DL PACKAGE (TOP VIEW) - High-Speed, Low-Skew 1-to-18 Clock Buffer for Synchronous DRAM (SDRAM) Clock Buffering Applications - Output Skew, t_{sk(o)}, Less Than 250 ps - Pulse Skew, t_{sk(p)}, Less Than 500 ps - Supports up to Four Unbuffered SDRAM Dual Inline Memory Modules (DIMMs) - I²C Serial Interface Provides Individual Enable Control for Each Output - Operates at 3.3 V - Distributed V_{CC} and Ground Pins Reduce Switching Noise - 100-MHz Operation - ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015 - Packaged in 48-Pin Shrink Small Outline (DL) Package # description The CDC318A is a high-performance clock buffer designed to distribute high-speed clocks in PC applications. This device distributes one input (A) to 18 outputs (Y) with minimum skew for clock distribution. The CDC318A operates from a 3.3-V power supply. It is characterized for operation from 0°C to 70°C. This device has been designed with consideration for optimized EMI performance. Depending on the application layout, damping resistors in series to the clock outputs (like proposed in the PC100 specification) may not be needed in most cases. #### 48 🛮 NC NCL NC 2 47 NC V_{CC}**Ц** 3 46 V_{CC} 45 🛮 4Y3 1Y0 4 1Y1 🛮 5 44 4Y2 GND 6 43 GND 42 VCC V_{CC}**∐** 7 1Y2 8 41 4Y1 1Y3 9 40 4Y0 39 GND GND 10 38 OE A 🛮 11 37 V_{CC} V_{CC} 12 2Y0 13 36 3Y3 2Y1 14 35 3Y2 GND ∏ 15 34 GND 33 V_{CC} V_{CC} **1**6 2Y2 17 32 **1** 3Y1 31 3Y0 2Y3 18 GND 19 30 GND V_{CC} 20 29 V_{CC} 5Y0 21 28 T 5Y1 27 GND GND 1 22 V_{CC} 23 26 GND 25 SCLOCK SDATA 24 NC - No internal connection The device provides a standard mode (100K-bits/s) I^2C serial interface for device control. The implementation is as a slave/receiver. The device address is specified in the I^2C device address table. Both of the I^2C inputs (SDATA and SCLOCK) are 5-V tolerant and provide integrated pullup resistors (typically 140 $k\Omega$). Three 8-bit I²C registers provide individual enable control for each of the outputs. All outputs default to enabled at powerup. Each output can be placed in a disabled mode with a low-level output when a low-level control bit is written to the control register. The registers are write only and must be accessed in sequential order (i.e., random access of the registers is not supported). The CDC318A provides 3-state outputs for testing and debugging purposes. The outputs can be placed in a high-impedance state via the output-enable (OE) input. When OE is high, all outputs are in the operational state. When OE is low, the outputs are placed in a high-impedance state. OE provides an integrated pullup resistor. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. ## **FUNCTION TABLE** | INP | UTS | OUTPUTS | | | | | | | |-----|-----|----------------|---------|---------|---------|----------------|--|--| | OE | Α | 1Y0-1Y3 | 2Y0-2Y3 | 3Y0-3Y3 | 4Y0-4Y3 | 5Y0-5Y1 | | | | L | Х | Hi-Z | Hi-Z | Hi-Z | Hi-Z | Hi-Z | | | | Н | L | L | L | L | L | L | | | | Н | Н | H [†] | н† | н† | н† | H [†] | | | [†] The function table assumes that all outputs are enabled via the appropriate I²C configuration register bit. If the output is disabled via the appropriate configuration bit, then the output is driven to a low state, regardless of the state of the A input. # logic diagram (positive logic) ## **Terminal Functions** | | TERMINAL I/O | | DESCRIPTION | |---------|--|-----|--| | NAME | NO. | 1/0 | DESCRIPTION | | 1Y0-1Y3 | 4, 5, 8, 9 | 0 | 3.3-V SDRAM byte 0 clock outputs | | 2Y0-2Y3 | 13, 14, 17, 18 | 0 | 3.3-V SDRAM byte 1 clock outputs | | 3Y0-3Y3 | 31, 32, 35, 36 | 0 | 3.3-V SDRAM byte 2 clock outputs | | 4Y0-4Y3 | 40, 41, 44, 45 | 0 | 3.3-V SDRAM byte 3 clock outputs | | 5Y0-5Y1 | 21, 28 | 0 | 3.3-V clock outputs provided for feedback control of external phase-locked loops (PLLs) | | А | 11 | - 1 | Clock input | | OE | 38 | I | Output enable. When asserted, OE puts all outputs in a high-impedance state. A nominal 140 -k Ω pullup resistor is internally integrated. | | SCLOCK | 25 | - 1 | I ² C serial clock input. A nominal 140-kΩ pullup resistor is internally integrated. | | SDATA | 24 | I/O | Bidirectional I 2 C serial data input/output. A nominal 140-k Ω pullup resistor is internally integrated. | | GND | 6, 10, 15, 19, 22, 26,
27, 30, 34, 39, 43 | | Ground | | NC | 1, 2, 47, 48 | | No internal connection. Reserved for future use. | | Vcc | 3, 7, 12, 16, 20, 23,
29, 33, 37, 42, 46 | | 3.3-V power supply | ## I²C DEVICE ADDRESS | A 7 | A6 | A5 | A4 | А3 | A2 | A1 | A0 (R/W) | |------------|----|----|----|----|----|----|----------| | Н | Н | L | Н | L | L | Н | _ | ## I²C BYTE 0-BIT DEFINITION[†] | BIT | DEFINITION | DEFAULT VALUE | |-----|---------------------|---------------| | 7 | 2Y3 enable (pin 18) | Н | | 6 | 2Y2 enable (pin 17) | Н | | 5 | 2Y1 enable (pin 14) | Н | | 4 | 2Y0 enable (pin 13) | Н | | 3 | 1Y3 enable (pin 9) | Н | | 2 | 1Y2 enable (pin 8) | Н | | 1 | 1Y1 enable (pin 5) | Н | | 0 | 1Y0 enable (pin 4) | Н | [†]When the value of the bit is high, the output is enabled. When the value of the bit is low, the output is forced to a low state. The default value of all bits is high. ## I²C BYTE 1-BIT DEFINITION[†] | BIT | DEFINITION | DEFAULT VALUE | |-----|---------------------|---------------| | 7 | 4Y3 enable (pin 45) | Н | | 6 | 4Y2 enable (pin 44) | Н | | 5 | 4Y1 enable (pin 41) | Н | | 4 | 4Y0 enable (pin 40) | Н | | 3 | 3Y3 enable (pin 36) | Н | | 2 | 3Y2 enable (pin 35) | Н | | 1 | 3Y1 enable (pin 32) | Н | | 0 | 3Y0 enable (pin 31) | Н | [†]When the value of the bit is high, the output is enabled. When the value of the bit is low, the output is forced to a low state. The default value of all bits is high. ## I²C BYTE 2-BIT DEFINITION[†] | BIT | DEFINITION | DEFAULT VALUE | |-----|---------------------|---------------| | 7 | 5Y1 enable (pin 28) | Н | | 6 | 5Y0 enable (pin 21) | Н | | 5 | Reserved | Н | | 4 | Reserved | Н | | 3 | Reserved | Н | | 2 | Reserved | Н | | 1 | Reserved | Н | | 0 | Reserved | Н | [†] When the value of the bit is high, the output is enabled. When the value of the bit is low, the output is forced to a low state. The default value of all bits is high. # absolute maximum ratings over operating free-air temperature range (unless otherwise noted) | Supply voltage range, V _{CC} | | |--|--| | Input voltage range, V _I (see Note 1) | –0.5 V to 4.6 V | | Input voltage range, V _I (SCLOCK, SDATA) (see Note 1) | –0.5 V to 6.5 V | | Output voltage range, VO (SDATA) (see Note 1) | –0.5 V to 6.5 V | | Voltage range applied to any output in the high or power-off state, VO | \dots -0.5 V to V _{CC} +0.5 V | | Current into any output in the low state (except SDATA), IO | 48 mA | | Current into SDATA in the low