		0.	55
I _I		V _I = 5.5 V or GND	0 to 5.5 V		±1		:	-1 μA
loz		$V_O = V_{CC}$ or GND, Q_A	−Q _H 5.5 V		±5		:	<u>-</u> 5 μΑ
I _{CC}		$V_I = V_{CC}$ or GND, $I_O = V_{CC}$	= 0 5.5 V		20			20 μΑ
I _{off}		V_{I} or $V_{O} = 0$ to 5.5 V	0		5			5 μΑ
C _i		V _I = V _{CC} or GND	3.3 V		3.5		3.5	pF

timing requirements over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

			T _A = 2	T _A = 25°C		SN54LV595A		SN74LV595A	
			MIN	MAX	MIN	MAX	MIN	MAX	UNIT
		SRCLK high or low	7		7.5		7.5		
t _w	Pulse duration	RCLK high or low	7		7.5	FW	7.5		ns
		SRCLR low	6		6.5	F	6.5		
		SER before SRCLK↑	5.5		5.5 4	2	5.5		
١.	Oak water	SRCLK↑ before RCLK↑†	8		9		9		
t _{su}	Setup time	SRCLR low before RCLK↑	8.5		9,5		9.5		ns
		SRCLR high (inactive) before SRCLK↑	4		4		4		
t _h	Hold time	SER after SRCLK↑	1.5		1.5		1.5		ns

[†] This setup time allows the storage register to receive stable data from the shift register. The clocks can be tied together, in which case the shift register is one clock pulse ahead of the storage register.

SCLS414O - APRIL 1998 - REVISED JANUARY 2011

timing requirements over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

			T _A = 2	25°C	SN54L	/595A	SN74LV595A		
			MIN	MAX	MIN	MAX	MIN	MAX	UNIT
		SRCLK high or low	5.5		5.5		5.5		
t _w	Pulse duration	RCLK high or low	5.5		5.5	EN	5.5		ns
		SRCLR low	5		5	F	5		
		SER before SRCLK↑	3.5		3.5 <	ζ.	3.5		
	0.1 . 15	SRCLK↑ before RCLK↑†	8		8.5		8.5		
t _{su}	Setup time	SRCLR low before RCLK↑	8		29		9		ns
		SRCLR high (inactive) before SRCLK↑	3		3		3		
t _h	Hold time	SER after SRCLK↑	1.5		1.5		1.5		ns

[†] This setup time allows the storage register to receive stable data from the shift register. The clocks can be tied together, in which case the shift register is one clock pulse ahead of the storage register.

timing requirements over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

			T _A = 1	25°C	SN54L	V595A	SN74LV595A		
			MIN	MAX	MIN	MAX	MIN	MAX	UNIT
		SRCLK high or low	5		5		5		
t _w	Pulse duration	RCLK high or low	5		5	EM	5		ns
		SRCLR low	5.2		5.2	F	5.2		
		SER before SRCLK↑	3		3 4	2	3		
	0-1 - 1:	SRCLK↑ before RCLK↑†	5		5	,	5		
t _{su}	Setup time	SRCLR low before RCLK↑	5		5		5		ns
		SRCLR high (inactive) before SRCLK↑	2.5		2.5		2.5		
t _h	Hold time	SER after SRCLK↑	2		2		2		ns

[†] This setup time allows the storage register to receive stable data from the shift register. The clocks can be tied together, in which case the shift register is one clock pulse ahead of the storage register.

SCLS4140 - APRIL 1998 - REVISED JANUARY 2011

switching characteristics over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

