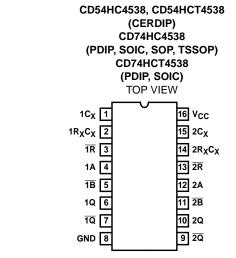
TEXAS INSTRUMENTS

Data sheet acquired from Harris Semiconductor SCHS123E

CD54HC4538, CD74HC4538, CD54HCT4538, CD74HCT4538

Precision Monostable Multivibrator


High-Speed CMOS Logic Dual Retriggerable

June 1998 - Revised October 2003

Features

- Retriggerable/Resettable Capability
- Trigger and Reset Propagation Delays Independent of $\mathsf{R}_X,\mathsf{C}_X$
- Triggering from the Leading or Trailing Edge
- Q and Q Buffered Outputs Available
- Separate Resets
- Wide Range of Output Pulse Widths
- Schmitt Trigger Input on A and B Inputs
- Retrigger Time is Independent of C_X
- Fanout (Over Temperature Range)
 - Standard Outputs 10 LSTTL Loads
 - Bus Driver Outputs 15 LSTTL Loads
- Wide Operating Temperature Range \ldots -55°C to 125°C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- HC Types
 - 2V to 6V Operation
 - High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC} at V_{CC} = 5V
- HCT Types
 - 4.5V to 5.5V Operation
 - Direct LSTTL Input Logic Compatibility, V_{IL}= 0.8V (Max), V_{IH} = 2V (Min)
 - CMOS Input Compatibility, IJ \leq 1µA at VOL, VOH

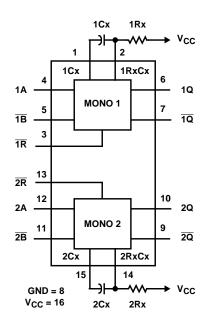
Pinout

Description

The 'HC4538 and 'HCT4538 are dual retriggerable/resettable monostable precision multivibrators for fixed voltage timing applications. An external resistor (R_X) and an external capacitor (C_X) control the timing and the accuracy for the circuit. Adjustment of R_X and C_X provides a wide range of output pulse widths from the Q and \overline{Q} terminals. The propagation delay from trigger input-to-output transition and the propagation delay from reset input-to-output transition are independent of R_X and C_X .

Leading-edge triggering (A) and trailing edge triggering (\overline{B}) inputs are provided for triggering from either edge of the input pulse. An unused "A" input should be tied to GND and an unused \overline{B} should be tied to V_{CC}. On power up the IC is reset. Unused resets and sections must be terminated. In normal operation the circuit retriggers on the application of each new trigger pulse. To operate in the non-triggerable mode \overline{Q} is connected to \overline{B} when leading edge triggering (A) is used or Q is connected to A when trailing edge triggering (\overline{B}) is used. The period (τ) can be calculated from $\tau = (0.7)$ R_X, C_X; R_{MIN} is 5k Ω . C_{MIN} is 0pF.

TEMP. RANGE PART NUMBER (°C) PACKAGE CD54HC4538F3A -55 to 125 16 Ld CERDIP CD54HCT4538F3A -55 to 125 16 Ld CERDIP CD74HC4538E -55 to 125 16 Ld PDIP -55 to 125 16 Ld SOIC CD74HC4538M CD74HC4538MT -55 to 125 16 Ld SOIC CD74HC4538M96 -55 to 125 16 Ld SOIC CD74HC4538NSR -55 to 125 16 Ld SOP CD74HC4538PW -55 to 125 16 Ld TSSOP CD74HC4538PWR -55 to 125 16 Ld TSSOP CD74HC4538PWT -55 to 125 16 Ld TSSOP 16 Ld PDIP CD74HCT4538E -55 to 125 -55 to 125 CD74HCT4538M 16 Ld SOIC CD74HCT4538MT -55 to 125 16 Ld SOIC CD74HCT4538M96 -55 to 125 16 Ld SOIC


NOTE: When ordering, use the entire part number. The suffixes 96 and R denote tape and reel. The suffix T denotes a small-quantity reel of 250.

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.

Copyright © 2003, Texas Instruments Incorporated

Ordering Information

Functional Diagram

TRUTH TABLE

	INPUTS		ουτι	PUTS
R	Α	B	Q	Q
L	Х	Х	L	Н
X	Н	Х	L	Н
X	Х	L	L	Н
н	L	\rightarrow	Л	U
н	Ť	Н	л.	T

H = High Level, L = Low Level, \uparrow = Transition from Low to High,

R2 **R1** CL Q CL р ŢĮ 'n D CL сL Q CL p n | CL р - R1 n ᇿ

FIGURE 1. FF DETAIL

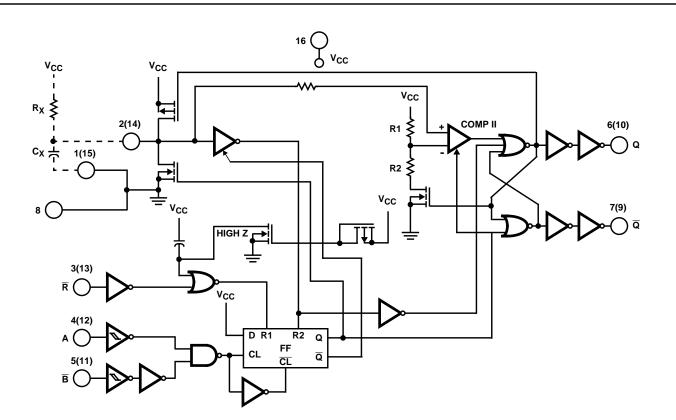


FIGURE 2. LOGIC DIAGRAM (1 MONO)

FUNCTIONAL TERMINAL CONNECTIONS

	V _{CC} TO TERMINAL NUMBER		GNI TERMINAI	D TO NUMBER	-	ULSE TO . NUMBER	OTHER CONNECTIONS	
FUNCTION	MONO ₁	MONO ₂	MONO ₁	MONO ₂	MONO ₁	MONO ₂	MONO ₁	MONO ₂
Leading-Edge Trigger/Retriggerable	3, 5	11, 13			4	12		
Leading-Edge Trigger/Non-Retriggerable	3	13			4	12	5-7	11-9
Trailing-Edge Trigger/Retriggerable	3	13	4	12	5	11		
Trailing-Edge Trigger/Non-Retriggerable	3	13			5	11	4-6	12-10

NOTES:

1. A retriggerable one-shot multivibrator has an output pulse width which is extended one full time period (T) after application of the last trigger pulse.

2. A non-triggerable one-shot multivibrator has a time period (T) referenced from the application of the first trigger pulse.

т

FIGURE 3. INPUT PULSE TRAIN

FIGURE 4. RETRIGGERABLE MODE PULSE WIDTH (A MODE)

FIGURE 5. NON-RETRIGGERABLE MODE PULSE WIDTH (A MODE)

Absolute Maximum Ratings

DC Supply Voltage, V _{CC} 0.5V to 7V
DC Input Diode Current, I _{IK}
For V _I < -0.5V or V _I > V _{CC} + 0.5V
DC Output Diode Current, IOK
For $V_0 < -0.5V$ or $V_0 > V_{CC} + 0.5V$
DC Output Source or Sink Current per Output Pin, IO
For $V_{O} > -0.5V$ or $V_{O} < V_{CC} + 0.5V$ ±25mA
DC V _{CC} or Ground Current, I _{CC} ±50mA

Operating Conditions

Temperature Range, T_A
Supply Voltage Range, V _{CC} (Note 3)
HC Types2V to 6V
HCT Types
DC Input or Output Voltage, V _I , V _O 0V to V _{CC}
Input Rise and Fall Times, t _r , t _f
Reset Input:
2V
4.5V 500ns (Max)
6V
Trigger Inputs A or B:
2V Unlimited (Max)
4.5VUnlimited (Max)
6V
External Timing Resistor, R_X (Note 4)
External Timing Capacitor, \hat{C}_X (Note 4) 0 (Min)

Thermal Information

Package Thermal Impedance, θ_{JA} (see Note 5):
E (PDIP) Package
M (SOIC) Package73 ^o C/W
NS (SOP) Package 64 ^o C/W
PW (TSSOP) Package 108 ^o C/W
Maximum Junction Temperature
Maximum Storage Temperature Range65°C to 150°C
Maximum Lead Temperature (Soldering 10s)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

3. Unless otherwise specified, all voltages are referenced to ground.

- 4. The maximum allowable values of R_X and C_X are a function of leakage of capacitor C_X , the leakage of the 'HC4538, and leakage due to board layout and surface resistance. Values of R_X and C_X should be chosen so that the maximum current into pin 2 or pin 14 is 30mA. Susceptibility to externally induced noise signals may occur for $R_X > 1M\Omega$.
- 5. The package thermal impedance is calculated in accordance with JESD 51-7.

