

FEATURES

- Member of the Texas Instruments Widebus™
 Family
- EPIC™ (Enhanced-Performance Implanted CMOS) Submicron Process
- Output Ports Have Equivalent 26-Ω Series Resistors, So No External Resistors Are Required
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages

NOTE: For tape-and-reel order entry, the DGGR package is abbreviated to GR.

DESCRIPTION

This 16-bit buffer/driver is designed for 1.65-V to 3.6-V V_{CC} operation.

The SN74ALVCH162244 is designed specifically to improve the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters.

The device can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer. It provides true outputs and symmetrical active-low output-enable (\overline{OE}) inputs.

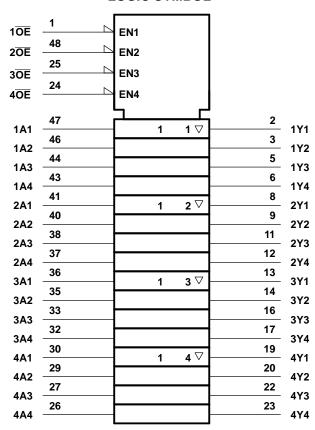
The outputs, which are designed to sink up to 12 mA, include equivalent 26- Ω resistors to reduce overshoot and undershoot.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The SN74ALVCH162244 is characterized for operation from -40°C to 85°C.

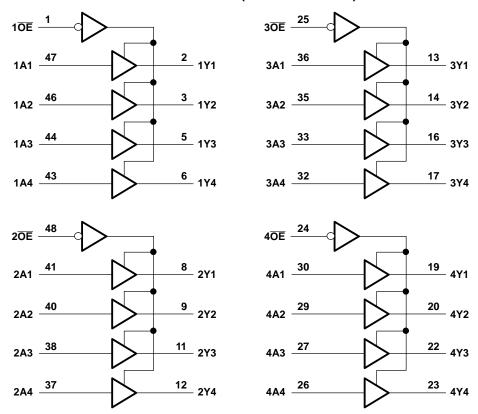
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


Widebus, EPIC are trademarks of Texas Instruments.

FUNCTION TABLE (each 4-bit buffer)

INPL	JTS	OUTPUT
ŌĒ	Α	Y
L	Н	Н
L	L	L
Н	Χ	Z

LOGIC SYMBOL[†]



[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SN74ALVCH162244

LOGIC DIAGRAM (POSITIVE LOGIC)

ABSOLUTE MAXIMUM RATINGS(1)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	4.6	V
V _I	Input voltage range ⁽²⁾		-0.5	4.6	V
Vo	Output voltage range ⁽²⁾⁽³⁾		-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V _I < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
Io	Continuous output current			±50	mA
	Continuous current through each V _{CC} or GND			±100	mA
	Package thermal impedance (4)	DGG package		89	°C/W
θ_{JA}	Package thermal impedance ⁽⁴⁾	DL package		94	C/VV
T _{stg}	g Storage temperature range		-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

⁽²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ This value is limited to 4.6 V maximum.

⁽⁴⁾ The package thermal impedance is calculated in accordance with JESD 51.

SN74ALVCH162244 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS

RECOMMENDED OPERATING CONDITIONS(1)

			MIN	MAX	UNIT	
V _{CC}	Supply voltage		1.65	3.6	V	
		V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$			
V_{IH}	High-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		V	
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2			
•		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		$0.35 \times V_{CC}$		
V_{IL}	Low-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	V	
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$		0.8		
V _I	Input voltage		0	V _{cc}	V	
Vo	Output voltage		0	V _{CC}	V	
	High-level output current	V _{CC} = 1.65 V		-2		
		V _{CC} = 2.3 V		-6	. mΛ	
I _{OH}		V _{CC} = 2.7 V		-8	mA	
		V _{CC} = 3 V		-12		
		V _{CC} = 1.65 V		2		
	Low lovel output ourrent	V _{CC} = 2.3 V		6	Λ	
I _{OL}	Low-level output current	V _{CC} = 2.7 V		8	mA	
		V _{CC} = 3 V		12		
Δt/Δν	Input transition rise or fall rate	•		10	ns/V	
T _A	Operating free-air temperature		-40	85	°C	