DADAMETED	FROM	то	LOAD	Т	_A = 25°C	;	SN54L	V595A	SN74L	√595A	
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
			C _L = 15 pF	65*	80*		45*		45		N41.1-
f _{max}			C _L = 50 pF	60	70		40		40		MHz
t _{PLH}	DOLK	0 0			8.4*	14.2*	1*	15.8*	1	15.8	
t _{PHL}	RCLK	Q_A-Q_H			8.4*	14.2*	1*	15.8*	1	15.8	
t _{PLH}	CDCI IX	0			9.4*	19.6*	1*	22.2*	1	22.2	
t _{PHL}	SRCLK	$Q_{H^{'}}$			9.4*	19.6*	1*	22.2*	1	22.2	
t _{PHL}	SRCLR	$Q_{H'}$	C _L = 15 pF		8.7*	14.6*	1*	16.3*	1	16.3	ns
t _{PZH}	0 =	0 0			8.2*	13.9*	1*	15*	1	15	
t _{PZL}	ŌĒ	Q_A-Q_H			10.9*	18.1*	1*	20.3*	1	20.3	
t _{PHZ}	OF.	0 0			8.3*	13.7*	1*	15.6*	1	15.6	
t _{PLZ}	ŌĒ	Q_A-Q_H			9.2*	15.2*	15	16.7*	1	16.7	
t _{PLH}	DOLK	0 0			11.2	17.2	Q ₁	19.3	1	19.3	
t _{PHL}	RCLK	Q_A-Q_H			11.2	17.2	Q 1	19.3	1	19.3	
t _{PLH}	CDCI IX	0			13.1	22.5	1	25.5	1	25.5	
t _{PHL}	SRCLK	$Q_{H^{'}}$			13.1	22.5	1	25.5	1	25.5	
t _{PHL}	SRCLR	$Q_{H'}$	C _L = 50 pF		12.4	18.8	1	21.1	1	21.1	ns
t _{PZH}	0 =	0 0			10.8	17	1	18.3	1	18.3	
t _{PZL}	ŌĒ	Q_A-Q_H			13.4	21	1	23	1	23	
t _{PHZ}	ŌĒ	0 0			12.2	18.3	1	19.5	1	19.5	
t _{PLZ}	UE	Q_A-Q_H			14	20.9	1	22.6	1	22.6	

^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested.

SCLS414O - APRIL 1998 - REVISED JANUARY 2011

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

	FROM	то	LOAD	T,	_A = 25°C	;	SN54L	V595A	SN74L	V595A	
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
			C _L = 15 pF	80*	120*		70*		70		MI I-
f _{max}			C _L = 50 pF	55	105		50		50		MHz
t _{PLH}	DOLK	0 0			6*	11.9*	1*	13.5*	1	13.5	
t _{PHL}	RCLK	Q_A-Q_H			6*	11.9*	1*	13.5*	1	13.5	
t _{PLH}	SDCI K	0			6.6*	13*	1*	15*	1	15	
t _{PHL}	SRCLK	$Q_{H'}$			6.6*	13*	1*	15*	1	15	
t _{PHL}	SRCLR	$Q_{H'}$	C _L = 15 pF		6.2*	12.8*	1*	13.7*	1	13.7	ns
t _{PZH}					6*	11.5*	1*	13.5*	1	13.5	
t _{PZL}	ŌĒ	Q_A-Q_H			7.8*	11.5*	1*	13.5*	1	13.5	
t _{PHZ}					6.1*	14.7*	1*	15.2*	1	15.2	
t _{PLZ}	ŌĒ	Q_A-Q_H			6.3*	14.7*	15	15.2*	1	15.2	
t _{PLH}	DOLK	0 0			7.9	15.4	Q ₁	17	1	17	
t _{PHL}	RCLK	Q_A-Q_H			7.9	15.4	Q 1	17	1	17	
t _{PLH}	SDCI K	0			9.2	16.5	1	18.5	1	18.5	
t _{PHL}	SRCLK	$Q_{H'}$			9.2	16.5	1	18.5	1	18.5	
t _{PHL}	SRCLR	$Q_{H'}$	$C_L = 50 pF$		9	16.3	1	17.2	1	17.2	ns
t _{PZH}	~=				7.8	15	1	17 1	17		
t _{PZL}	ŌĒ	Q_A-Q_H			9.6	15	1	17	1	1 17	
t _{PHZ}	ŌĒ	0.0			8.1	15.7	1	16.2	1	16.2	
t _{PLZ}	UE .	Q_A-Q_H			9.3	15.7	1	16.2	1	16.2	

^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested.