DC Electrical Specifications

		TEST CONDITIONS		Vcc	25 ⁰ C			-40°C TO 85°C		-55°C TO 125°C		
PARAMETER	SYMBOL	V _I (V)	I _O (mA)	(V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
HC TYPES		-	-								-	
High Level Input	VIH	-	-	2	1.5	-	-	1.5	-	1.5	-	V
Voltage				4.5	3.15	-	-	3.15	-	3.15	-	V
				6	4.2	-	-	4.2	-	4.2	-	V
Low Level Input Voltage	VIL	-	-	2	-	-	0.5	-	0.5	-	0.5	V
				4.5	-	-	1.35	-	1.35	-	1.35	V
				6	-	-	1.8	-	1.8	-	1.8	V
High Level Output	VOH	V _{IH} or V _{IL}	-0.02	2	1.9	-	-	1.9	-	1.9	-	V
Voltage CMOS Loads			-0.02	4.5	4.4	-	-	4.4	-	4.4	-	V
CINOS LOAUS			-0.02	6	5.9	-	-	5.9	-	5.9	-	V
High Level Output	7		-	-	-	-	-	-	-	-	-	V
Voltage TTL Loads			-4	4.5	3.98	-	-	3.84	-	3.7	-	V
ITE LUAUS			-5.2	6	5.48	-	-	5.34	-	5.2	-	V

DC Electrical Specifications (Continued)

		TE: CONDI		V _{CC}		25 ⁰ C		-40°C 1	TO 85°C	-55°C T	O 125 ⁰ C	
PARAMETER	SYMBOL	V _I (V)	I _O (mA)	(V)	MIN	ТҮР	MAX	MIN	MAX	MIN	MAX	UNITS
Low Level Output	V _{OL}	$V_{\text{IH}} \text{ or } V_{\text{IL}}$	0.02	2	-	-	0.1	-	0.1	-	0.1	V
Voltage CMOS Loads			0.02	4.5	-	-	0.1	-	0.1	-	0.1	V
CINOS LOAUS			0.02	6	-	-	0.1	-	0.1	-	0.1	V
Low Level Output			-	-	-	-	-	-	-	-	-	V
Voltage TTL Loads			4	4.5	-	-	0.26	-	0.33	-	0.4	V
TTE LOAUS			5.2	6	-	-	0.26	-	0.33	-	0.4	V
Input Leakage Current A, B, R	lı	V _{CC} or GND	-	6	-	-	±0.1	-	±1	-	±1	μΑ
Input Leakage Current R _X C _X (Note 6)			-	6	-	-	±0.05	-	±0.5	-	±0.5	μA
Quiescent Device Current	Icc	V _{CC} or GND	0	6	-	-	8	-	80	-	160	μA
Active Device Current Q = High & Pins 2, 14 at $V_{CC}/4$	ICC	V _{CC} or GND	0	6	-	-	0.6	-	0.8	-	1	mA
HCT TYPES												
High Level Input Voltage	VIH	-	-	4.5 to 5.5	2	-	-	2	-	2	-	V
Low Level Input Voltage	V _{IL}	-	-	4.5 to 5.5	-	-	0.8	-	0.8	-	0.8	V
High Level Output Voltage CMOS Loads	V _{OH}	V _{IH} or V _{IL}	-0.02	4.5	4.4	-	-	4.4	-	4.4	-	V
High Level Output Voltage TTL Loads			-4	4.5	3.98	-	-	3.84	-	3.7	-	V
Low Level Output Voltage CMOS Loads	V _{OL}	V _{IH} or V _{IL}	0.02	4.5	-	-	0.1	-	0.1	-	0.1	V
Low Level Output Voltage TTL Loads			4	4.5	-	-	0.26	-	0.33	-	0.4	V
Input Leakage Current	lı	V _{CC} and GND	-	5.5	-		±0.1	-	±1	-	±1	μA
Input Leakage Current R _X C _X (Note 6)			-	5.5	-	-	±0.05	-	±0.5	-	±0.5	μA
Quiescent Device Current	Icc	V _{CC} or GND	0	5.5	-	-	8	-	80	-	160	μA
Active Device Current Q = High & Pins 2, 14 at $V_{CC}/4$	ICC	V _{CC} or GND	0	5.5	-	-	0.6	-	0.8	-	1	mA
Additional Quiescent Device Current Per Input Pin: 1 Unit Load	∆I _{CC} (Note 7)	V _{CC} -2.1	-	4.5 to 5.5	-	100	360	-	450	-	490	μA

NOTES:

6. When testing I_{IL} the Q output must be high. If Q is low (device not triggered) the pull-up P device will be ON and the low resistance path from V_{DD} to the test pin will cause a current far exceeding the specification.

7. For dual-supply systems theoretical worst case (V_I = 2.4V, V_{CC} = 5.5V) specification is 1.8mA.

HCT Input Loading Table

INPUT	UNIT LOADS
All	0.5

NOTE: Unit Load is ΔI_{CC} limit specified in DC Electrical Table, e.g. 360µA max at 25°C.

Prerequisite for Switching Specifications

				25 ⁰ C		-40	^о С ТО 8	5°C	-55 ⁰	С ТО 12	5°C	
PARAMETER	SYMBOL	V _{CC} (V)	MIN	ТҮР	MAX	MIN	ТҮР	МАХ	MIN	ТҮР	МАХ	UNITS
HC TYPES	-			-	-						-	
Input Pulse Widths	t _{WH} , t _{WL}											
A, B		2	80	-	-	100	-	-	120	-	-	ns
		4.5	16	-	-	20	-	-	24	-	-	ns
		6	14	-	-	17	-	-	20	-	-	ns
R	t _{WL}	2	80	-	-	100	-	-	120	-	-	ns
		4.5	16	-	-	20	-	-	24	-	-	ns
		6	14	-	-	17	-	-	20	-	-	ns
Reset Recovery Time	t _{REC}	2	5	-	-	5	-	-	5	-	-	ns
		4.5	5	-	-	5	-	-	5	-	-	ns
		6	5	-	-	5	-	-	5	-	-	ns
Retrigger Time (Figure 11)	t _{rT}	5	-	175	-	-	-	-	-	-	-	ns
HCT TYPES												
Input Pulse Widths	t _{WH} , t _{WL}	4.5	16			20			24			
A, B		4.5		-	-	20	-	-		-	-	ns
R	t _{WL}	4.5	20	-	-	25	-	-	30	-	-	ns
Reset Recovery Time	^t REC	4.5	5	-	-	5	-	-	5	-	-	ns
Retrigger Time (Figure 11)	t _{r⊤}	5	-	175	-	-	-	-	-	-	-	ns

		TEST			25 ⁰ C		-40 ⁰ 85	с то °С		С ТО 5⁰С	
PARAMETER	SYMBOL	CONDITIONS	V _{CC} (V)	MIN	ТҮР	МАХ	MIN	MAX	MIN	МАХ	
HC TYPES											•
Propagation Delay	t _{PLH}	C _L = 50pF									
A, \overline{B} to Q			2	-	-	250	-	315	-	375	ns
			4.5	-	-	50	-	63	-	75	ns
		C _L = 15pF	5	-	21	-	-	-	-	-	ns
		$C_L = 50 pF$	6	-	-	43	-	54	-	64	ns
A, \overline{B} to \overline{Q}	^t PHL	$C_L = 50 pF$	2	-	-	250	-	315	-	375	ns
			4.5	-	-	50	-	63	-	75	ns
		C _L = 15pF	5	-	21	-	-	-	-	-	ns
		C _L = 50pF	6	-	-	43	-	54	-	64	ns
R to Q	t _{PHL}	C _L = 50pF	2	-	-	250	-	315	-	375	ns
			4.5	-	-	50	-	63	-	75	ns
		C _L = 15pF	5	-	21	-	-	-	-	-	ns
		C _L = 50pF	6	-	-	43	-	54	-	64	ns
\overline{R} to \overline{Q}	^t PLH	C _L = 50pF	2	-	-	250	-	315	-	375	ns
			4.5	-	-	50	-	63	-	75	ns
		C _L = 15pF	5	-	21	-	-	-	-	-	ns
		C _L = 50pF	6	-	-	43	-	54	-	64	ns
Output Transition Time	t _{TLH} , t _{THL}	C _L = 50pF	2	-	-	75	-	95	-	110	ns
			4.5	-	-	15	-	19	-	22	ns
			6	-	-	13	-	16	-	19	ns
Output Pulse Width	τ	C _L = 50pF	3	0.64	-	0.78	0.612	0.812	0.605	0.819	ms
$R_X = 10k, C_X = 0.1 \mu F$			5	0.63	-	0.77	0.602	0.798	0.595	0.805	ms
Output Pulse Width Match, Same Package	-	-		-	±1	-	-	-	-	-	%
Power Dissipation Capacitance (Notes 8, 9)	C _{PD}	C _L = 15pF	5	-	136	-	-	-	-	-	pF
Input Capacitance	CI	C _L = 50pF	-	10	-	10	-	10	-	10	pF
HCT TYPES											
Propagation Delay	t _{PLH}										
A, \overline{B} to Q		C _L = 50pF	4.5	-	-	55	-	69	-	83	ns
		C _L = 15pF	5	-	23	-	-	-	-	-	ns
A, \overline{B} to \overline{Q}	t _{PHL}	C _L = 50pF	4.5	-	-	55	-	69	-	83	ns
		C _L = 15pF	5	-	23	-	-	-	-	-	ns

		TEST		25 ⁰ C			-40 ⁰ C TO 85 ⁰ C		-55 ⁰ C TO 125 ⁰ C			
PARAMETER	SYMBOL	CONDITIONS	V _{CC} (V)	MIN	ТҮР	МАХ	MIN	MAX	MIN	MAX	UNITS	
R to Q	t _{PHL}	C _L = 50pF	4.5	-	-	40	-	50	-	60	ns	
		C _L = 15pF	5	-	17	-	-	-	-	-	ns	
\overline{R} to \overline{Q}	^t PLH	C _L = 50pF	4.5	-	-	50	-	63	-	75	ns	
		C _L = 15pF	5	-	21	-	-	-	-	-	ns	
Output Transition Time	t _{TLH} , t _{THL}	C _L = 50pF	4.5	-	-	15	-	19	-	22	ns	
Output Pulse Width $R_X = 10k, C_X = 0.1\mu F$	τ	C _L = 50pF	5	0.63	-	0.77	0.602	0.798	0.595	0.805	ms	
Output Pulse Width Match, Same Package	-	-	-	-	±1	-	-	-	-	-	%	
Power Dissipation Capacitance (Notes 8, 9)	C _{PD}	C _L = 15pF	5	-	134	-	-	-	-	-	pF	
Input Capacitance	CI	C _L = 50pF	-	10	-	10	-	10	-	10	pF	

Switching Specifications $C_L = 50 pF$, Input t_r , $t_f = 6 ns$, $R_X = 10 K\Omega$, $C_X = 0$ (Continued)

NOTES:

8. C_{PD} is used to determine the dynamic power consumption, per one shot.

9. $P_D = (C_{PD} + C_X) V_{CC}^2 f_i \Sigma (C_L V_{CC}^2 f_O)$ where f_i = input frequency, f_O = output frequency, C_L = output load capacitance, C_X = external capacitance V_{CC} = supply voltage assuming $f_i \ll \frac{1}{\tau}$

Test Circuits and Waveforms

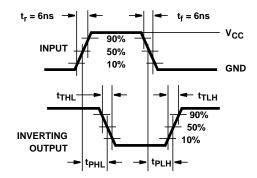


FIGURE 6. HC AND HCU TRANSITION TIMES AND PROPAGA-TION DELAY TIMES, COMBINATION LOGIC

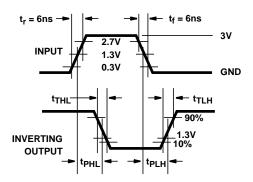
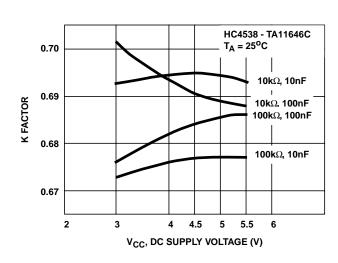



FIGURE 7. HCT TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC

Typical Performance Curves

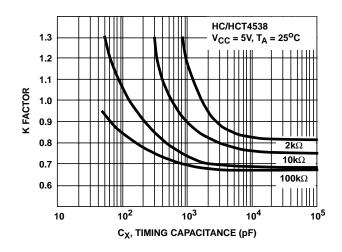


FIGURE 10. K FACTOR vs CX

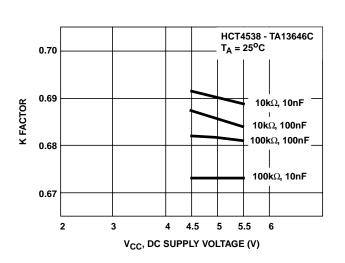


FIGURE 9. K FACTOR vs DC SUPPLY VOLTAGE (V_{CC}) - V

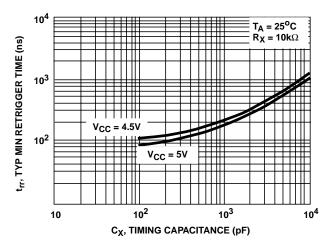


FIGURE 11. MINIMUM RETRIGGER TIME vs TIMING CAPACITANCE

Power-Down Mode

During a rapid power-down condition, as would occur with a power-supply short circuit with a poorly filtered power supply, the energy stored in C_X could discharge into Pin 2 or 14. To aviod possible device damage in this mode, when C_X is $\geq 0.5 \mu F$, a protection diode with a 1 ampere or higher rating (1N5395 or equivalent) and a separate ground return for C_X should be provided as shown in Figure 12.

An alternate protection method is shown in Figure 13, where a 51 Ω current-limiting resistor is inserted in series with C_X. Note that a small pulse width decrease will occur however, and R_X must be appropriately increased to obtain the originally desired pulse width.

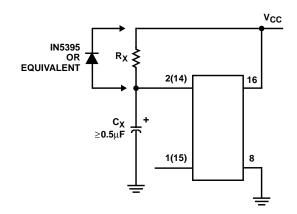


FIGURE 12. RAPID POWER-DOWN PROTECTION CIRCUIT

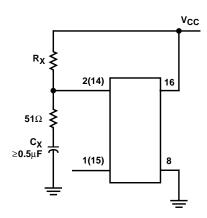


FIGURE 13. ALTERNATE RAPID POWER-DOWN PROTECTION CIRCUIT

10-Jun-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	-	Pins	-	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
5962-8688601EA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8688601EA CD54HC4538F3A	Samples
CD54HC4538F	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	CD54HC4538F	Samples
CD54HC4538F3A	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8688601EA CD54HC4538F3A	Samples
CD54HCT4538F3A	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	CD54HCT4538F3A	Samples
CD74HC4538E	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74HC4538E	Samples
CD74HC4538EE4	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74HC4538E	Samples
CD74HC4538M	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4538M	Samples
CD74HC4538M96	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4538M	Samples
CD74HC4538M96E4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4538M	Samples
CD74HC4538M96G4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4538M	Samples
CD74HC4538ME4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4538M	Samples
CD74HC4538MG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4538M	Samples
CD74HC4538MT	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4538M	Samples
CD74HC4538NSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4538M	Samples
CD74HC4538PW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ4538	Samples
CD74HC4538PWG4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ4538	Samples
CD74HC4538PWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ4538	Samples

PACKAGE OPTION ADDENDUM

10-Jun-2014

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
CD74HC4538PWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	(4/3) HJ4538	Samples
CD74HC4538PWT	ACTIVE	TSSOP	PW	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ4538	Samples
CD74HCT4538E	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74HCT4538E	Samples
CD74HCT4538M	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4538M	Samples
CD74HCT4538M96	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4538M	Samples
CD74HCT4538M96E4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4538M	Samples
CD74HCT4538M96G4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4538M	Samples
CD74HCT4538ME4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4538M	Samples
CD74HCT4538MG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4538M	Samples
CD74HCT4538MT	ACTIVE	SOIC	D	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT4538M	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

www.ti.com

10-Jun-2014

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

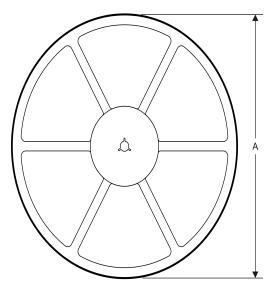
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF CD54HC4538, CD54HCT4538, CD74HC4538, CD74HCT4538 :

- Catalog: CD74HC4538, CD74HCT4538
- Automotive: CD74HC4538-Q1, CD74HC4538-Q1
- Military: CD54HC4538, CD54HCT4538

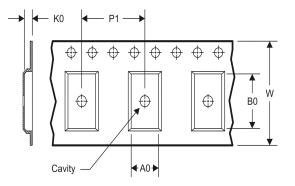
NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Military QML certified for Military and Defense Applications


PACKAGE MATERIALS INFORMATION

www.ti.com

TAPE AND REEL INFORMATION


REEL DIMENSIONS

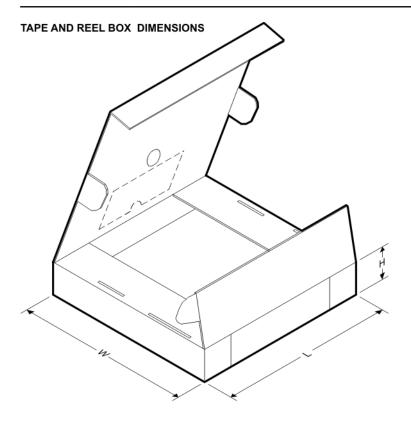
TEXAS INSTRUMENTS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

TAPE AND REEL INFORMATION	

*All dimensions a	re nominal
-------------------	------------

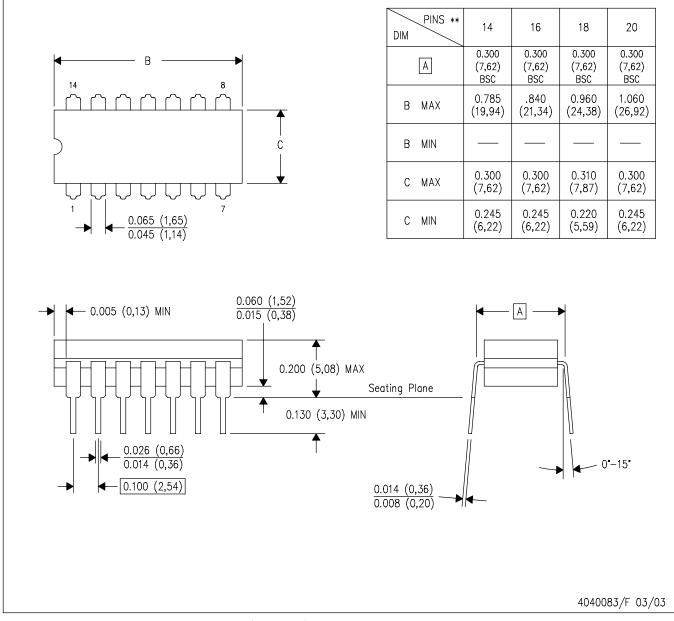

Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD74HC4538M96	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
CD74HC4538NSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
CD74HC4538PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
CD74HC4538PWT	TSSOP	PW	16	250	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
CD74HCT4538M96	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

14-Jul-2012

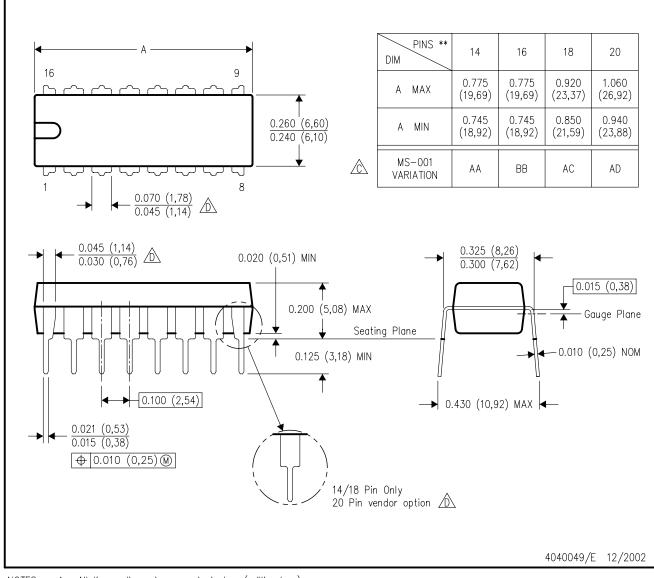


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD74HC4538M96	SOIC	D	16	2500	333.2	345.9	28.6
CD74HC4538NSR	SO	NS	16	2000	367.0	367.0	38.0
CD74HC4538PWR	TSSOP	PW	16	2000	367.0	367.0	35.0
CD74HC4538PWT	TSSOP	PW	16	250	367.0	367.0	35.0
CD74HCT4538M96	SOIC	D	16	2500	333.2	345.9	28.6