state, I _O | 12 mA | | Input clamp current, I _{IK} (V _I < 0) (SCLOCK) | | | Output clamp current, I_{OK} ($V_O < 0$) (SDATA) | | | Package thermal impedance, θ _{JA} (see Notes 2 and 3) | 84°C/W | | Storage temperature range, T _{stq} | | | Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds | | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. - NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. - 2. The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51, except for through-hole packages, which use a trace length of zero. The absolute maximum power dissipation allowed at T_A = 55°C (in still air) is 1.2 W. - 3. Thermal impedance (Θ_{JA}) can be considerably lower if the device is soldered on the PCB board with a copper layer underneath the package. A simulation on a PCB board (3 in. × 3 in.) with two internal copper planes (1 oz. cu, 0.036 mm thick) and 0.071 mm cu (202) in area underneath the package, resulted in Θ_{JA} = 60°C/W. This would allow 1.2 W total power dissipation at TA = 70°C. # recommended operating conditions (see Note 4) | | | | MIN | TYP | MAX | UNIT | |------------------------|-------------------------------------|-------------------------------|-------|-----|----------------------|------| | Vcc | 3.3-V core supply voltage | | 3.135 | | 3.465 | V | | | | A, OE | 2 | | V _{CC} +0.3 | V | | ViH | High-level input voltage | SDATA, SCLOCK
(see Note 3) | 2.2 | | 5.5 | V | | | | A, OE | -0.3 | | 0.8 | V | | VIL | Low-level input voltage | SDATA, SCLOCK
(see Note 3) | 0 | | 1.04 | V | | ІОН | High-level output current | Y outputs | | | -36 | mA | | loL | Low-level output current | Y outputs | | | 24 | mA | | rį | Input resistance to V _{CC} | SDATA, SCLOCK
(see Note 3) | | 140 | | kΩ | | f(SCL) | SCLOCK frequency | | | | 100 | kHz | | t(BUS) | Bus free time | | 4.7 | | | μs | | t _{su(START)} | START setup time | | 4.7 | | | μs | | th(START) | START hold time | | 4 | | | μs | | tw(SCLL) | SCLOCK low pulse duration | | 4.7 | | | μs | | tw(SCLH) | SCLOCK high pulse duration | | 4 | | | μs | | ^t r(SDATA) | SDATA input rise time | | | | 1000 | ns | | ^t f(SDATA) | SDATA input fall time | | | | 300 | ns | | t _{su(SDATA)} | SDATA setup time | | 250 | | | ns | | ^t h(SDATA) | SDATA hold time | | 20 | | | ns | | tsu(STOP) | STOP setup time | | 4 | | | μs | | T _A | Operating free-air temperature | | 0 | | 70 | °C | NOTE 4: The CMOS-level inputs fall within these limits: V_{IH} min = $0.7 \times V_{CC}$ and V_{IL} max = $0.3 \times V_{CC}$. # **CDC318A** 1-LINE TO 18-LINE CLOCK DRIVER WITH I²C CONTROL INTERFACE SCAS614A - SEPTEMBER 1998 - REVISED JUNE 2002 # electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) | PARAMETER | | TEST CON | IDITIONS | MIN | TYP | MAX | UNIT | | | | | | | | |------------------|------------------------------------|---------------|--|---------------------------------|----------------------------|-----|------|----|----------------------------|----------------------|----|--|-----|--| | V_{IK} | Input clamp voltage | | $V_{CC} = 3.135 \text{ V},$ | I _I = −18 mA | | | -1.2 | V | | | | | | | | V _{ОН} | High-level output voltage | Y outputs | V _{CC} = Min to Max, | I _{OH} = -1 mA | V _{CC} –
0.1 V | | | V | | | | | | | | | | | $V_{CC} = 3.135 \text{ V},$ | $I_{OH} = -36 \text{ mA}$ | 2.4 | | | | | | | | | | | | | Y outputs | V _{CC} = Min to Max, | I _{OL} = 1 mA | | | 0.1 | | | | | | | | | V.0. | Low-level output voltage | Toutputs | $V_{CC} = 3.135 \text{ V},$ | I _{OL} = 24 mA | | | 0.4 | V | | | | | | | | VOL | Low-level output voltage | SDATA | V _{CC} = 3.135 V | IOL = 3 mA | | | 0.4 | v | | | | | | | | | | SDATA | VCC = 3.135 V | I _{OL} = 6 mA | | | 0.6 | | | | | | | | | | | SDATA | V _{CC} = 3.135 V, | VO = VCC MAX | | | 20 | μΑ | | | | | | | | | High lovel output ourrent | | V _{CC} = 3.135 V, | V _O = 2 V | -54 | | -126 | | | | | | | | | ЮН | High-level output current | Y outputs | $V_{CC} = 3.3 \text{ V},$ | V _O = 1.65 V | | -92 | | mA | | | | | | | | | | | V _{CC} = 3.465 V, | V _O = 3.135 V | -21 | | -46 | | | | | | | | | | Low-level output current | | | | | | | | V _{CC} = 3.135 V, | V _O = 1 V | 49 | | 118 | | | lOL | | Y outputs | V _{CC} = 3.3 V, | V _O = 1.65 V | | 93 | | mA | | | | | | | | | | | V _{CC} = 3.465 V, | V _O = 0.4 V | 24 | | 53 | | | | | | | | | | | А | | | | | 5 | | | | | | | | | lіН | High-level input current | OE | $V_{CC} = 3.465 \text{ V},$ | $V_I = V_{CC}$ | | | 20 | μΑ | | | | | | | | | | SCLOCK, SDATA | | | | | 20 | | | | | | | | | | | А | | | | | -5 | | | | | | | | | l₁∟ | Low-level input current | OE | V _{CC} = 3.465 V, | $V_I = GND$ | -10 | | -50 | μΑ | | | | | | | | | | SCLOCK, SDATA | 1 | | -10 | | -50 | | | | | | | | | loz | High-impedance-state outpo | ut current | V _{CC} = 3.465 V, | V _O = 3.465 V or 0 | | | ±10 | μΑ | | | | | | | | l _{off} | Off-state current | SCLOCK, SDATA | $V_{CC} = 0$, | $V_{I} = 0 V \text{ to } 5.5 V$ | | | 50 | μΑ | | | | | | | | ICC | Supply current | _ | V _{CC} = 3.465 V, | IO = 0 | | 0.2 | 0.5 | mA | | | | | | | | ΔlCC | Change in supply current | | $V_{CC} = 3.135 \text{ V to } 3.46$
One input at $V_{CC} = 0.4$
All other inputs at V_{CC} | 6 V, | | | 500 | μА | | | | | | | | | Dynamic I _{CC} at 100 MHz | | V _{CC} = 3.465 V, | $C_{L} = 20 \text{ pF},$ | | 230 | | mA | | | | | | | | Cl | C _I Input capacitance | | $V_I = V_{CC}$ or GND, | V _{CC} = 3.3 V | | 4 | | pF | | | | | | | | СО | Output capacitance | | $V_O = V_{CC}$ or GND, | | | 6 | | pF | | | | | | | | C _{I/O} | SDATA I/O capacitance | | $V_{I/O} = V_{CC}$ or GND, | VCC = 3.3 V | | 7 | | pF | | | | | | | # switching characteristics over recommended operating conditions | | PARAMETER | | FROM | то | TEST CONDITIONS | MIN | MAX | UNIT | |--------------------|--|------------|---------|----------------|---|-----|-----|------| | | | | А | Υ | | 1.2 | 4.5 | ns | | ^t PLH | Low-to-high level propagation of | lelay time | SCLOCK↓ | SDATA
valid | V _{CC} = 3.3 V ±0.165 V,
See Figure 3 | | 2 | μs | | ^t PLH | Low-to-high level propagation of | lelay time | SDATA↑ | Υ | $V_{CC} = 3.3 \text{ V} \pm 0.165 \text{ V},$
See Figure 3 | | 150 | ns | | | | | А | Y | | 1.2 | 4.5 | ns | | ^t PHL | High-to-low level propagation delay time | | SCLOCK↓ | SDATA
valid | V_{CC} = 3.3 V ±0.165 V,
See Figure 3 | | 2 | μs | | ^t PHL | High-to-low level propagation d | elay time | SDATA↑ | Y | V_{CC} = 3.3 V ±0.165 V,
See Figure 3 | | 150 | ns | | ^t PZH | Enable time to the high level Enable time to the low level | | OE | Y | | 1 | 7 | 20 | | t _{PZL} | | | | Ť | | 1 | 7 | ns | | ^t PHZ | Disable time from the high level | | OE | Y | | 1 | 7 | ns | | ^t PLZ | Disable time from the low level | | | ı | | 1 | 7 | 115 | | t _{sk(o)} | Skew time | | А | Υ | | | 250 | ps | | t _{sk(p)} | Skew time | | А | Υ | | | 500 | ps | | tsk(pr) | Skew time | | А | Υ | | | 1 | ns | | t _r | Rise time | | | Υ | | 0.5 | 2.2 | ns | | | Rise time (see Note 5 and | SDATA | | | C _L = 10 pF | 6 | | ns | | t _r | Figure 3) | SDAIA | | | C _L = 400 pF | | 950 | 115 | | t _f | Fall time | | | Υ | | 0.5 | 2.3 | ns | | 4. | Fall time (see Note 5 and | SDATA | | | C _L = 10 pF | 20 | | 20 | | tf | Figure 3) | SDAIA | | | C _L = 400 pF | | 250 | ns | NOTE 5: This parameter has a lower limit than BUS specification. This allows use of series resistors for current spike protection. # **ESD** information | ESD MODELS | LIMIT | |---------------------------|--------| | Human Body Model (HBM) | 2.0 kV | | Machine Model (MM) | 200 V | | Charge Device Model (CDM) | 2.0 kV | # thermal information | | CDC318A 48-PIN SSOP | | | THERMAL AIR FLOW (CFM) | | | | | |---------------------|---------------------|----|----|------------------------|-----|-----|------|--| | CDC316A 46-PIN SSOP | | | 0 | 150 | 250 | 500 | UNIT | | | $R_{\theta JA}$ | High K | | 62 | 56 | 54 | 51 | °C/W | | | $R_{\theta JA}$ | Low K | | 95 | 71 | 65 | 58 | °C/W | | | $R_{\theta JC}$ | High K | 36 | | | | | °C/W | | | $R_{\theta JC}$ | Low K | 38 | | | | | °C/W | | ## PARAMETER MEASUREMENT INFORMATION - NOTES: A. C_L includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_{O} = 50 \, \Omega$, $t_{f} \leq 2.5 \, \text{ns}$, $t_{f} \leq 2.5 \, \text{ns}$. - D. The outputs are measured one at a time with one transition per measurement. Figure 1. Load Circuit and Voltage Waveforms ## PARAMETER MEASUREMENT INFORMATION NOTES: A. Output skew, $t_{Sk(O)}$, is calculated as the greater of: - The difference between the fastest and slowest of tpLHn (n = 1:18) - The difference between the fastest and slowest of t_{PHLn} (n = 1:18) - B. Pulse skew, $t_{Sk(p)}$, is calculated as the greater of $|t_{PLHn} t_{PHLn}|$ (n = 1:18) - C. Process skew, $t_{sk(pr)}$, is calculated as the greater of: - The difference between the fastest and slowest of tpLHn (n = 1:18) across multiple devices under identical operating conditions - $\ \, \text{The difference between the fastest and slowest of tp}_{HLn} \, (n=1:18) \, \text{across multiple devices under identical operating conditions}$ Figure 2. Waveforms for Calculation of $t_{sk(0)}$, $t_{sk(p)}$, $t_{sk(pr)}$ ## PARAMETER MEASUREMENT INFORMATION | VOLTAGE W | /AVEFORMS | |------------------|-----------| |------------------|-----------| | BYTE | DESCRIPTION | |------|-----------------------------------| | 1 | I ² C address | | 2 | Command (dummy value, ignored) | | 3 | Byte count (dummy value, ignored) | | 4 | I ² C data byte 0 | | 5 | I ² C data byte 1 | | 6 | I ² C data byte 2 | NOTES: A. The repeat start condition is not supported. B. All input pulses are supplied by generators having the following characteristics: PRR \leq 100 kHz, $Z_O = 50 \Omega$, $t_f \geq$ 10 ns, $t_f \geq$ 10 ns. Figure 3. Propagation Delay Times, tr and tf ## **MECHANICAL INFORMATION** # DL (R-PDSO-G**) ## PLASTIC SMALL-OUTLINE PACKAGE ## **48 PIN SHOWN** NOTES: A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). - D. Falls within JEDEC MO-118 #### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright © 2002, Texas Instruments Incorporated