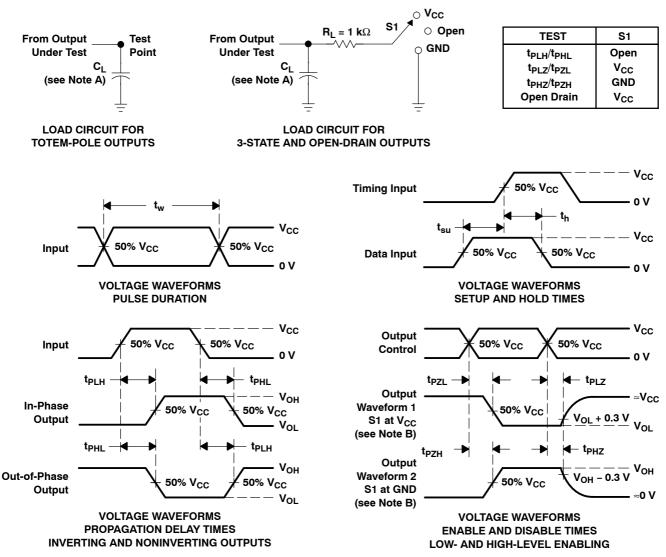
SCLS414O - APRIL 1998 - REVISED JANUARY 2011

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

DADAMETED	FROM	то	LOAD	T,	<u> </u> = 25°C	;	SN54L\	/595A	SN74LV	√595A	LINUT	
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT	
£			C _L = 15 pF	135*	170*		115*		115		MI I-	
f _{max}			C _L = 50 pF	120	140		95		95		MHz	
t _{PLH}	DOLK	0 0			4.3*	7.4*	1*	8.5*	1	8.5		
t _{PHL}	RCLK	Q_A-Q_H			4.3*	7.4*	1*	8.5*	1	8.5		
t _{PLH}	SRCLK	0			4.5*	8.2*	1*	9.4*	1	9.4		
t _{PHL}	SHULK	$Q_{H'}$			4.5*	8.2*	1*	9.4*	1	9.4		
t _{PHL}	SRCLR	$Q_{H'}$	C _L = 15 pF		4.5*	8*	1*	9.1*	1	9.1	ns	
t _{PZH}	~=]		4.3*	8.6*	1*	10*	1	10		
t _{PZL}	ŌĒ	Q_A-Q_H			5.4*	8.6*	1*	10 *	1	10		
t _{PHZ}	ŌĒ	0 0			2.4*	6*	1*	7.1*	1	7.1		
t _{PLZ}	OE	Q_A-Q_H			2.7*	5.1*	*	7.2*	1	7.2		
t _{PLH}	RCLK	0 0			5.6	9.4	Q ₀	10.5	1	10.5		
t _{PHL}	HOLK	Q_A-Q_H			5.6	9.4	Q 1	10.5	1	10.5		
t _{PLH}	SRCLK	0 .			6.4	10.2	1	11.4	1	11.4		
t _{PHL}	SHOLK	Q _H ′]		6.4	10.2	1	11.4	1	11.4		
t _{PHL}	SRCLR	$Q_{H'}$	C _L = 50 pF		6.4	10	1	11.1	1	11.1	ns	
t _{PZH}		0.0]		5.7	10.6	1	12	1	12		
t _{PZL}	ŌĒ	Q_A-Q_H				6.8	10.6	1	12	1	12	
t _{PHZ}	ŌĒ	Q_A – Q_H			3.5	10.3	1	11	1	11		
t_{PLZ}	<u> </u>	Q _A -Q _H			3.4	10.3	1	11	1	11		

^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested.

noise characteristics, V_{CC} = 3.3 V, C_L = 50 pF, T_A = 25°C (see Note 6)


	DADAMETED	SN			
	PARAMETER	MIN	TYP	MAX	UNIT
V _{OL(P)}	Quiet output, maximum dynamic V _{OL}		0.3		V
V _{OL(V)}	Quiet output, minimum dynamic V _{OL}		-0.2		V
V _{OH(V)}	Quiet output, minimum dynamic V _{OH}		2.8		V
V _{IH(D)}	High-level dynamic input voltage	2.31			V
$V_{IL(D)}$	Low-level dynamic input voltage			0.99	V

NOTE 6: Characteristics are for surface-mount packages only.