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

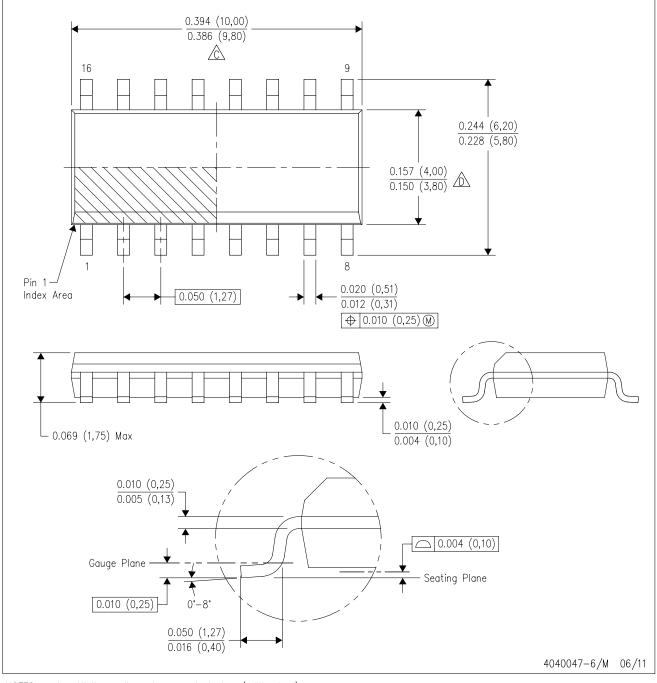

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN


NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

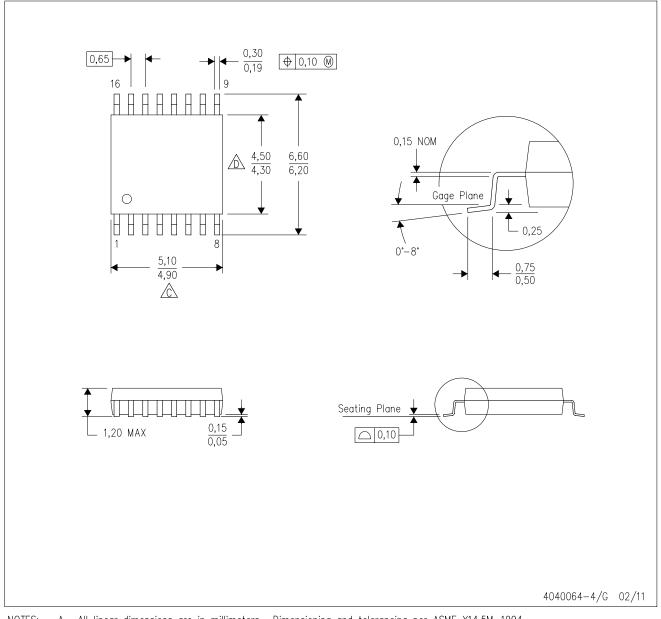
4211283-4/E 08/12

D (R-PDSO-G16) PLASTIC SMALL OUTLINE Stencil Openings (Note D) Example Board Layout (Note C) –16x0,55 -14x1,27 -14x1,27 16x1,50 5,40 5.40 Example Non Soldermask Defined Pad Example Pad Geometry (See Note C) 0,60 .55 Example 1. Solder Mask Opening (See Note E) -0,07

D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

All Around

A. All linear dimensions are in millimeters.


B. This drawing is subject to change without notice.

C. Publication IPC-7351 is recommended for alternate designs.

NOTES:

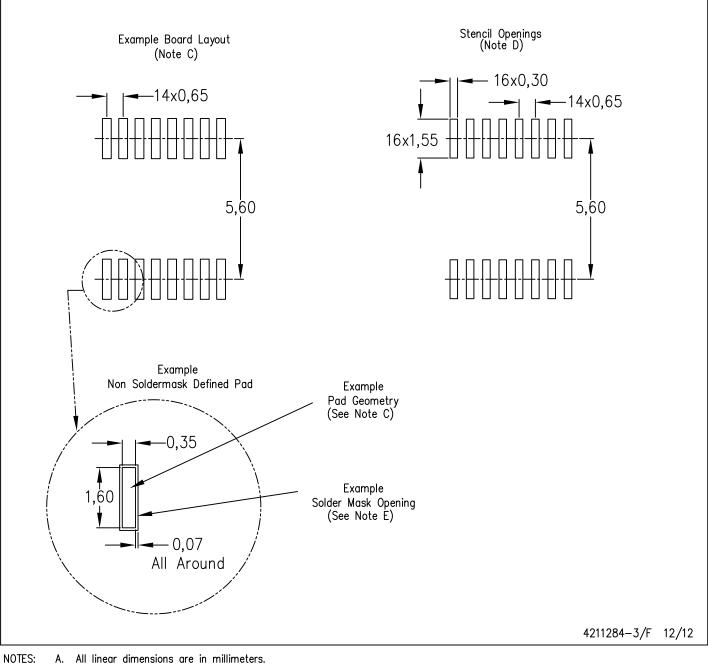
TEXAS INSTRUMENTS www.ti.com PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES:

A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. β . This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.


Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0-10 Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated