- Member of Texas Instruments' Widebus™ Family - OEC[™] Circuitry Improves Signal Integrity and Reduces Electromagnetic Interference - D-Type Flip-Flops With Qualified Storage Enable - Translates Between GTL/GTL+ Signal Levels and LVTTL Logic Levels - Supports Mixed-Mode Signal Operation on All Ports (5-V Input/Output Voltages With 3.3-V V_{CC}) - I_{off} Supports Partial-Power-Down Mode Operation - Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors on A Port - Distributed V_{CC} and GND Pins Minimize High-Speed Switching Noise - Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II - ESD Protection Exceeds JESD 22 - 2000-V Human-Body Model (A114-A) - 200-V Machine Model (A115-A) - 1000-V Charged-Device Model (C101) ### description The SN74GTL16923 is an 18-bit registered bus transceiver that provides LVTTL-to-GTL/GTL+ and GTL/GTL+-to-LVTTL signal-level translation. This device is partitioned as two 9-bit transceivers with individual output-enable controls and contains D-type flip-flops for temporary storage of data flowing in either direction. This device provides an interface between cards operating at LVTTL logic levels and a backplane operating at GTL/GTL+ signal levels. Higher-speed operation is a direct result of the reduced output swing (<1 V), reduced input threshold levels, and OEC™ circuitry. ### DGG PACKAGE (TOP VIEW) The user has the flexibility of using this device at either GTL (V_{TT} = 1.2 V and V_{REF} = 0.8 V) or the preferred higher noise margin GTL+ (V_{TT} = 1.5 V and V_{REF} = 1 V) signal levels. GTL+ is the Texas Instruments derivative of the Gunning Transceiver Logic (GTL) JEDEC standard JESD 8-3. The B port normally operates at GTL or GTL+ signal levels, while the A-port and control inputs are compatible with LVTTL logic levels. All inputs can be driven from either 3.3-V or 5-V devices, which allows use in a mixed 3.3-V/5-V system environment. V_{REF} is the reference input voltage for the B port. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. OEC and Widebus are trademarks of Texas Instruments ### description (continued) Data flow in each direction is controlled by the output-enable (\overline{OEAB} and \overline{OEBA}) and clock (CLKAB and CLKBA) inputs. The clock-enable (\overline{CEAB} and \overline{CEBA}) inputs enable or disable the clock for all 18 bits at a time. However, \overline{OEAB} and \overline{OEBA} are designed to control each 9-bit transceiver independently, which makes the device more versatile. For A-to-B data flow, the device operates on the low-to-high transition of CLKAB if \overline{CEAB} is low. When \overline{OEAB} is low, the outputs are active. When \overline{OEAB} is high, the outputs are in the high-impedance state. Data flow for B to A is similar to that of A to B, but uses \overline{OEBA} , CLKBA, and \overline{CEBA} . This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. Active bus-hold circuitry holds unused or undriven LVTTL inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended. To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. ### ORDERING INFORMATION | TA | PACKAGE† | | ORDERABLE
PART NUMBER | TOP-SIDE
MARKING | |---------------|-------------|---------------|--------------------------|---------------------| | –40°C to 85°C | TSSOP – DGG | Tape and reel | SN74GTL16923DGGR | GTL16923 | [†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. #### **FUNCTION TABLE**‡ | | INP | UTS | | OUTPUT | MODE | | | |------|------|------------|---|--------------------------------------|---------------------------|--|--| | CEAB | OEAB | CLKAB | Α | В | MODE | | | | Х | Н | Χ | Χ | Z | Isolation | | | | Н | L | Х | Χ | В ₀ §
В ₀ § | Latabad storage of A data | | | | Х | L | H or L | Χ | В ₀ § | Latched storage of A data | | | | L | Ĺ | ↑ | L | Ĺ | Clasked storage of A data | | | | L | L | \uparrow | Н | Н | Clocked storage of A data | | | [‡]A-to-B data flow is shown. B-to-A data flow is similar, but uses OEBA, CLKBA, and CEBA. [§] Output level before the indicated steady-state input conditions were established ## logic diagram (positive logic) ### absolute maximum ratings over operating free-air temperature range (unless otherwise noted) | Supply voltage range, V _{CC} | –0.5 V to 4.6 V | |---|-----------------| | Input voltage range, V _I (see Note 1) | –0.5 V to 7 V | | Voltage range applied to any output in the high or power-off state, V _O (see Note 1) | –0.5 V to 7 V | | Current into any output in the low state, IO: A port | 48 mA | | B port | 100 mA | | Current into any A-port output in the high state, I _O (see Note 2) | 48 mA | | Continuous current through each V _{CC} or GND | ±100 mA | | Input clamp current, I _{IK} (V _I < 0) | –50 mA | | Output clamp current, I _{OK} (V _O < 0) | | | Package thermal impedance, θ _{JA} (see Note 3) | 55°C/W | | Storage temperature range, T _{Stq} | | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. - NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. - 2. This current flows only when the output is in the high state and $V_O > V_{CC}$. - 3. The package thermal impedance is calculated in accordance with JESD 51-7. ### recommended operating conditions (see Notes 4 through 7) | | | MIN | NOM | MAX | UNIT | | |--------------------------------|--|-------------------------|---|---|---|--| | Supply voltage | | 3.15 | 3.3 | 3.45 | V | | | Termination voltage | GTL | 1.14 | 1.2 | 1.26 | V | | | Termination voitage | GTL+ | 1.35 | 1.5 | 1.65 | V | | | Peteronee veltage | GTL | 0.74 | 0.8 | 0.87 | V | | | Reference voltage | GTL+ | 0.87 | 1 | 1.1 | V | | | Input voltage | B port | 0 | | V_{TT} | ٧ | | | iput voltage | Except B port | 0 | | 5.5 | | | | High lavelines to the en | B port | V _{REF} +50 mV | | | ٧ | | | nign-level input voltage | Except B port | 2 | | | | | | Law law Panatas Hana | B port | | | V _{REF} -50 mV | V | | | Low-level input voitage | Except B port | | | 0.8 | V | | | Input clamp current | | | | -18 | mA | | | High-level output current | A port | | | -24 | mA | | | Low level output ourrent | A port | | | 24 | mA | | | Low-level output current | B port | | | 50 | IIIA | | | Operating free-air temperature | | -40 | | 85 | °C | | | | Termination voltage Reference voltage Input voltage High-level input voltage Low-level input voltage Input clamp current High-level output current Low-level output current | GTL | Supply voltage 3.15 Termination voltage GTL 1.14 GTL+ 1.35 Reference voltage GTL 0.74 Input voltage B port 0 Except B port 0 0 Except B port 0 0 Except B port 2 0 Except B port 2 0 Input clamp current Except B port 0 Input clamp current A port 0 High-level output current A port 0 Low-level output current A port 0 B port 0 0 | Supply voltage 3.15 3.3 Termination voltage GTL 1.14 1.2 GTL+ 1.35 1.5 Reference voltage GTL 0.74 0.8 GTL+ 0.87 1 Input voltage B port 0 Except B port 0 Except B port 2 Low-level input voltage B port Input clamp current Except B port High-level output current A port Low-level output current A port B port | Supply voltage 3.15 3.3 3.45 Termination voltage GTL 1.14 1.2 1.26 GTL+ 1.35 1.5 1.65 Reference voltage GTL 0.74 0.8 0.87 GTL+ 0.87 1 1.1 Input voltage B port 0 VTT Except B port 0 5.5 B port VREF+50 mV Except B port 2 Low-level input voltage B port VREF-50 mV Except B port 0.8 Input clamp current Except B port 0.8 High-level output current A port -24 Low-level output current A port -24 B port 50 | | NOTES: 4. All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004. - 5. Normal connection sequence is GND first, $V_{CC} = 3.3 \text{ V}$, I/O, control inputs, V_{TT} , V_{REF} (any order) last. - 6. VTT and RTT can be adjusted to accommodate backplane impedances if the dc recommended IQL ratings are not exceeded. - 7. VREF can be adjusted to optimize noise margins, but normally is two-thirds VTT. ## electrical characteristics over recommended operating free-air temperature range for GTL/GTL+ (unless otherwise noted) | | PARAMETER | TEST | CONDITIONS | MIN | TYP† | MAX | UNIT | |-----------------------|---------------------------|--|---|---------------------|------|------|-------| | VIK | | V _{CC} = 3.15 V, | I _I = -18 mA | | | -1.2 | V | | | | $V_{CC} = 3.15 \text{ V to } 3.45 \text{ V},$ | I _{OH} = -100 μA | V _{CC} -0. | 2 | | | | Vон | A port | V _{CC} = 3.15 V | I _{OH} = -12 mA | 2.4 | | | V | | | | VCC = 3.13 V | I _{OH} = -24 mA | 2 | | | | | | | $V_{CC} = 3.15 \text{ V to } 3.45 \text{ V},$ | I _{OL} = 100 μA | | | 0.2 | | | | A port | V _{CC} = 3.15 V | $I_{OL} = 12 \text{ mA}$ | | | 0.4 | | | | | VCC = 3.13 V | $I_{OL} = 24 \text{ mA}$ | | | 0.5 | | | V_{OL} | | $V_{CC} = 3.15 \text{ V to } 3.45 \text{ V},$ | $I_{OL} = 100 \mu A$ | | | 0.2 | V | | | B port | | $I_{OL} = 10 \text{ mA}$ | | | 0.2 | | | | | V _{CC} = 3.15 V | $I_{OL} = 40 \text{ mA}$ | | | 0.4 | | | | | | $I_{OL} = 50 \text{ mA}$ | | | 0.55 | | | | B port | V _{CC} = 3.45 V, | $V_I = 5.5 \text{ V or GND}$ | | | ±5 | 5 μΑ | | l _l | A most and control insute | V _{CC} = 3.45 V | $V_I = V_{CC}$ or GND | | | ±5 | | | | A-port and control inputs | | $V_I = 5.5 \text{ V or GND}$ | | | ±20 | | | l _{off} | | $V_{CC} = 0$, | V_I or $V_O = 0$ to 5.5 V | | | ±100 | μΑ | | | A port | V _{CC} = 3.15 V | V _I = 0.8 V | 75 | | | μΑ | | I _I (hold) | | | V _I = 2 V | -75 | | | | | | | $V_{CC} = 3.45 V^{\ddagger}$, | V _I = 0.8 V to 2 V | | | ±500 | | | loz§ | A port | $V_{CC} = 3.45 \text{ V},$ | $V_O = V_{CC}$ or GND | | | ±10 | μΑ | | lozh | B port | V _{CC} = 3.45 V, | V _O = 1.5 V | | | 10 | μΑ | | | | V _{CC} = 3.45 V, | Outputs high | | | 60 | mA | | ICC | A or B port | $I_{O} = 0$, | Outputs low | | | 60 | | | | | $V_I = V_{CC}$ or GND | Outputs disabled | | | 60 | | | ΔICC¶ | | $V_{CC} = 3.45 \text{ V}$, A-port or cor
One input at $V_{CC} - 0.6 \text{ V}$ | ntrol inputs at V _{CC} or GND, | | | 500 | μΑ | | Ci | Control inputs | V _I = 3.15 V or 0 | | | 2.5 | 3 | pF | | Cı | A port | V _O = 3.15 V or 0 | | | 6 | 8.5 | 5.5 | | C _{io} | B port | V _O = 3.15 V or 0 | | | 7 | 9.5 | Fاα ا | [†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. [‡] This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another. $[\]mbox{\ensuremath{\$}}\mbox{ For I/O}$ ports, the parameter IOZ includes the input leakage current. [¶] This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND. # timing requirements over recommended ranges of supply voltage and operating free-air temperature for GTL (unless otherwise noted) | | | | MIN | MAX | UNIT | |------------------------------------|--|------------------|-----|-----|------| | f _{clock} Clock frequency | | | 200 | MHz | | | t _W | t _w Pulse duration, CLK high or low | | 2.5 | | ns | | | Solun time | Data before CLK↑ | 2.6 | | no | | t _{su} | Setup time | CE before CLK↑ | 3.3 | | ns | | | Hold time | Data after CLK↑ | 0.1 | | | | t _h H | | CE after CLK↑ | 0 | | ns | # switching characteristics over recommended ranges of supply voltage and operating free-air temperature for GTL (see Figure 1) | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | MIN | TYP† M | ΑХ | UNIT | |------------------|----------------------|-----------------------|-----|--------|-----|------| | f _{max} | | | 200 | | | MHz | | ^t PLH | CLKAB | В | 2.2 | | 5.8 | | | ^t PHL | CLNAB | Ь | 2.1 | | 6.3 | ns | | t _{dis} | | В | 1.7 | | 5.3 | no | | t _{en} | OEAB | Ь | 2 | | 5 | ns | | Slew rate | Both tra | Both transitions | | | | V/ns | | t _r | Transition time, B o | utputs (0.6 V to 1 V) | 0.3 | | 2.9 | ns | | t _f | Transition time, B o | utputs (1 V to 0.6 V) | 0.1 | | 3.9 | ns | | ^t PLH | CLIVDA | ^ | 1.8 | | 5 | 20 | | ^t PHL | CLKBA | A | 1.7 | | 4.8 | ns | | t _{en} | | Δ. | 1.3 | | 4.8 | no | | ^t dis | OEBA | A | 2 | | 4.8 | ns | [†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. ## timing requirements over recommended ranges of supply voltage and operating free-air temperature for GTL+ (unless otherwise noted) | | | | MIN | MAX | UNIT | |------------------------------------|---------------------------------|-----------------------------|-----|-----|------| | f _{clock} Clock frequency | | | 200 | MHz | | | t _W | Pulse duration, CLK high or low | e duration, CLK high or low | | | ns | | | su Setup time | Data before CLK↑ | 2.3 | | 20 | | ¹su | | CE before CLK↑ | 3.3 | | ns | | 4. | Hold time | Data after CLK↑ | 0.1 | | | | th | noid time | CE after CLK↑ | 0 | · | ns | # switching characteristics over recommended ranges of supply voltage and operating free-air temperature for GTL+ (see Figure 1) | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | MIN | түр† | MAX | UNIT | |------------------|-----------------------|------------------------|-----|------|-----|------| | f _{max} | | | 200 | | | MHz | | ^t PLH | CLKAB | В | 2.2 | 4 | 5.9 | no | | ^t PHL | CLKAB | Ь | 2.1 | 4 | 6.1 | ns | | ^t PLH | | В | 1.9 | 3.4 | 5.2 | ns | | ^t PHL | OEAB | Ь | 1.7 | 3.1 | 5.1 | 5.1 | | Slew rate | Both tra | insitions | | 0.5 | | V/ns | | t _r | Transition time, B ou | tputs (0.6 V to 1.3 V) | 0.6 | 1.3 | 2.6 | ns | | tf | Transition time, B ou | tputs (1.3 V to 0.6 V) | 0.4 | 1.3 | 3 | ns | | ^t PLH | CLKBA | Δ. | 1.8 | 3.5 | 5.1 | | | ^t PHL | CLKBA | A | 1.7 | 3.3 | 4.9 | ns | | ^t en | OF DA | ^ | 1.3 | 2.9 | 4.8 | no | | ^t dis | - OEBA | A | 2 | 3.2 | 5 | ns | [†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. ### PARAMETER MEASUREMENT INFORMATION $V_{TT} = 1.5 V$, $V_{REF} = 1 V$ - NOTES: A. C_L includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , $t_r \leq$ 2.5 ns, $t_f \leq$ 2.5 ns. - D. The outputs are measured one at a time with one transition per measurement. Figure 1. Load Circuits and Voltage Waveforms #### **IMPORTANT NOTICE** Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. Customers are responsible for their applications using TI components. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, license, warranty or endorsement thereof. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation or reproduction of this information with alteration voids all warranties provided for an associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use. Resale of TI's products or services with <u>statements different from or beyond the parameters</u> stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use. Also see: Standard Terms and Conditions of Sale for Semiconductor Products, www.ti.com/sc/docs/stdterms.htm Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265