operating characteristics, T_A = 25°C

	PARAMETER	TEST CO	NDITIONS	V _{CC}	TYP	UNIT
	Davies discinction conscitones	C 50 pF	f = 10 MHz	3.3 V	111	
Cpd	C _{pd} Power dissipation capacitance	$C_L = 50 pF$,	I = IU WINZ	5 V	114	pF

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \Omega$, $t_f \leq 3$ ns, $t_f \leq 3$ ns.
- D. The outputs are measured one at a time, with one input transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PHL} and t_{PLH} are the same as t_{pd}.
- H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
SN74LV595AD	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV595A	Samples
SN74LV595ADE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV595A	Samples
SN74LV595ADG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV595A	Samples
SN74LV595ADR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV595A	Samples
SN74LV595ADRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV595A	Samples
SN74LV595ADRG3	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	LV595A	Samples
SN74LV595ADRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV595A	Samples
SN74LV595ANSR	ACTIVE	so	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	74LV595A	Samples
SN74LV595ANSRE4	ACTIVE	so	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	74LV595A	Samples
SN74LV595ANSRG4	ACTIVE	so	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	74LV595A	Samples
SN74LV595APWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV595A	Samples
SN74LV595APWRE4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV595A	Samples
SN74LV595APWRG3	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 85	LV595A	Samples
SN74LV595APWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV595A	Samples
SN74LV595APWT	ACTIVE	TSSOP	PW	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV595A	Samples
SN74LV595APWTE4	ACTIVE	TSSOP	PW	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV595A	Samples
SN74LV595APWTG4	ACTIVE	TSSOP	PW	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV595A	Samples

PACKAGE OPTION ADDENDUM

11-Apr-2013

Orderable Device	Status	Package Type	•	Pins		Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing		Qty	(2)		(3)		(4)	
SN74LV595ARGYR	ACTIVE	VQFN	RGY	16	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	LV595A	Samples
SN74LV595ARGYRG4	ACTIVE	VQFN	RGY	16	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	LV595A	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

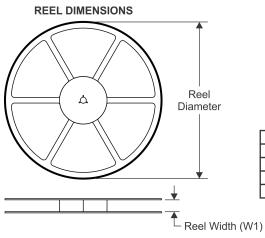
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

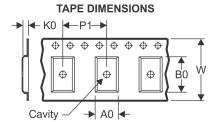
OTHER QUALIFIED VERSIONS OF SN74LV595A:

Automotive: SN74LV595A-Q1

11-Apr-2013

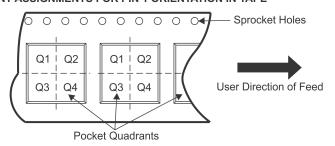
● Enhanced Product: SN74LV595A-EP


NOTE: Qualified Version Definitions:

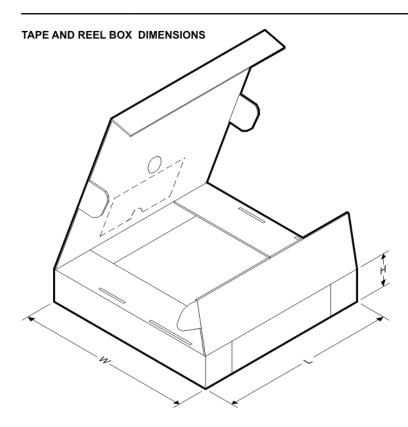

- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Enhanced Product Supports Defense, Aerospace and Medical Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 5-Oct-2013


TAPE AND REEL INFORMATION

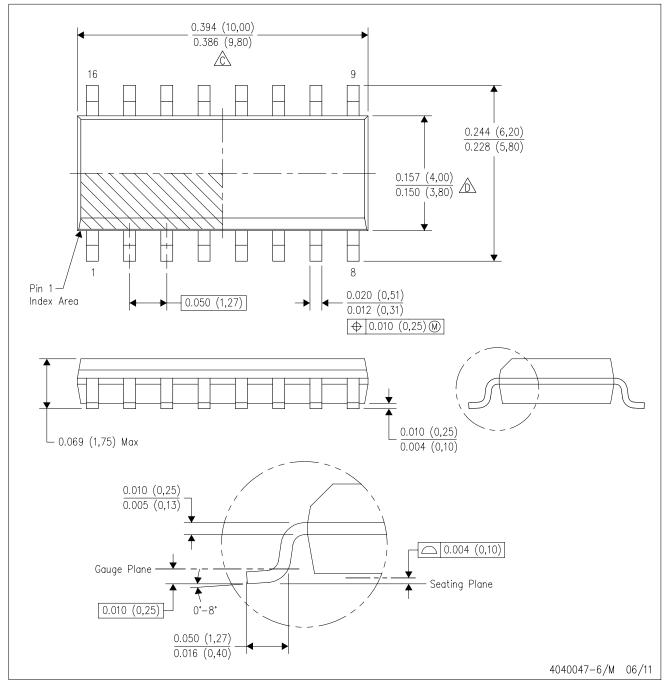
	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LV595ADR	SOIC	D	16	2500	330.0	16.8	6.5	10.3	2.1	8.0	16.0	Q1
SN74LV595ADRG3	SOIC	D	16	2500	330.0	16.8	6.5	10.3	2.1	8.0	16.0	Q1
SN74LV595ADRG4	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74LV595ANSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
SN74LV595APWR	TSSOP	PW	16	2000	330.0	12.4	7.0	5.6	1.6	8.0	12.0	Q1
SN74LV595APWRG3	TSSOP	PW	16	2000	330.0	12.4	7.0	5.6	1.6	8.0	12.0	Q1
SN74LV595APWRG4	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LV595APWT	TSSOP	PW	16	250	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LV595ARGYR	VQFN	RGY	16	3000	330.0	12.4	3.8	4.3	1.5	8.0	12.0	Q1

www.ti.com 5-Oct-2013

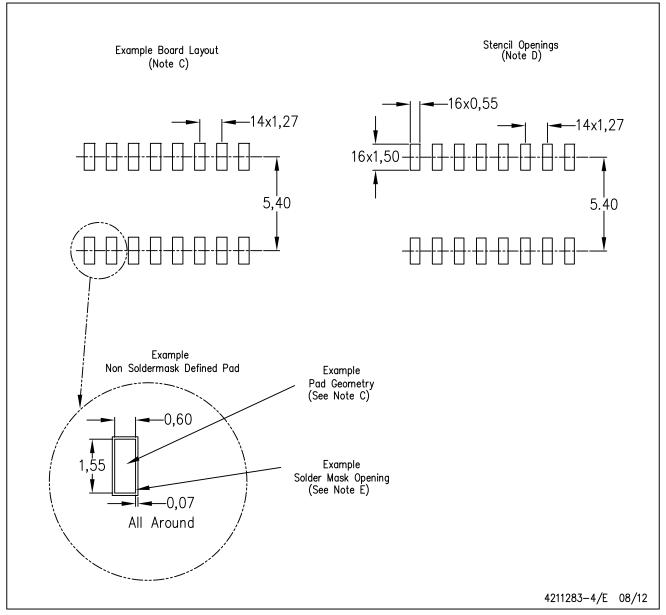


*All dimensions are nominal

		1					
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LV595ADR	SOIC	D	16	2500	364.0	364.0	27.0
SN74LV595ADRG3	SOIC	D	16	2500	364.0	364.0	27.0
SN74LV595ADRG4	SOIC	D	16	2500	333.2	345.9	28.6
SN74LV595ANSR	SO	NS	16	2000	367.0	367.0	38.0
SN74LV595APWR	TSSOP	PW	16	2000	364.0	364.0	27.0
SN74LV595APWRG3	TSSOP	PW	16	2000	364.0	364.0	27.0
SN74LV595APWRG4	TSSOP	PW	16	2000	367.0	367.0	35.0
SN74LV595APWT	TSSOP	PW	16	250	367.0	367.0	35.0
SN74LV595ARGYR	VQFN	RGY	16	3000	367.0	367.0	35.0

D (R-PDS0-G16)

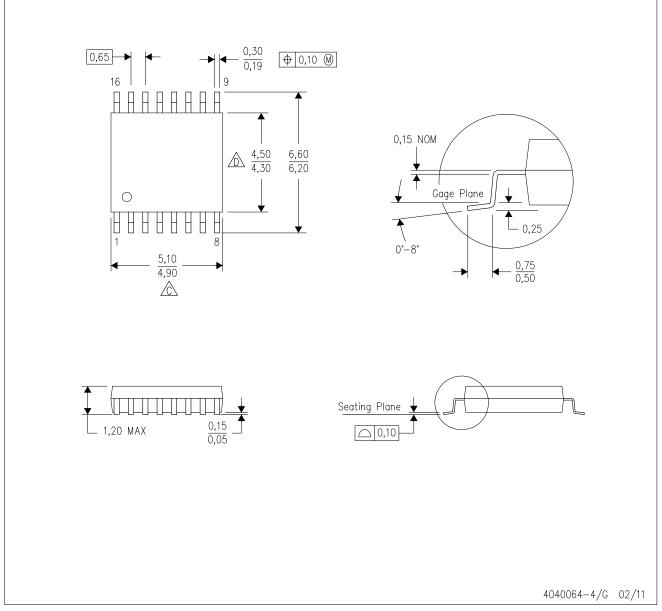
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)

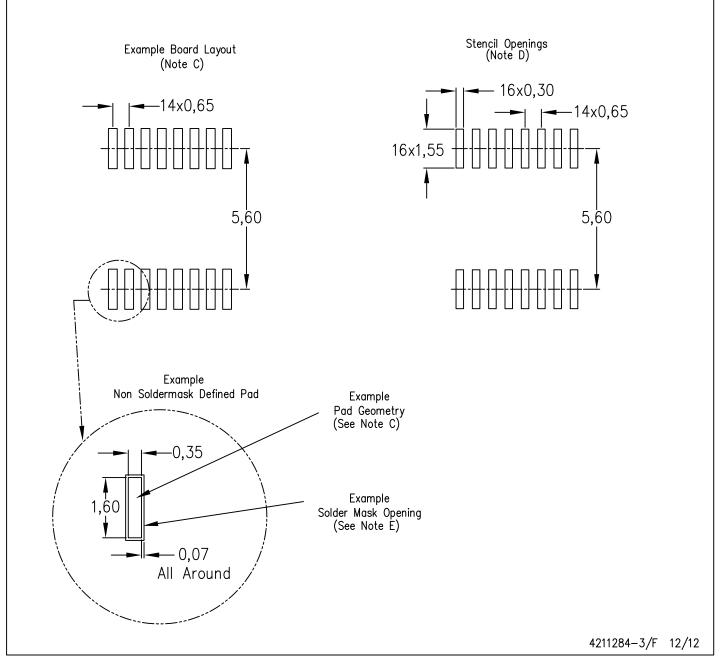
PLASTIC SMALL OUTLINE



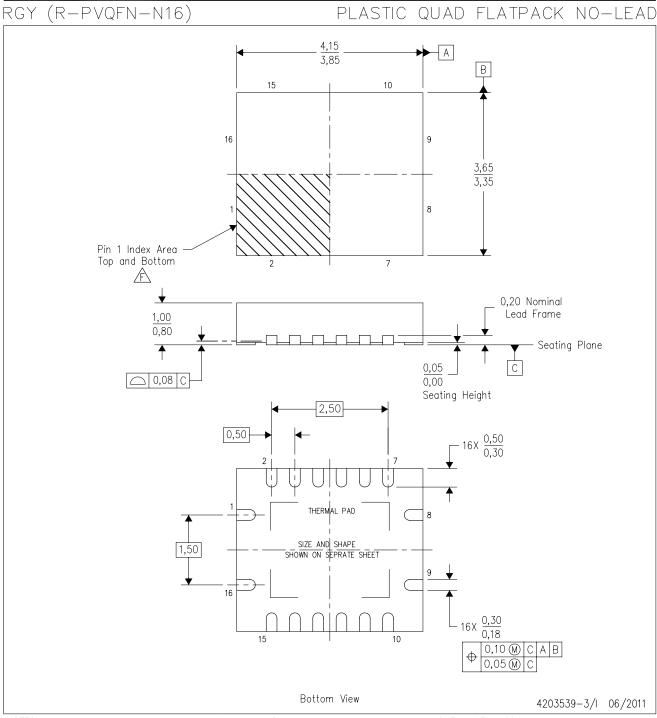
- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153


PW (R-PDSO-G16)

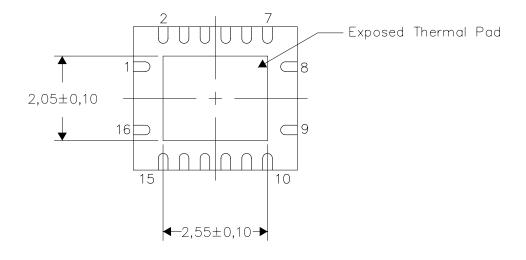
PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- Pin 1 identifiers are located on both top and bottom of the package and within the zone indicated. The Pin 1 identifiers are either a molded, marked, or metal feature.
- G. Package complies to JEDEC MO-241 variation BA.

RGY (R-PVQFN-N16)


PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

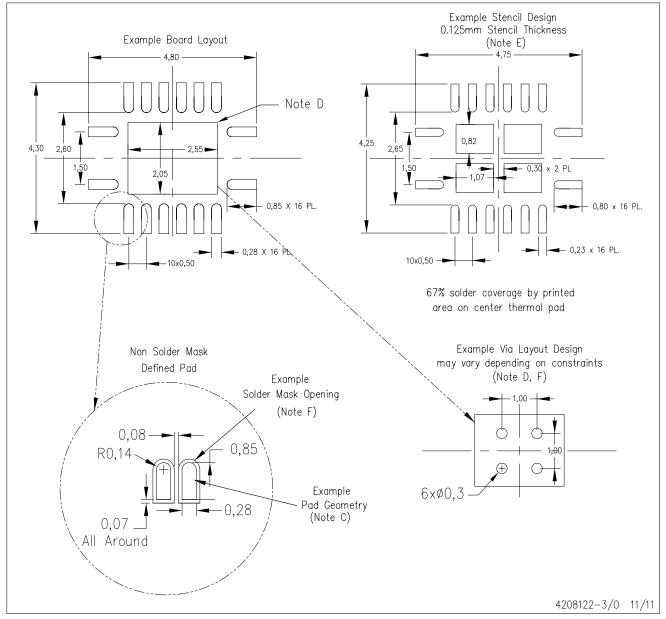
This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View

Exposed Thermal Pad Dimensions

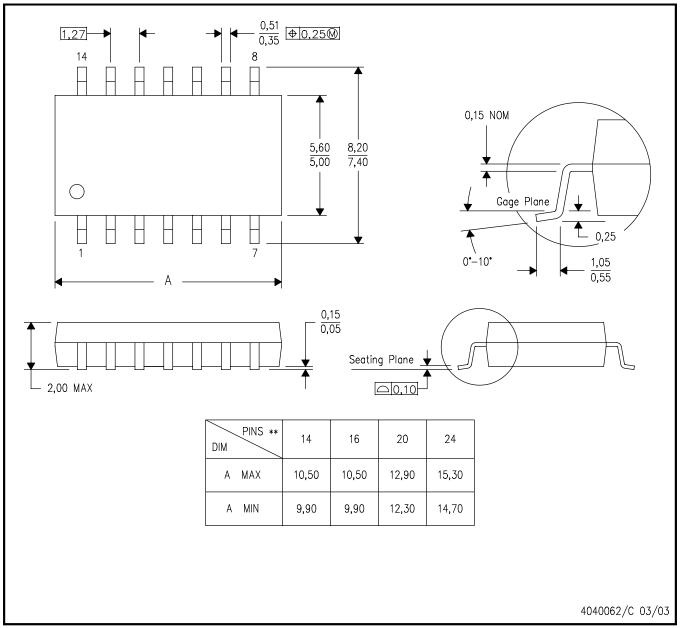

4206353-3/0 11/11

NOTE: All linear dimensions are in millimeters

RGY (R-PVQFN-N16)

PLASTIC QUAD FLATPACK NO-LEAD

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.



MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID <u>www.ti-rfid.com</u>

OMAP Applications Processors <u>www.ti.com/omap</u> TI E2E Community <u>e2e.ti.com</u>

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>