⁽¹⁾ All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

SN74ALVCH162244 **16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS**

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)

PAF	RAMETER	TEST CO	ONDITIONS	V _{cc}	MIN	TYP ⁽¹⁾	MAX	UNIT
		I _{OH} = -100 μA		1.65 V to 3.6 V	V _{CC} - 0.2			
		I _{OH} = -2 mA		1.65 V	1.2			
		I _{OH} = -4 mA		2.3 V	1.9			
V _{OH}		1 - 6 m A		2.3 V	1.7			V
		$I_{OH} = -6 \text{ mA}$		3 V	2.4			.
		$I_{OH} = -8 \text{ mA}$		2.7 V	2			
		I _{OH} = -12 mA		3 V	2			
		$I_{OL} = 100 \mu A$		1.65 V to 3.6 V			0.2	
		$I_{OL} = 2 \text{ mA}$		1.65 V			0.45	
		I _{OL} = 4 mA		2.3 V			0.4	
V _{OL}		6 mΔ		2.3 V			0.55	V
		$I_{OL} = 6 \text{ mA}$		3 V			0.55	
		I _{OL} = 8 mA		2.7 V			0.6	
		I _{OL} = 12 mA	3 V	3 V				
I		$V_I = V_{CC}$ or GND		3.6 V			±5	μΑ
		V _I = 0.58 V		1.65 V	25			
		V _I = 1.07 V		1.65 V	-25			
		V _I = 0.7 V		2.3 V	45			
I _{I(hold)}		V _I = 1.7 V		2.3 V	-45			μΑ
		V _I = 0.8 V		3 V	75			
		V _I = 2 V		3 V	-75			
		$V_1 = 0$ to 3.6 $V^{(2)}$		3.6 V			±500	
I _{OZ}		$V_O = V_{CC}$ or GND		3.6 V			±10	μΑ
I _{CC}		$V_I = V_{CC}$ or GND,	I _O = 0	3.6 V			40	μΑ
Δl _{CC}		One input at V _{CC} - 0.6 V,	Other inputs at V _{CC} or GND	3 V to 3.6 V			750	μΑ
C _i	Control inputs	V = V or GND		3.3 V		3		pF
Ŭi	Data inputs	$V_I = V_{CC}$ or GND		3.5 v	6			Ρι
C _o	Outputs	$V_O = V_{CC}$ or GND		3.3 V		7		pF

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 1.8 V	V _{CC} = 1 ± 0.2	2.5 V 2 V	V _{CC} =	2.7 V	V _{CC} = 3 ± 0.3	3.3 V 3 V	UNIT
	(INFOT)	(001701)	TYP	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd}	A	Y	(1)	1	4.9		4.7	1	4.2	ns
t _{en}	ŌĒ	Υ	(1)	1	6.8		6.7	1	5.6	ns
t _{dis}	ŌĒ	Υ	(1)	1	6.3		5.7	1	5.5	ns

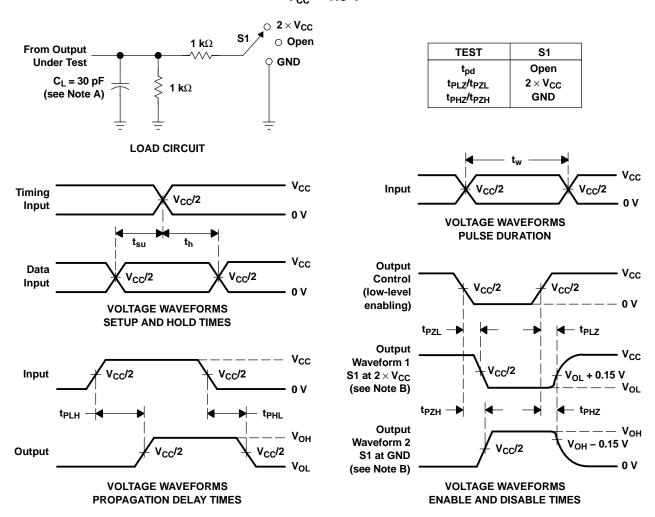
⁽¹⁾ This information was not available at the time of publication.

