- Member of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- 4- Ω Switch Connection Between Two Ports
- Rail-to-Rail Switching on Data I/O Ports
- I ${ }_{\text {off }}$ Supports Partial-Power-Down Mode Operation
- Make-Before-Break Feature
- Internal 500- Ω Pulldown Resistors to Ground
- Latch-Up Performance Exceeds 250 mA Per JESD 17

description/ordering information

The SN74CBTLV16292 is a 12-bit 1-of-2 high-speed FET multiplexer/demultiplexer. The low on-state resistance of the switch allows connections to be made with minimal propagation delay.

When the select (S) input is low, port A is connected to port B1, and $R_{\text {INT }}$ is connected to port $B 2$. When S is high, port A is connected to port $B 2$, and $R_{I N T}$ is connected to port B1.
This device is fully specified for partial-power-down applications using $l_{\text {off }}$. The $l_{\text {off }}$ feature ensures that damaging current will not backflow through the device when it is powered down. The device has isolation during power off.

DGG, DGV, OR DL PACKAGE
(TOP VIEW)

NC - No internal connection

ORDERING INFORMATION

T_{A}	PACKAGE \dagger		ORDERABLE PART NUMBER	TOP-SIDE MARKING
	SSOP - DL	Tube	SN74CBTLV16292DL	CBTLV16292
		Tape and reel	SN74CBTLV16292DLR	
	TSSOP - DGG	Tape and reel	SN74CBTLV16292GR	CBTLV16292
	TVSOP - DGV	Tape and reel	SN74CBTLV16292VR	CN292

\dagger Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

SN74CBTLV16292

LOW-VOLTAGE 12-BIT 1-OF-2 FET MULTIPLEXER/DEMULTIPLEXER WITH INTERNAL PULLDOWN RESISTORS
SCDSO55K - MARCH 1998 - REVISED OCTOBER 2003
FUNCTION TABLE

INPUT S	FUNCTION
L	A port = B1 port RINT = B2 port
H	A port = B2 port RINT = B1 port

logic diagram (positive logic)

simplified schematic, each FET switch

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

recommended operating conditions (see Note 3)

		MIN	MAX	UNIT
Supply voltage		2.3	3.6	V
High-level control input voltage	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	1.7		V
	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V	2		
Low-level control input voltage	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V		0.7	V
	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V		0.8	
Operating free-air temperature		-40	85	${ }^{\circ} \mathrm{C}$

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

LOW-VOLTAGE 12-BIT 1-0F-2 FET MULTIPLEXER/DEMULTIPLEXER WITH INTERNAL PULLDOWN RESISTORS

SCDSO55K - MARCH 1998 - REVISED OCTOBER 2003
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS			MIN	TYP†	MAX	UNIT
$\mathrm{V}_{\text {IK }}$		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.2	V
1		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND				± 1	$\mu \mathrm{A}$
I off		$\mathrm{V}_{\mathrm{CC}}=0$,	$\mathrm{V}_{\text {I }}$ or $\mathrm{V}_{\mathrm{O}}=0$ to 3.6 V				10	$\mu \mathrm{A}$
ICC		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$,	l = 0 ,	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND			10	$\mu \mathrm{A}$
$\Delta_{\mathrm{l}} \mathrm{C}^{\ddagger}$	Control input	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$,	One input	Other inputs at V_{CC} or GND			300	$\mu \mathrm{A}$
C_{i}	Control input	$\mathrm{V}_{\mathrm{I}}=3.3 \mathrm{~V}$ or 0				3.5		pF
C_{i}	A or B port	$\mathrm{V}_{\mathrm{O}}=3.3 \mathrm{~V}$ or 0				22.5		pF
$\mathrm{r}_{0} \mathrm{n}^{\text {§ }}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}, \\ & \mathrm{TYP} \text { at } \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \end{aligned}$	$V_{l}=0$	$\mathrm{I}_{1}=64 \mathrm{~mA}$		5	8	Ω
		$\mathrm{I}=24 \mathrm{~mA}$			5	8		
		$\mathrm{V}_{\mathrm{I}}=1.7 \mathrm{~V}, \quad \mathrm{I}^{\prime}=15 \mathrm{~mA}$		11	40			
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$	$\mathrm{V}_{1}=0$	$\mathrm{I}_{1}=64 \mathrm{~mA}$		3	7	
		$\boldsymbol{I}=24 \mathrm{~mA}$			3	7		
		$\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}, \quad \quad \mathrm{l}=15 \mathrm{~mA}$		7	15			

\dagger All typical values are at $\mathrm{V}_{\mathrm{C}}=3.3 \mathrm{~V}$ (unless otherwise noted), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger This is the increase in supply current for each input that is at the specified voltage level, rather than $V_{C C}$ or GND.
§ Measured by the voltage drop between the A and B terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two (A or B) terminals.
switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \\ \pm 0.2 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		UNIT
			MIN	MAX	MIN	MAX	
$t_{p d}{ }^{\text {I }}$	A or B	B or A		0.15		0.25	ns
$t_{\text {pd }}{ }^{\text {\# }}$	S	A	2.5	7.1	2.5	6.7	ns
ten	S	B	1	5.6	1	5	ns
$\mathrm{t}_{\text {dis }}$	S	B	1	5	1	4.5	ns

II The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).
\# This propagation delay was measured by observing the change of voltage on the A output introduced by static levels equal to $3-\mathrm{V}$ or 0 for $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ or V CC or 0 for $2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$ on B 1 and B 2 to achieve the desired transition.
switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER	DESCRIPTION	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \\ \pm 0.2 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		UNIT	
		MIN	MAX	MIN	MAX		
$t_{\text {mbb }}{ }^{\\|}$	Make-before-break time	0	2	0	2	ns	

II The make-before-break time is the time interval between make and break, during the transition from one selected port to the other.

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT

V_{CC}	C_{L}	R_{L}	V_{Δ}
$2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$	30 pF	500Ω	0.15 V
$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	50 pF	500Ω	0.3 V

VOLTAGE WAVEFORMS SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. $t_{P L Z}$ and $t P H Z$ are the same as $t_{\text {dis }}$.
F. tpZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as t_{pd}.
H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

PIM **	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{3 8}$	$\mathbf{4 8}$	$\mathbf{5 6}$
A MAX	3,70	3,70	5,10	5,10	7,90	9,80	11,40
A MIN	3,50	3,50	4,90	4,90	7,70	9,60	11,20

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
D. Falls within JEDEC: $24 / 48$ Pins - MO-153

14/16/20/56 Pins - MO-194

PIM	$\mathbf{2 8}$	$\mathbf{4 8}$	$\mathbf{5 6}$
A MAX	0.380 $(9,65)$	0.630 $(16,00)$	0.730 $(18,54)$
A MIN	0.370 $(9,40)$	0.620 $(15,75)$	0.720 $(18,29)$

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MO-118

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold protrusion not to exceed 0,15.
D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using Tl components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Amplifiers	amplifier.ti.com	Audio
Data Converters	dataconverter.ti.com	Automotive
DSP	dsp.ti.com	Broadband
Interface	interface.ti.com	Digital Control
Logic	logic.ti.com	Military
Power Mgmt	power.ti.com	Optical Networking
Microcontrollers	microcontroller.ti.com	Security
		Telephony
		Video \& Imaging
		Wireless

www.ti.com/audio www.ti.com/automotive www.ti.com/broadband www.ti.com/digitalcontrol www.ti.com/military www.ti.com/opticalnetwork www.ti.com/security www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated

