SCBS689H - MAY 1997 - REVISED OCTOBER 2003 - Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V V_{CC}) - Typical V_{OLP} (Output Ground Bounce) <0.8 V at V_{CC} = 3.3 V, T_A = 25°C - Support Unregulated Battery Operation Down to 2.7 V - I_{off} and Power-Up 3-State Support Hot Insertion - Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors - Latch-Up Performance Exceeds 500 mA Per JESD 17 - ESD Protection Exceeds JESD 22 - 2000-V Human-Body Model (A114-A) - 200-V Machine Model (A115-A) #### description/ordering information These octal latches are designed specifically for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment. While the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is taken low, the Q outputs are latched at the logic levels set up at the D inputs. SN54LVTH373 . . . J OR W PACKAGE SN74LVTH373 . . . DB, DW, NS, OR PW PACKAGE (TOP VIEW) SN54LVTH373 . . . FK PACKAGE (TOP VIEW) A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components. #### ORDERING INFORMATION | TA | PACKAGE† | | ORDERABLE
PART NUMBER | TOP-SIDE
MARKING | |----------------|----------------|---------------|--------------------------|---------------------| | | 0010 014 | Tube | SN74LVTH373DW | 1.\/T 10.70 | | -40°C to 85°C | SOIC - DW | Tape and reel | SN74LVTH373DWR | LVTH373 | | | SOP - NS | Tape and reel | SN74LVTH373NSR | LVTH373 | | | SSOP - DB | Tape and reel | SN74LVTH373DBR | LXH373 | | | T000D DW | Tube | SN74LVTH373PW | LXH373 | | | TSSOP – PW | Tape and reel | SN74LVTH373PWR | LXH3/3 | | | CDIP – J | | SNJ54LVTH373J | SNJ54LVTH373J | | −55°C to 125°C | CFP – W Tube | | SNJ54LVTH373W | SNJ54LVTH373W | | | LCCC - FK Tube | | SNJ54LVTH373FK | SNJ54LVTH373FK | †Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. SCBS689H - MAY 1997 - REVISED OCTOBER 2003 #### description/ordering information (continued) OE does not affect the internal operations of the latches. Old data can be retained or new data can be entered while the outputs are in the high-impedance state. When V_{CC} is between 0 and 1.5 V, the devices are in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, $\overline{\text{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended. These devices are fully specified for hot-insertion applications using I_{off} and power-up 3-state. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict. **FUNCTION TABLE** (each latch) | | INPUTS | OUTPUT | | |----|--------|--------|----------------| | OE | LE | D | Q | | L | Н | Н | Н | | L | Н | L | L | | L | L | Χ | Q ₀ | | Н | X | Χ | Z | #### logic diagram (positive logic) SCBS689H - MAY 1997 - REVISED OCTOBER 2003 ### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† | Supply voltage range, V_{CC} | | |--|-----| | or power-off state, V _O (see Note 1) | | | Voltage range applied to any output in the high state, V_O (see Note 1) –0.5 V to V_{CC} + 0.5 | | | Current into any output in the low state, IO: SN54LVTH373 | mΑ | | SN74LVTH373 128 m | mΑ | | Current into any output in the high state, IO (see Note 2): SN54LVTH373 | mΑ | | SN74LVTH373 64 m | mΑ | | Input clamp current, I _{IK} (V _I < 0) | mΑ | | Output clamp current, I_{OK} ($V_O < 0$) | mΑ | | Package thermal impedance, θ _{JA} (see Note 3): DB package |)/W | | DW package 58°C/ | | | NS package 60°C/ | | | PW package 83°C/ | | | Storage temperature range, T _{stq} 65°C to 150° | | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. - NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. - 2. This current flows only when the output is in the high state and $V_O > V_{CC}$. - 3. The package thermal impedance is calculated in accordance with JESD 51-7. #### recommended operating conditions (see Note 4) | | | | SN54LV | TH373 | SN74LV | TH373 | | |---------------------|------------------------------------|-----------------|--------|-------|--------|-------|------| | | | | MIN | MAX | MIN | MAX | UNIT | | Vcc | Supply voltage | 2.7 | 3.6 | 2.7 | 3.6 | V | | | V _{IH} | High-level input voltage | 2 | | 2 | | V | | | V _{IL} | Low-level input voltage | | 0.8 | | 8.0 | V | | | VI | Input voltage | | 5.5 | | 5.5 | V | | | loн | High-level output current | | | | | -32 | mA | | lOL | Low-level output current | | | 48 | | 64 | mA | | Δt/Δν | Input transition rise or fall rate | Outputs enabled | | 10 | | 10 | ns/V | | Δt/ΔV _{CC} | Power-up ramp rate | | 200 | | 200 | | μs/V | | T _A | Operating free-air temperature | | -55 | 125 | -40 | 85 | °C | NOTE 4: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004. SCBS689H - MAY 1997 - REVISED OCTOBER 2003 #### electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) | | | TEGT COMPLETIONS | | SN5 | 4LVTH37 | 3 | SN74 | | | | | | |-----------------------|---|---|---------------------------------------|----------------------|---------|-------|----------------------|------------------|-------------|----------|--|--| | PARA | METER | TEST Co | ONDITIONS | MIN | TYP† | MAX | MIN | TYP [†] | MAX | UNIT | | | | VIK | | V _{CC} = 2.7 V, | I _I = -18 mA | | | -1.2 | | | -1.2 | V | | | | | | $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V},$ | I _{OH} = -100 μA | V _{CC} -0.2 | | | V _{CC} -0.2 | | | | | | | V | | $V_{CC} = 2.7 \text{ V},$ | I _{OH} = -8 mA | 2.4 | | | 2.4 | | | V | | | | VOH | | V 2 V | $I_{OH} = -24 \text{ mA}$ | 2 | | | | | | V | | | | | | VCC = 3 V | $I_{OH} = -32 \text{ mA}$ | | | | 2 | | | | | | | | | Vaa – 2.7.V | I _{OL} = 100 μA | | | 0.2 | | | 0.2 | | | | | | | V _{CC} = 2.7 V | I _{OL} = 24 mA | | | 0.5 | | | 0.5 | | | | | V | | | I _{OL} = 16 mA | | | 0.4 | | | 0.4 | V | | | | VOL | | V _{CC} = 3 V | $I_{OL} = 32 \text{ mA}$ | | | 0.5 | | | 0.5 | V | | | | | | vCC = 2 v | $I_{OL} = 48 \text{ mA}$ | | | 0.55 | | | | | | | | | | | $I_{OL} = 64 \text{ mA}$ | | | | | | 0.55 | | | | | | $V_{CC} = 0 \text{ or } 3.6 \text{ V},$ | | V _I = 5.5 V | | | 10 | | | 10 | | | | | Control inputs Data | Control inputs | V _{CC} = 3.6 V, | $V_I = V_{CC}$ or GND | | | ±1 | | | ±1 | μА | | | | | Data | V 20V | $V_I = V_{CC}$ | | | 1 | | | 1 | · | | | | inputs | | V _{CC} = 3.6 V | V _I = 0 | | | -5 | | | -5 | | | | | l _{off} | | $V_{CC} = 0$, | V_I or $V_O = 0$ to 4.5 V | | | | | | ±100 | μΑ | | | | | | | V _I = 0.8 V | 75 | | | 75 | | | | | | | I _I (hold) | Data | | V _I = 2 V | -75 | | | -75 | | | μА | | | | i(iioia) | inputs | $V_{CC} = 3.6 V^{\ddagger},$ | $V_{I} = 0 \text{ to } 3.6 \text{ V}$ | | | | | | 500
-750 | | | | | lozh | | $V_{CC} = 3.6 \text{ V},$ | V _O = 3 V | | | 5 | | | 5 | μΑ | | | | lozL | | $V_{CC} = 3.6 \text{ V},$ | $V_0 = 0.5 \text{ V}$ | | | -5 | | | -5 | μΑ | | | | IOZPU | | $\frac{V_{CC}}{OE} = 0$ to 1.5 V, $V_{O} = 0$ | 0.5 V to 3 V, | | | ±100* | | | ±100 | μΑ | | | | IOZPD | | $\frac{\text{V}_{C}\text{C}}{\text{OE}} = 1.5 \text{ V to } 0, \text{ V}_{O} = 0$ | 0.5 V to 3 V, | | | ±100* | | | ±100 | μА | | | | | | V _{CC} = 3.6 V, | Outputs high | | | 0.19 | | | 0.19 | | | | | ICC | | $I_{O} = 0$, | Outputs low | | | 5 | | | 5 | ⊣ ''"' I | | | | | | $V_I = V_{CC}$ or GND | Outputs disabled | | | 0.19 | | | 0.19 | | | | | ΔICC§ | | V _{CC} = 3 V to 3.6 V, On Other inputs at V _{CC} or | | | | 0.2 | | | 0.2 | mA | | | | Ci | | V _I = 3 V or 0 | | | 3 | | | 3 | | pF | | | | Co | | V _O = 3 V or 0 | | | 7 | | | 7 | | pF | | | ^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested. [†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. ‡ This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another. [§] This is the increase in supply current for each input that is at the specified TTL voltage level, rather than VCC or GND. SCBS689H - MAY 1997 - REVISED OCTOBER 2003 # timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1) | | | SN54LVTH373 | | | | SN74LVTH373 | | | | | |-----------------|-----------------------------|-------------|--------------|-------|-------|-------------------|--------------|-------|-------|------| | | | | 3.3 V
3 V | VCC = | 2.7 V | V _{CC} = | 3.3 V
3 V | VCC = | 2.7 V | UNIT | | | | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | | | t _W | Pulse duration, LE high | 3 | | 3 | | 3 | | 3 | | ns | | t _{su} | Setup time, data before LE↓ | 1.1 | | 0.4 | | 1.1 | | 0.4 | | ns | | t _h | Hold time, data after LE↓ | 1.7 | | 2 | | 1.4 | | 1.4 | | ns | # switching characteristics over recommended free-air temperature, C_L = 50 pF (unless otherwise noted) (see Figure 1) | | | | SN54LVTH373 | | | | | | | | | | | |------------------|-----------------|----------------|------------------------------------|-----|-------------------------|-----|------------------------------------|------|-----|-------------------------|-----|------|-----| | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | V _{CC} = 3.3 V
± 0.3 V | | V _{CC} = 2.7 V | | V _{CC} = 3.3 V
± 0.3 V | | | V _{CC} = 2.7 V | | UNIT | | | | | | MIN | MAX | MIN | MAX | MIN | TYP† | MAX | MIN | MAX | | | | ^t PLH | - | Q | 1.4 | 4.1 | | 4.7 | 1.5 | 2.6 | 3.9 | | 4.5 | | | | ^t PHL | D | | 1.4 | 4.1 | | 4.7 | 1.5 | 2.6 | 3.9 | | 4.5 | ns | | | tPLH . | LE | _ | 1.6 | 4.4 | | 5.1 | 1.7 | 2.7 | 4.2 | | 4.9 | | | | ^t PHL | | Q | 1.6 | 4.4 | | 5.1 | 1.7 | 2.7 | 4.2 | | 4.9 | ns | | | ^t PZH | ŌĒ | 0 | 1.2 | 5 | | 6.1 | 1.3 | 3 | 4.8 | | 5.9 | 20 | | | tPZL | OE | Q | 1.2 | 5 | | 5.7 | 1.3 | 3 | 4.8 | | 5.5 | ns | | | ^t PHZ | ŌĒ | 0 | 1.6 | 5.5 | | 5.7 | 1.9 | 3 | 4.6 | | 4.9 | 20 | | | tPLZ | | OE | OE | Q | 0.8 | 4.8 | | 4.9 | 1.9 | 3 | 4.5 | | 4.6 | [†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. SCBS689H - MAY 1997 - REVISED OCTOBER 2003 #### PARAMETER MEASUREMENT INFORMATION NOTES: A. C_L includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \ \Omega$, $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns. - D. The outputs are measured one at a time with one transition per measurement. - E. All parameters and waveforms are not applicable to all devices. Figure 1. Load Circuit and Voltage Waveforms #### 14 LEADS SHOWN NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. This package is hermetically sealed with a ceramic lid using glass frit. - D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only. - E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20. #### W (R-GDFP-F20) #### **CERAMIC DUAL FLATPACK** NOTES: A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. This package can be hermetically sealed with a ceramic lid using glass frit. - D. Index point is provided on cap for terminal identification only. - E. Falls within Mil-Std 1835 GDFP2-F20 #### FK (S-CQCC-N**) #### **28 TERMINAL SHOWN** #### **LEADLESS CERAMIC CHIP CARRIER** NOTES: A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. This package can be hermetically sealed with a metal lid. - D. The terminals are gold plated. - E. Falls within JEDEC MS-004 # DW (R-PDSO-G20) ## PLASTIC SMALL-OUTLINE PACKAGE NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). - D. Falls within JEDEC MS-013 variation AC. #### **MECHANICAL DATA** ## NS (R-PDSO-G**) # 14-PINS SHOWN #### PLASTIC SMALL-OUTLINE PACKAGE NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15. #### DB (R-PDSO-G**) #### PLASTIC SMALL-OUTLINE #### **28 PINS SHOWN** NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0,15. D. Falls within JEDEC MO-150 #### PW (R-PDSO-G**) #### 14 PINS SHOWN #### PLASTIC SMALL-OUTLINE PACKAGE NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0,15. D. Falls within JEDEC MO-153 #### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: | e | |-----------------| | d | | trol | | | | work | | | | | | | | | | d
trol
wo | Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright © 2004, Texas Instruments Incorporated