⁽¹⁾ All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. (2) This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

SN74ALVCH162244 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS

SCES065E-JANUARY 1996-REVISED AUGUST 2004

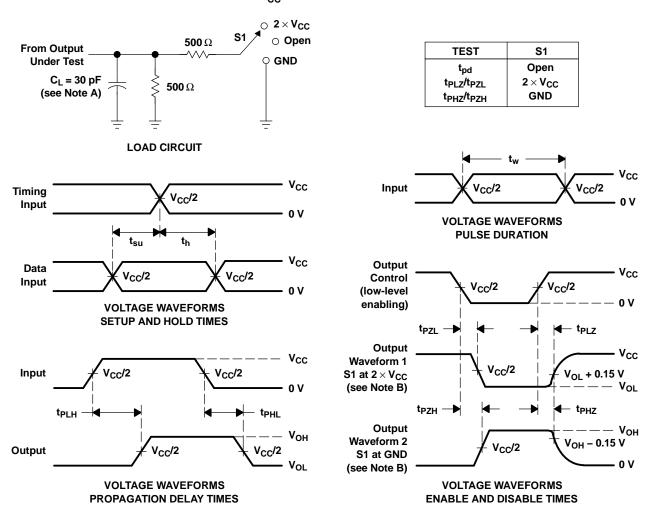
OPERATING CHARACTERISTICS


 $T_A = 25^{\circ}C$

PARAMETER			TEST CONDITIONS	V _{CC} = 1.8 V	V _{CC} = 2.5 V	V _{CC} = 3.3 V	UNIT	
	TAKAMETEK		TEOT CONDITIONS	TYP	TYP	TYP	ONIT	
	C _{nd} Power dissipation capacitance	Outputs enabled	C ₁ = 50 pF. f = 10 MHz	(1)	16	19	ρF	
	C _{pd} Fower dissipation capacitance	Outputs disabled	$C_L = 50 \text{ pF}, f = 10 \text{ MHz}$	(1)	4	5	ρг	

⁽¹⁾ This information was not available at the time of publication.

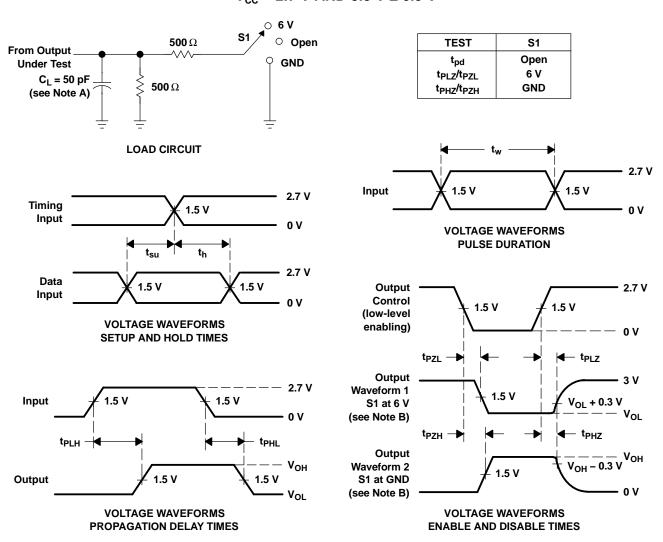
PARAMETER MEASUREMENT INFORMATION $V_{CC} = 1.8 \text{ V}$


NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z $_{O}$ = 50 $\Omega,\,t_{f}$ \leq 2 ns. t_{f} \leq 2 ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. $t_{Pl,7}$ and t_{PH7} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 1. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION V_{cc} = 2.5 V \pm 0.2 V



- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_{O} = 50 $\Omega,\,t_{f}\leq$ 2 ns. $t_{f}\leq$ 2 ns.
 - D. The outputs are measured one at a time, with one transition per measurement.
 - E. $t_{Pl,7}$ and t_{PH7} are the same as t_{dis} .
 - F. t_{PZL} and t_{PZH} are the same as t_{en}.
 - G. t_{PLH} and t_{PHL} are the same as t_{pd}.

Figure 2. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION V_{CC} = 2.7 V AND 3.3 V \pm 0.3 V

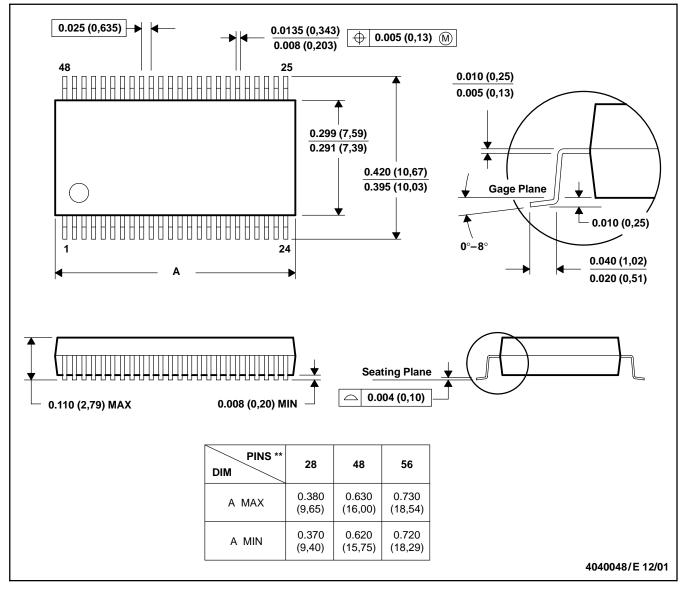

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50~\Omega$, $t_r \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
 - D. The outputs are measured one at a time, with one transition per measurement.
 - E. t_{PLZ} and t_{PHZ} are the same as t_{dis}.
 - F. t_{PZL} and t_{PZH} are the same as t_{en} .
 - G. t_{PLH} and t_{PHL} are the same as t_{pd}.

Figure 3. Load Circuit and Voltage Waveforms

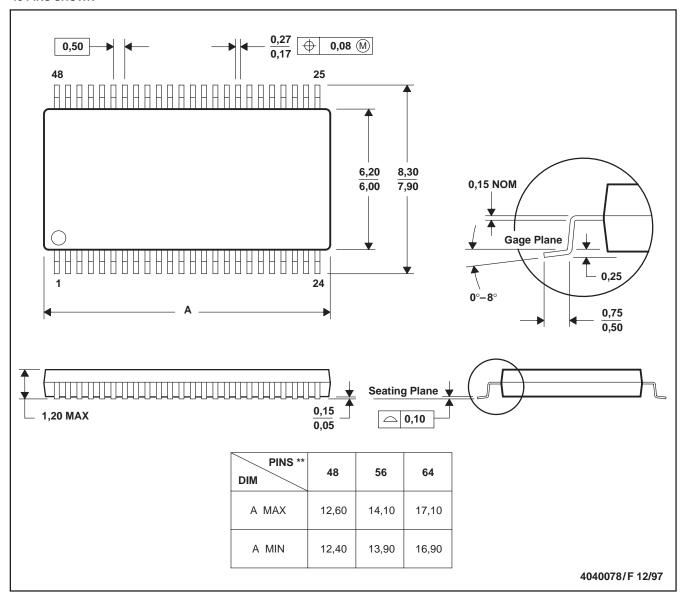
DL (R-PDSO-G**)

48 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.


C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MO-118

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

e
d
trol
work
d trol wo

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated