# 積層ハイロスインダクタ MULTILAYER FERRITE CHIP BEADS **BK SERIES**

OPERATING TEMP. -55~+125℃



\*BK0603, BK1005は除く \* Except for BK0603, BK1005

## 特長 FEATURES

- ・Ag内部導体を使用した磁気シールド構造により、発熱やクロストークが小 さい
- ・GND不要のため、パターン設計上の自由度が大きい ・ノイズ対策のため様々なバリエーションとインピーダンスをラインナップ HS:XL成分を抑え、(デジタル波形のオーバーシュート等)波形品位の低 下を抑制
- HM: 20MHz以上で急峻に増大するZ特性により、100MHz~300MHz帯 の輻射ノイズに適用(映像信号廻りに効果的)
- LL :Zの立ち上がりを高周波域とした設計により、200MHz~500MHzの \_\_\_\_\_\_ ノイズ対策に適用
- LM:200MHz近傍のノイズ対策に最適。より高い減衰効果
- HW:シリーズ中最もXL成分を抑えた設計により、波形品位低下の抑止 と共に高周波域での減衰をも確保
- TS: 直流抵抗低減化設計により、LSI電源廻りでのノイズ対策に最適

## 用途 APPLICATIONS

- ・パソコン、デジタルスチルカメラ等の情報機器・デジタル機器のクロック ライン、一般信号ラインに於ける高調波ノイズ対策 ・パソコン、プリンタ等のインターフェイス、ハーネス接続部での輻射ノイ
- ズ及びイミュニティ対策 ・ビデオ、ムービー等のAV機器に於けるノイズ対策
- ・PDC、PHS等の移動体通信機器の回路間の干渉防止
- ・磁気シールド構造による小型化メリットを生かし、LSI電源供給ラインのノ イズ防止フィルタ用途に最適(TS)

- Internal silver printed layer creates a closed circuit which acts as a magnetic shield minimizing heat generation and crosstalk. • No need for grounding provides greater circuit design flexibility.
- · Several material types and a broad range of impedance values provide noise countermeasures for various applications.
- HS : Suppresses the XL component. Helps stop the reduction of the wave- form integrity(digital wave-form overshoot, etc.)
- HM Increases the Z characteristic sharply above 20MHz and is applicable for radiated noise in the 100MHz~300MHz range. Especially effective on video signal lines.
- LL : Designed as a noise countermeasure for the 200MHz~500MHz range where the rise of the Z component is in the high frequency area.
- LM : Intended for noise suppression around 200MHz. Effectively increases attenuation
- HW : The best material in the BK Series to suppress the XL component and stop the reduction of the wave-form integrity while maintaining attenuation in the high frequency area.
- TS Reduced DC resistance version for noise countermeasures around LSI power supplies.
- · High frequency noise countermeasure in personal computers, digital cameras and other information system products. For use on digital product clock lines and general signal lines.
- · Radiated noise suppression in computer or printer interfaces and harness connectors.
- · Noise suppression in video and other AV products.
- · Prevents interference between circuits in cellular phones(PHS, PDC, etc.)  $\boldsymbol{\cdot}$  Due to the closed internal circuit which acts as a magnetic shield, the TS material is extremely effective as a noise filter on LSI power supply lines where downsizing of components is needed.

## 形名表記法 ORDERING CODE

| 1                                                                                                           | 3                                                                      | 4                                                                                     | 5                                                                | 7                                           |
|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------|
| 形式                                                                                                          | 材質記号                                                                   | 公称インピーダンス [Q]                                                                         | 特性                                                               | 当社管理記号                                      |
| BK 積層ハイロスインダクタ                                                                                              | HW                                                                     | 例                                                                                     | 標準品                                                              | 標準品                                         |
| 2<br>形状寸法(L×W)(mm)<br>0603(0201) 0.6×0.3<br>1005(0402) 1.0×0.5<br>1608(0603) 1.6×0.8<br>2105(0905) 2.0×1.05 | HS<br>HM<br>LM<br>ビL<br>TS                                             | 150         15           101         100           102         1000                   | 6<br>包装<br>T リールテービング                                            | ∆= スペース                                     |
| B K 1                                                                                                       | 6 0 8<br>2<br>3                                                        | H S                                                                                   | 1 2 1<br><u>4</u>                                                | - T O                                       |
| Туре                                                                                                        | Material                                                               | Impedance(Ω)                                                                          | Characteristics                                                  | Internal code                               |
| LK I Multilovor Lorrito Chip Desets                                                                         |                                                                        |                                                                                       |                                                                  |                                             |
|                                                                                                             | HW<br>HS<br>HM<br>Curves for material<br>LL<br>TS                      | example           150         15           101         100           102         1000 | Standard Products                                                | △     Standard Products       △=Blank Space |
| External Dimensions(LXW)(mm)                                                                                | HW<br>HS<br>HM<br>LM<br>LM<br>Curves for material<br>differences<br>TS | example           150         15           101         100           102         1000 | Standard Products                                                | △     Standard Products       △=Blank Space |
| External Dimensions(LXW)(mm)     0603(0201)     0.6×0.3                                                     | HW<br>HS<br>HM<br>LM<br>LL<br>TS                                       | example           150         15           101         100           102         1000 | Standard Products     Standard Products     T Tape & Reel        | △     Standard Products       △=Blank Space |
| 2 External Dimensions(LXW)(mm) 0603(0201) 0.6×0.3 1005(0402) 1.0×0.5                                        | HW<br>HS<br>HM<br>LM<br>LL<br>TS                                       | example           150         15           101         100           102         1000 | Standard Products      Standard Products      T      Tape & Reel | △     Standard Products       △=Blank Space |

# 外形寸法 EXTERNAL DIMENSIONS



| Туре   | L                           | W             | Т                 | е                   |  |  |
|--------|-----------------------------|---------------|-------------------|---------------------|--|--|
| BK0603 | $0.60 \pm 0.03$             | 0.30±0.03     | $0.30 \pm 0.03$   | 0.15±0.05           |  |  |
| (0201) | (0.024±0.001)               | (0.012±0.001) | (0.012±0.001)     | $(0.006 \pm 0.002)$ |  |  |
| BK1005 | 1.00±0.05                   | 0.50±0.05     | 0.50±0.05         | 0.25±0.10           |  |  |
| (0402) | (0.039±0.002)               | (0.020±0.002) | $(0.020\pm0.002)$ | $(0.010\pm0.004)$   |  |  |
| BK1608 | 1.6±0.15                    | 0.8±0.15      | 0.8±0.15          | 0.3±0.2             |  |  |
| (0603) | (0.063±0.006)               | (0.031±0.006) | (0.031±0.006)     | (0.012±0.008)       |  |  |
|        | 2.0 +0.3                    | 1.25±0.2      | 0.85±0.2          | 0.5±0.3             |  |  |
| BK2125 |                             |               | 1.25±0.2          |                     |  |  |
| (0805) | $(0.079^{+0.012}_{-0.004})$ | (0.049±0.008) | (0.033±0.008)     | $(0.020\pm0.012)$   |  |  |
|        |                             |               | (0.049±0.008)     |                     |  |  |

Unit: mm(inch)





233



## BK0603

| 形名             | EHS<br>(Environm | ental インピーダンス | 測定周波数<br>Measuring | 直流抵抗<br>DC<br>resistance | 定格電流<br>Rated current | 厚み<br>Thickness |
|----------------|------------------|---------------|--------------------|--------------------------|-----------------------|-----------------|
| Ordering code  | Hazardo          | ous (Ω)       | frequency          | (Ω)                      | (mA)                  | (mm)            |
| g              | Substanc         | ces) ±25%     | (MHz)              | (max.)                   | (max.)                | (inch)          |
| BK 0603 HS 220 | RoHS             | 5 22          |                    | 0.075                    | 500                   |                 |
| BK 0603 HS 330 | RoHS             | 33            |                    | 0.075                    | 500                   |                 |
| BK 0603 HS 800 | RoHS             | 80            |                    | 0.40                     | 200                   |                 |
| BK 0603 HS 121 | RoHS             | 5 120         |                    | 0.50                     | 200                   |                 |
| BK 0603 HS 241 | RoHS             | 3 240         |                    | 0.80                     | 200                   |                 |
| BK 0603 HS 601 | RoHS             | 600           |                    | 1.50                     | 100                   |                 |
| BK 0603 HM 600 | RoHS             | 60            | 100                | 0.40                     | 200                   | $0.30 \pm 0.03$ |
| BK 0603 HM 121 | RoHS             | 5 120         | 100                | 0.50                     | 200                   | (0.012±0.001)   |
| BK 0603 HM 241 | RoHS             | 3 240         |                    | 0.80                     | 200                   |                 |
| BK 0603 HM 471 | RoHS             | \$ 470        |                    | 1.50                     | 100                   |                 |
| BK 0603 LL 100 | RoHS             | 5 10          |                    | 0.40                     | 200                   |                 |
| BK 0603 LL 220 | RoHS             | 3 22          |                    | 0.50                     | 200                   |                 |
| BK 0603 LL 330 | RoHS             | 33            |                    | 0.80                     | 150                   |                 |
| BK 0603 LL 470 | RoHS             | 6 47          |                    | 1.00                     | 150                   |                 |

## BK1005

| 形 名<br>Ordering code | EHS<br>(Environmental<br>Hazardous<br>Substances) | インピーダンス<br>Impedance<br>〔Ω〕<br>±25% | 測定周波数<br>Measuring<br>frequency<br>[MHz] | 直流抵抗<br>DC<br>resistance<br>〔Ω〕<br>(max.) | 定格電流<br>Rated current<br>[mA]<br>(max.) | 厚み<br>Thickness<br>(mm)<br>(inch) |
|----------------------|---------------------------------------------------|-------------------------------------|------------------------------------------|-------------------------------------------|-----------------------------------------|-----------------------------------|
| BK 1005 HW 680       | RoHS                                              | 68                                  |                                          | 0.17                                      | 500                                     |                                   |
| BK 1005 HW 121       | RoHS                                              | 120                                 |                                          | 0.24                                      | 450                                     |                                   |
| BK 1005 HW 241       | RoHS                                              | 240                                 |                                          | 0.31                                      | 400                                     |                                   |
| BK 1005 HW 431       | RoHS                                              | 430                                 |                                          | 0.50                                      | 350                                     |                                   |
| BK 1005 HW 601       | RoHS                                              | 600                                 |                                          | 0.60                                      | 300                                     |                                   |
| BK 1005 HS 100       | RoHS                                              | 10                                  |                                          | 0.05                                      | 1000                                    |                                   |
| BK 1005 HS 330       | RoHS                                              | 33                                  |                                          | 0.10                                      | 700                                     |                                   |
| BK 1005 HS 680       | RoHS                                              | 68                                  |                                          | 0.13                                      | 600                                     |                                   |
| BK 1005 HS 121       | RoHS                                              | 120                                 |                                          | 0.23                                      | 500                                     |                                   |
| BK 1005 HS 241       | RoHS                                              | 240                                 |                                          | 0.33                                      | 400                                     |                                   |
| BK 1005 HS 431       | RoHS                                              | 430                                 |                                          | 0.45                                      | 350                                     |                                   |
| BK 1005 HS 601       | RoHS                                              | 600                                 |                                          | 0.58                                      | 300                                     |                                   |
| BK 1005 HS 102       | RoHS                                              | 1000                                |                                          | 0.58                                      | 300                                     |                                   |
| BK 1005 HM 121       | RoHS                                              | 120                                 | 100                                      | 0.25                                      | 300                                     | $0.50 \pm 0.05$                   |
| BK 1005 HM 241       | RoHS                                              | 240                                 | 100                                      | 0.36                                      | 300                                     | $(0.020\pm0.002)$                 |
| BK 1005 HM 471       | RoHS                                              | 470                                 |                                          | 0.56                                      | 250                                     |                                   |
| BK 1005 HM 601       | RoHS                                              | 600                                 |                                          | 0.59                                      | 250                                     |                                   |
| BK 1005 HM 102       | RoHS                                              | 1000                                |                                          | 0.80                                      | 150                                     |                                   |
| BK 1005 LL 100       | RoHS                                              | 10                                  |                                          | 0.15                                      | 500                                     |                                   |
| BK 1005 LL 220       | RoHS                                              | 22                                  |                                          | 0.20                                      | 400                                     |                                   |
| BK 1005 LL 330       | RoHS                                              | 33                                  |                                          | 0.30                                      | 400                                     |                                   |
| BK 1005 LL 470       | RoHS                                              | 47                                  |                                          | 0.35                                      | 350                                     |                                   |
| BK 1005 LL 680       | RoHS                                              | 68                                  |                                          | 0.31                                      | 400                                     |                                   |
| BK 1005 LL 121       | RoHS                                              | 120                                 |                                          | 0.45                                      | 350                                     |                                   |
| BK 1005 LL 181       | RoHS                                              | 180                                 |                                          | 0.53                                      | 300                                     |                                   |
| BK 1005 LL 241       | RoHS                                              | 240                                 |                                          | 0.70                                      | 250                                     |                                   |
| BK 1005 LM 182       | RoHS                                              | 1800                                |                                          | 1.10                                      | 120                                     |                                   |

19 1 19 1 19 B 1 19

#### BK1608 —

| 11/ 夕          | EHS            | インピーダンス   | 測定周波数     | 直流抵抗       | 定格電流          | 厚み                |
|----------------|----------------|-----------|-----------|------------|---------------|-------------------|
| //2 12         | (Environmental | Impedance | Measuring | DC         | Rated current | Thickness         |
|                | Hazardous      | (Ω)       | frequency | resistance | (mA)          | (mm)              |
| Ordering code  | Substances)    | ±25%      | (MHz)     | (max.)     | (max.)        | (inch)            |
| BK 1608 HW 121 | RoHS           | 120       |           | 0.15       | 600           |                   |
| BK 1608 HW 241 | RoHS           | 240       |           | 0.25       | 450           |                   |
| BK 1608 HW 431 | RoHS           | 430       |           | 0.30       | 400           |                   |
| BK 1608 HW 601 | RoHS           | 600       |           | 0.40       | 300           |                   |
| BK 1608 HS 220 | RoHS           | 22        |           | 0.05       | 1500          |                   |
| BK 1608 HS 330 | RoHS           | 33        |           | 0.08       | 1200          |                   |
| BK 1608 HS 470 | RoHS           | 47        |           | 0.10       | 900           |                   |
| BK 1608 HS 600 | RoHS           | 60        |           | 0.10       | 800           |                   |
| BK 1608 HS 800 | RoHS           | 80        |           | 0.10       | 600           |                   |
| BK 1608 HS 121 | RoHS           | 120       |           | 0.18       | 500           |                   |
| BK 1608 HS 241 | RoHS           | 240       |           | 0.25       | 400           |                   |
| BK 1608 HS 601 | RoHS           | 600       |           | 0.45       | 350           |                   |
| BK 1608 HS 102 | RoHS           | 1000      |           | 0.60       | 300           |                   |
| BK 1608 HM 121 | RoHS           | 120       |           | 0.20       | 350           |                   |
| BK 1608 HM 241 | RoHS           | 240       |           | 0.35       | 300           |                   |
| BK 1608 HM 471 | RoHS           | 470       |           | 0.45       | 250           |                   |
| BK 1608 HM 601 | RoHS           | 600       |           | 0.60       | 250           | 0 80+0 15         |
| BK 1608 HM 102 | RoHS           | 1000      | 100       | 0.70       | 200           | $(0.031\pm0.006)$ |
| BK 1608 LL 300 | RoHS           | 30        |           | 0.20       | 500           | (0.001_0.000)     |
| BK 1608 LL 470 | RoHS           | 47        |           | 0.30       | 400           |                   |
| BK 1608 LL 560 | RoHS           | 56        |           | 0.30       | 400           |                   |
| BK 1608 LL 680 | RoHS           | 68        |           | 0.35       | 300           |                   |
| BK 1608 LL 121 | RoHS           | 120       |           | 0.50       | 300           |                   |
| BK 1608 LL 181 | RoHS           | 180       |           | 0.65       | 250           |                   |
| BK 1608 LL 241 | RoHS           | 240       |           | 0.80       | 250           |                   |
| BK 1608 LL 331 | RoHS           | 330       |           | 0.85       | 200           |                   |
| BK 1608 LL 431 | RoHS           | 430       |           | 0.85       | 200           |                   |
| BK 1608 LL 511 | RoHS           | 510       |           | 0.90       | 200           |                   |
| BK 1608 LL 681 | RoHS           | 680       |           | 1.00       | 150           |                   |
| BK 1608 LM 751 | RoHS           | 750       |           | 0.60       | 300           |                   |
| BK 1608 LM 152 | RoHS           | 1500      |           | 0.75       | 250           |                   |
| BK 1608 LM 182 | RoHS           | 1800      |           | 0.85       | 200           |                   |
| BK 1608 LM 252 | RoHS           | 2500      |           | 1.10       | 200           |                   |
| BK 1608 TS 431 | RoHS           | 430       |           | 0.25±30%   | 400           |                   |
| BK 1608 TS 601 | RoHS           | 600       |           | 0.27±30%   | 350           |                   |
| BK 1608 TS 102 | RoHS           | 1000      |           | 0.30±30%   | 300           |                   |

## BK2125

\_

| 形 名<br>Ordering code | EHS<br>(Environmental<br>Hazardous<br>Substances) | インピーダンス<br>Impedance<br>〔Ω〕<br>±25% | 測定周波数<br>Measuring<br>frequency<br>(MHz) | 直流抵抗<br>DC<br>resistance<br>〔Ω〕<br>(max ) | 定格電流<br>Rated current<br>(mA)<br>(max.) | 厚み<br>Thickness<br>(mm)<br>(inch) |
|----------------------|---------------------------------------------------|-------------------------------------|------------------------------------------|-------------------------------------------|-----------------------------------------|-----------------------------------|
| BK 2125 HS 150       | RoHS                                              | 15                                  |                                          | 0.05                                      | 1200                                    | (                                 |
| BK 2125 HS 220       | RoHS                                              | 22                                  |                                          | 0.05                                      | 1200                                    |                                   |
| BK 2125 HS 330       | RoHS                                              | 33                                  |                                          | 0.05                                      | 1200                                    |                                   |
| BK 2125 HS 470       | RoHS                                              | 47                                  |                                          | 0.05                                      | 1000                                    |                                   |
| BK 2125 HS 750       | RoHS                                              | 75                                  |                                          | 0.10                                      | 1000                                    |                                   |
| BK 2125 HS 101       | RoHS                                              | 100                                 |                                          | 0.10                                      | 900                                     |                                   |
| BK 2125 HS 121       | RoHS                                              | 120                                 |                                          | 0.15                                      | 800                                     |                                   |
| BK 2125 HS 241       | RoHS                                              | 240                                 |                                          | 0.20                                      | 600                                     |                                   |
| BK 2125 HS 431       | RoHS                                              | 430                                 |                                          | 0.25                                      | 500                                     |                                   |
| BK 2125 HS 601       | RoHS                                              | 600                                 |                                          | 0.30                                      | 500                                     |                                   |
| BK 2125 HS 102       | RoHS                                              | 1000                                | 100                                      | 0.40                                      | 300                                     | 0.85±0.2                          |
| BK 2125 HM 121       | RoHS                                              | 120                                 |                                          | 0.15                                      | 800                                     | (0.033±0.008)                     |
| BK 2125 HM 241       | RoHS                                              | 240                                 |                                          | 0.20                                      | 600                                     |                                   |
| BK 2125 HM 471       | RoHS                                              | 470                                 |                                          | 0.25                                      | 500                                     |                                   |
| BK 2125 HM 601       | RoHS                                              | 600                                 |                                          | 0.25                                      | 500                                     |                                   |
| BK 2125 HM 102       | RoHS                                              | 1000                                |                                          | 0.35                                      | 400                                     |                                   |
| BK 2125 LL 560       | RoHS                                              | 56                                  |                                          | 0.20                                      | 600                                     |                                   |
| BK 2125 LL 121       | RoHS                                              | 120                                 |                                          | 0.30                                      | 400                                     |                                   |
| BK 2125 LL 241       | RoHS                                              | 240                                 |                                          | 0.35                                      | 300                                     |                                   |
| BK 2125 LM 751       | RoHS                                              | 750                                 |                                          | 0.30                                      | 400                                     |                                   |
| BK 2125 LM 152       | RoHS                                              | 1500                                |                                          | 0.35                                      | 400                                     |                                   |
| BK 2125 LM 182       | <br>RoHS                                          | 1800                                |                                          | 0.45                                      | 300                                     | 1.25±0.2                          |
| BK 2125 LM 252       | RoHS                                              | 2500                                |                                          | 0.75                                      | 200                                     | (0.049±0.008)                     |



2



-



TAIYO YUDEN 2006

Frequency [MHz]

























































-



























#### ①最小受注単位数 Minimum Quantity ■テーピング梱包 Tape & Reel Packaging

. 2

|                 | 製品厚み      | 標準数量 [pcs] |               |  |  |  |  |  |
|-----------------|-----------|------------|---------------|--|--|--|--|--|
| 形 式             | Thickness | Standard   | d Quantity    |  |  |  |  |  |
| Туре            | [mm]      | 紙テープ       | エンボステープ       |  |  |  |  |  |
|                 | (inch)    | Paper Tape | Embossed Tape |  |  |  |  |  |
|                 | 0.8       | 4000       |               |  |  |  |  |  |
| CK1000(0003)    | (0.031)   | 4000       | _             |  |  |  |  |  |
|                 | 0.85      | 4000       |               |  |  |  |  |  |
|                 | (0.033)   | 4000       | _             |  |  |  |  |  |
| GK2125(0605)    | 1.25      |            | 2000          |  |  |  |  |  |
|                 | (0.049)   |            | 2000          |  |  |  |  |  |
| CKP2216/1206)   | 0.8       |            | 4000          |  |  |  |  |  |
| GRF 32 T0(1200) | (0.031)   |            | 4000          |  |  |  |  |  |
| LK1005(0402)    | 0.5       | 10000      |               |  |  |  |  |  |
| EI(1000(0402)   | (0.020)   | 10000      |               |  |  |  |  |  |
| LK1608(0603)    | 0.8       | 4000       | _             |  |  |  |  |  |
| ER1000(0000)    | (0.031)   | 4000       | _             |  |  |  |  |  |
|                 | 0.85      | 4000       | _             |  |  |  |  |  |
| LK2125(0805)    | (0.033)   | +000       |               |  |  |  |  |  |
|                 | 1.25      | _          | 2000          |  |  |  |  |  |
|                 | (0.049)   |            | 2000          |  |  |  |  |  |
| HKQ0603(0201)   | 0.3       | 15000      | _             |  |  |  |  |  |
|                 | (0.012)   | 10000      |               |  |  |  |  |  |
| HK0603(0201)    | 0.3       | 15000      | _             |  |  |  |  |  |
|                 | (0.012)   | 10000      |               |  |  |  |  |  |
| HK1005(0402)    | 0.5       | 10000      | _             |  |  |  |  |  |
|                 | (0.020)   | 10000      |               |  |  |  |  |  |
| HK1608(0603)    | 0.8       | 4000       | _             |  |  |  |  |  |
|                 | (0.031)   |            |               |  |  |  |  |  |
|                 | 0.85      | _          | 4000          |  |  |  |  |  |
| HK2125(0805)    | (0.033)   |            |               |  |  |  |  |  |
|                 | 1.0       | _          | 3000          |  |  |  |  |  |
|                 | (0.039)   |            |               |  |  |  |  |  |
| BK0603(0201)    | 0.3       | 15000      | _             |  |  |  |  |  |
|                 | (0.012)   |            |               |  |  |  |  |  |
| BK1005(0402)    | 0.5       | 10000      | _             |  |  |  |  |  |
|                 | (0.020)   |            |               |  |  |  |  |  |
| BK1608(0603)    | 0.8       | 4000       | _             |  |  |  |  |  |
|                 | (0.031)   |            |               |  |  |  |  |  |
|                 | 0.85      | 4000       | _             |  |  |  |  |  |
| BK2125(0805)    | (0.033)   |            |               |  |  |  |  |  |
|                 | 1.25      | —          | 2000          |  |  |  |  |  |
|                 | (0.049)   |            |               |  |  |  |  |  |
| BK2010(0804)    | 0.45      | 4000       | _             |  |  |  |  |  |
|                 | (0.018)   |            |               |  |  |  |  |  |
| BK3216(1206)    |           | —          | 4000          |  |  |  |  |  |
|                 | (0.031)   |            |               |  |  |  |  |  |
| BKP1005(0402)   |           | 10000      | -             |  |  |  |  |  |
|                 | 0.020)    |            |               |  |  |  |  |  |
| BKP1608(0603)   | 0.0       | 4000       | -             |  |  |  |  |  |
|                 | 0.031)    |            |               |  |  |  |  |  |
| BKP2125(0805)   | (0.03)    | 4000       | -             |  |  |  |  |  |
|                 | (0.033)   |            |               |  |  |  |  |  |

②テーピング材質 Taping material



1.45

-

#### ③テーピング寸法 Taping Dimensions



| <b>玉 十</b>     | 製品厚み      | チップ                 | 挿入部                 | 挿入ピッチ           | テープ厚み          |  |
|----------------|-----------|---------------------|---------------------|-----------------|----------------|--|
|                | Thickness | Chip                | cavity              | Insertion Pitch | Tape Thickness |  |
| туре           | (mm)      | A                   | В                   | F               | Т              |  |
|                | 0.8       | 1.0±0.2             | 1.8±0.2             | 4.0±0.1         | 1.1max         |  |
| CK1000(0003)   | (0.031)   | $(0.039 \pm 0.008)$ | $(0.071 \pm 0.008)$ | (0.157±0.004)   | (0.043max)     |  |
| CK2125(0905)   | 0.85      | 1.5±0.2             | 2.3±0.2             | 4.0±0.1         | 1.1max         |  |
| GR2125(0605)   | (0.033)   | (0.059±0.008)       | (0.091±0.008)       | (0.157±0.004)   | (0.043max)     |  |
| LK1005(0402)   | 0.5       | 0.65±0.1            | 1.15±0.1            | 2.0±0.05        | 0.8max         |  |
| LK1003(0402)   | (0.020)   | (0.026±0.004)       | $(0.045 \pm 0.004)$ | (0.079±0.002)   | (0.031max)     |  |
| LK1608(0603)   | 0.8       | 1.0±0.2             | 1.8±0.2             | 4.0±0.1         | 1.1max         |  |
| EK1000(0003)   | (0.031)   | (0.039±0.008)       | $(0.071 \pm 0.008)$ | (0.157±0.004)   | (0.043max)     |  |
|                | 0.85      | 1.5±0.2             | 2.3±0.2             | 4.0±0.1         | 1.1max         |  |
| LK2125(0005)   | (0.033)   | (0.059±0.008)       | (0.091±0.008)       | (0.157±0.004)   | (0.043max)     |  |
|                | 0.3       | 0.40±0.06           | 0.70±0.06           | 2.0±0.05        | 0.45max        |  |
| 11(Q0003(0201) | (0.012)   | (0.016±0.002)       | $(0.028 \pm 0.002)$ | (0.079±0.002)   | (0.018max)     |  |
| HK0603(0201)   | 0.3       | 0.40±0.06           | 0.70±0.06           | 2.0±0.05        | 0.45max        |  |
| 11(0003(0201)  | (0.012)   | (0.016±0.002)       | $(0.028 \pm 0.002)$ | (0.079±0.002)   | (0.018max)     |  |
| HK1005(0402)   | 0.5       | 0.65±0.1            | 1.15±0.1            | 2.0±0.05        | 0.8max         |  |
| 11(1003(0402)  | (0.020)   | (0.026±0.004)       | $(0.045 \pm 0.004)$ | (0.079±0.002)   | (0.031max)     |  |
| HK1608(0603)   | 0.8       | 1.0±0.2             | 1.8±0.2             | 4.0±0.1         | 1.1max         |  |
| 11(1008(0003)  | (0.031)   | (0.039±0.008)       | (0.071±0.008)       | (0.157±0.004)   | (0.043max)     |  |
| BK0603(0201)   | 0.3       | 0.40±0.06           | 0.70±0.06           | 2.0±0.05        | 0.45max        |  |
| DI(0003(0201)  | (0.012)   | (0.016±0.002)       | $(0.028 \pm 0.002)$ | (0.079±0.002)   | (0.018max)     |  |
| BK1005(0402)   | 0.5       | 0.65±0.1            | 1.15±0.1            | 2.0±0.05        | 0.8max         |  |
| DI(1003(0402)  | (0.020)   | (0.026±0.004)       | $(0.045 \pm 0.004)$ | (0.079±0.002)   | (0.031max)     |  |
| BK1608(0603)   | 0.8       | 1.0±0.2             | 1.8±0.2             | 4.0±0.1         | 1.1max         |  |
| DI(1000(0003)  | (0.031)   | $(0.039 \pm 0.008)$ | $(0.071 \pm 0.008)$ | (0.157±0.004)   | (0.043max)     |  |
| BK2125(0805)   | 0.85      | 1.5±0.2             | 2.3±0.2             | 4.0±0.1         | 1.1max         |  |
| DIV2123(0003)  | (0.033)   | (0.059±0.008)       | (0.091±0.008)       | (0.157±0.004)   | (0.043max)     |  |
| BK2010(0804)   | 0.45      | 1.2±0.1             | 2.17±0.1            | 4.0±0.1         | 0.80max        |  |
| 512010(0001)   | (0.018)   | (0.047±0.004)       | (0.085±0.004)       | (0.157±0.004)   | (0.031max)     |  |
| BKD1005(0402)  | 0.5       | 0.65±0.1            | 1.15±0.1            | 2.0±0.05        | 0.8max         |  |
| DIT 1003(0402) | (0.020)   | (0.026±0.004)       | $(0.045 \pm 0.004)$ | (0.079±0.002)   | (0.031max)     |  |
| BKP1608(0603)  | 0.8       | 1.0±0.2             | 1.8±0.2             | 4.0±0.1         | 1.1max         |  |
|                | (0.031)   | (0.039±0.008)       | (0.071±0.008)       | (0.157±0.004)   | (0.043max)     |  |
| BKP2125(0805)  | 0.85      | 1.5±0.2             | 2.3±0.2             | 4.0±0.1         | 1.1max         |  |
| 511 2120(0000) | (0.033)   | (0.059±0.008)       | $(0.091 \pm 0.008)$ | (0.157±0.004)   | (0.043max)     |  |

・エンボステープ (8mm幅) Embossed Tape (0.312 inches wide)



| ま +           | 製品厚み      | チップ           | 挿入部           | 挿入ピッチ           | テープ厚    | レンジェン ひんしょう しょうしん しょうしょう しょうしょう しょうしょう しょうしょう しょうしん しょうしょう しょう |
|---------------|-----------|---------------|---------------|-----------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | Thickness | Chip          | cavity        | Insertion Pitch | Tape Th | nickness                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| туре          | (mm)      | А             | В             | F               | К       | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CK2125(0905)  | 1.25      | 1.5±0.2       | 2.3±0.2       | 4.0±0.1         | 2.0     | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| GK2123(0003)  | (0.049)   | (0.059±0.008) | (0.091±0.008) | (0.157±0.004)   | (0.079) | (0.012)                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               | 0.8       | 1.9±0.1       | 3.5±0.1       | 4.0±0.1         | 1.4     | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| GKF3210(1200) | (0.031)   | (0.075±0.004) | (0.138±0.004) | (0.157±0.004)   | (0.055) | (0.012)                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               | 1.25      | 1.5±0.2       | 2.3±0.2       | 4.0±0.1         | 2.0     | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| LK2123(0805)  | (0.049)   | (0.059±0.008) | (0.091±0.008) | (0.157±0.004)   | (0.079) | (0.012)                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               | 0.85      |               |               |                 | 1.5     |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|               | (0.033)   | 1.5±0.2       | 2.3±0.2       | 4.0±0.1         | (0.059) | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| HK2125(0605)  | 1.0       | (0.059±0.008) | (0.091±0.008) | (0.157±0.004)   | 2.0     | (0.012)                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               | (0.039)   |               |               |                 | (0.079) |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| BK0105(0005)  | 1.25      | 1.5±0.2       | 2.3±0.2       | 4.0±0.1         | 2.0     | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| BK2123(0003)  | (0.049)   | (0.059±0.008) | (0.091±0.008) | (0.157±0.004)   | (0.079) | (0.012)                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BK2016(1006)  | 0.8       | 1.9±0.1       | 3.5±0.1       | 4.0±0.1         | 1.4     | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DRJ210(1206)  | (0.031)   | (0.075±0.004) | (0.138±0.004) | (0.157±0.004)   | (0.055) | (0.012)                                                                                                                                                                                                                                                                                                                                                                                                                                           |

#### ④リーダー部・空部 LEADER AND BLANK PORTION



⑤リール寸法 Reel Size



⑥トップテープ強度 Top tape strength

トップテープの剥離力は、下図矢印方向にて0.1 $\sim$ 0.7Nとなります。 The top tape requires a peel-off force of 0.1 $\sim$ 0.7N in the direction of the arrow as illustrated below.



|                  | Specified Value |        |        |           |        |        |         |         |         |        |                 |                |        |        |         |           |             |           |           |           |                                                                               |
|------------------|-----------------|--------|--------|-----------|--------|--------|---------|---------|---------|--------|-----------------|----------------|--------|--------|---------|-----------|-------------|-----------|-----------|-----------|-------------------------------------------------------------------------------|
| Item             |                 |        |        |           | AR     | RAY    |         |         |         |        |                 |                |        |        |         |           |             |           |           |           | Test Methods and Remarks                                                      |
|                  | BK0603          | BK1005 | BK1608 | BK2125    | BK2010 | BK3216 | BKP1005 | BKP1608 | BKP2125 | CK1608 | CK2125          | CKP3216        | LK1005 | LK1608 | LK2125  | HKQ0603   | HK0603      | HK1005    | HK1608    | HK2125    |                                                                               |
| 1.Operating      |                 |        | -55~   | <br>+125℃ |        |        | -       | 55~+8   | 5°C     |        |                 | -40~           | +85°C  |        |         | -!        | <br>55~+12! | 1<br>5°C  | -40~      | +85℃      |                                                                               |
| Temperature      |                 |        |        |           |        |        |         |         |         |        |                 |                |        |        |         |           |             |           |           |           |                                                                               |
| Range            |                 |        |        |           |        |        |         |         |         |        |                 |                |        |        |         |           |             |           |           |           |                                                                               |
| 2.Storage Tem-   |                 |        | -55~   | +125℃     |        |        | -       | 55~+8   | 5°C     |        |                 | -40~           | .+85℃  |        |         | -         | 55~+128     | 5°C       | -40~      | +85℃      |                                                                               |
| 3 Bated Current  | 100~            | 150~   | 150~   | 200~      | 100mA  | 100~   | 1.04    | 1.0~    | 2.0-    | 40-    | 60-             | 0.7-           | 10-    | 1      | 5-      | 150-      | 40-         | 110-      | 150-      | 300mA     |                                                                               |
| officied outfold | 500mA           | 1000mA | 1500mA | 1200mA    | DC     | 200mA  | DC      | 3.0A    | 4.0A    | 100mA  | 500mA           | 1.1A           | 25mA   | 50mA   | 300mA   | 400mA     | 250mA       | 300mA     | 300mA     | DC        |                                                                               |
|                  | DC              | DC     | DC     | DC        |        | DC     |         | DC      | DC      | DC     | DC              | DC             | DC     | DC     | DC      | DC        | DC          | DC        | DC        |           |                                                                               |
| 4.Impedance      | 10~             | 10~    | 22~    | 15~       | 5~     | 68~    | 120Ω    | 33~     | 33~     |        |                 |                |        |        |         |           |             |           |           |           | BK0603 Series:                                                                |
|                  | 600Ω            | 1000Ω  | 2500Ω  | 2500Ω     | 600Ω   | 1000Ω  | ±25%    | 390Ω    | 220Ω    |        |                 |                |        |        |         |           |             |           |           |           | Measuring frequency: 100±1MHz                                                 |
|                  | ±25%            | ±25%   | ±25%   | ±25%      | ±25%   | ±25%   |         | ±25%    | ±25%    |        |                 |                |        |        |         |           |             |           |           |           | Measuring equipment: HP4291A<br>Measuring iig: 16193A                         |
|                  |                 |        |        |           |        |        |         |         |         |        |                 |                |        |        |         |           |             |           |           |           | indudining jig. To tool t                                                     |
|                  |                 |        |        |           |        |        |         |         |         |        |                 |                |        |        |         |           |             |           |           |           | BK1005 Series:                                                                |
|                  |                 |        |        |           |        |        |         |         |         |        |                 |                |        |        |         |           |             |           |           |           | BKP1005 Series:                                                               |
|                  |                 |        |        |           |        |        |         |         |         |        |                 |                |        |        |         |           |             |           |           |           | Measuring frequency: 100±1MHz                                                 |
|                  |                 |        |        |           |        |        |         |         |         |        |                 |                |        |        |         |           |             |           |           |           | Measuring equipment: HP4291A<br>Measuring iig: 16192A, 16193A                 |
|                  |                 |        |        |           |        |        |         |         |         |        |                 |                |        |        |         |           |             |           |           |           |                                                                               |
|                  |                 |        |        |           |        |        |         |         |         |        |                 |                |        |        |         |           |             |           |           |           | BK1608, 2125 Series:                                                          |
|                  |                 |        |        |           |        |        |         |         |         |        |                 |                |        |        |         |           |             |           |           |           | BKP1608, 2125 Series:                                                         |
|                  |                 |        |        |           |        |        |         |         |         |        |                 |                |        |        |         |           |             |           |           |           | Measuring frequency: 100±1MHz                                                 |
|                  |                 |        |        |           |        |        |         |         |         |        |                 |                |        |        |         |           |             |           |           |           | Measuring equipment: HP4291A, HP4195A<br>Measuring iig: 16092A or 16192A (HW) |
|                  |                 |        |        |           |        |        |         |         |         |        |                 |                |        |        |         |           |             |           |           |           |                                                                               |
|                  |                 |        |        |           |        |        |         |         |         |        |                 |                |        |        |         |           |             |           |           |           | BK2010, 3216 Series:                                                          |
|                  |                 |        |        |           |        |        |         |         |         |        |                 |                |        |        |         |           |             |           |           |           | Measuring frequency: 100±1MHz                                                 |
|                  |                 |        |        |           |        |        |         |         |         |        |                 |                |        |        |         |           |             |           |           |           | Measuring equipment: HP4291A, HP4195A                                         |
| 5 Inductance     |                 |        |        |           |        |        |         |         |         | 22~    | 0.1~            | 1.0~           | 0.12~  | 0.047~ | 0.047~  | 1.0~5.6nH | 1.0~6.2nH   | 1.0~6.2nH | 1.0~5.6nH | 1.0~5.6nH | Measuring jig: 16192A                                                         |
| o.mudotanee      |                 |        |        |           |        |        |         |         |         | 10.0µH | 10.0 <i>µ</i> H | 4.7 <i>µ</i> H | 2.2µH  | 33.0µH | 33.0µH  | : ±0.3nH  | :±0.3nH     | : ±0.3nH  | : ±0.3nH  | : ±0.3nH  | Measuring frequency: 2 to 4MHz (CK1608)                                       |
|                  |                 |        |        |           |        |        |         |         |         | :±20%  | :±20%           | :±20%          | :±10%  | :±20%  | :±20%   | 6.8~10nH  | 6.8~100nH   | 6.8~270nH | 6.8~470nH | 6.8~470nH | Measuring frequency: 2 to 25MHz (CK2125)                                      |
|                  |                 |        |        |           |        |        |         |         |         |        |                 |                |        |        |         | :±5%      | :±5%        | :±5%      | ∶±5%      | :±5%      | Measuring frequency: 1MHz (CKP3216)                                           |
|                  |                 |        |        |           |        |        |         |         |         |        |                 | at DC          |        | 0.10~  | 0.10~   |           |             |           |           |           |                                                                               |
|                  |                 |        |        |           |        |        |         |         |         |        |                 | 200mA          |        | 12.0µH | 12.0µH  |           |             |           |           |           | LK Series:                                                                    |
|                  |                 |        |        |           |        |        |         |         |         |        |                 | 1.8µH          |        | 10/0   | • ±10/0 |           |             |           |           |           | Measuring frequency: 1 to 50MHz (LK1608)                                      |
|                  |                 |        |        |           |        |        |         |         |         |        |                 | min.           |        |        |         |           |             |           |           |           | Measuring frequency: 0.4 to 50MHz (LK2125)                                    |
|                  |                 |        |        |           |        |        |         |         |         |        |                 |                |        |        |         |           |             |           |           |           | Measuring equipment, jig:                                                     |
|                  |                 |        |        |           |        |        |         |         |         |        |                 |                |        |        |         |           |             |           |           |           | HP4194+16085B+16092A (or its equivalent)                                      |
|                  |                 |        |        |           |        |        |         |         |         |        |                 |                |        |        |         |           |             |           |           |           | HP4195+41951+16092A (or its equivalent)<br>HP4294+161924                      |
|                  |                 |        |        |           |        |        |         |         |         |        |                 |                |        |        |         |           |             |           |           |           | HP4291A+16193A (LK1005)                                                       |
|                  |                 |        |        |           |        |        |         |         |         |        |                 |                |        |        |         |           |             |           |           |           | HP4285A+42841A+42842C+                                                        |
|                  |                 |        |        |           |        |        |         |         |         |        |                 |                |        |        |         |           |             |           |           |           | 42851-61100 (CKP3216)                                                         |
|                  |                 |        |        |           |        |        |         |         |         |        |                 |                |        |        |         |           |             |           |           |           | Measuring current:                                                            |
|                  |                 |        |        |           |        |        |         |         |         |        |                 |                |        |        |         |           |             |           |           |           | 1mA rms (0.047 to 4.7 µH)                                                     |
|                  |                 |        |        |           |        |        |         |         |         |        |                 |                |        |        |         |           |             |           |           |           | v. miA mis (0.0 t0 00µ⊓)                                                      |
|                  |                 |        |        |           |        |        |         |         |         |        |                 |                |        |        |         |           |             |           |           |           | HK Series:                                                                    |
|                  |                 |        |        |           |        |        |         |         |         |        |                 |                |        |        |         |           |             |           |           |           | Measuring frequency:                                                          |
|                  |                 |        |        |           |        |        |         |         |         |        |                 |                |        |        |         |           |             |           |           |           | 100MHz (HKQ0603,HK0603, HK1005)                                               |
|                  |                 |        |        |           |        |        |         |         |         |        |                 |                |        |        |         |           |             |           |           |           | Measuring frequency:                                                          |
|                  |                 |        |        |           |        |        |         |         |         |        |                 |                |        |        |         |           |             |           |           |           | our rouming (HK roos, HK2125)                                                 |
|                  |                 |        |        |           |        |        |         |         |         |        |                 |                |        |        |         |           |             |           |           |           | HP4291A+16197A (HKQ0603,HK0603)                                               |
|                  |                 |        |        |           |        |        |         |         |         |        |                 |                |        |        |         |           |             |           |           |           | HP4291A+16193A (HK1005)                                                       |
|                  |                 |        |        |           |        |        |         |         |         |        |                 |                |        |        |         |           |             |           |           |           | HP4291A (or its equivalent)+16092A+                                           |
|                  |                 |        |        |           |        |        |         |         |         |        |                 |                |        |        |         |           |             |           |           |           | in-house made jig (HK1608, 2125)                                              |

\* Definition of rated current : In the CK and BK Series, the rated current is the value of current at which the temperature of the element is increased within 20°C.

In the BK Series P type and CK Series P type, the rated current is the value of current at which the temperature of the element is increased within 40°C. In the LK and HK Series, the rated current is either the DC value at which the internal L value is decreased within 5% with the application of DC bias, or the value of current at which the temperature of the element is increased within 20°C.



-3 -

- 5

:4

-

## Multilayer chip inductors and beads

|                                              | Specified Value         |                        |                        |                        |                        |                        |                |                          |                          |                          |                        |                        |                       |                       |                        |                        |                       |                       |                       |                       |                                                                                                                                                                                                                                                                                    |
|----------------------------------------------|-------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|----------------|--------------------------|--------------------------|--------------------------|------------------------|------------------------|-----------------------|-----------------------|------------------------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Item                                         |                         |                        |                        |                        | AR                     | RAY                    |                |                          |                          |                          |                        |                        |                       |                       |                        |                        |                       |                       |                       |                       | Test Methods and Remarks                                                                                                                                                                                                                                                           |
|                                              | BK0603                  | BK1005                 | BK1608                 | BK2125                 | BK2010                 | BK3216                 | BKP1005        | BKP1608                  | BKP2125                  | CK1608                   | CK2125                 | CKP3216                | LK1005                | LK1608                | LK2125                 | HKQ0603                | HK0603                | HK1005                | HK1608                | HK2125                |                                                                                                                                                                                                                                                                                    |
| 6.Q                                          |                         | 1                      |                        | I                      |                        |                        |                | 1                        | 1                        | 20<br>min.               | 15~20<br>min.          |                        | 10~20<br>min.         | 10~35<br>min.         | 15~50<br>min.          | 4~5<br>min.            | 4~5<br>min.           | 8min.                 | 8~12<br>min.          | 10~18<br>min.         | CK Series:<br>Measuring frequency: 2 to 4 MHz (CK1608)<br>Measuring frequency: 2 to 25 MHz (CK2125)                                                                                                                                                                                |
|                                              |                         |                        |                        |                        |                        |                        |                |                          |                          |                          |                        |                        |                       |                       |                        |                        |                       |                       |                       |                       | LK Series:<br>Measuring frequency: 10 to 25 MHz (LK1005)<br>Measuring frequency: 1 to 50 MHz (LK1608)<br>Measuring frequency: 0.4 to 50MHz (LK2125)<br>Measuring equipment, jig:<br>HP4194A + 16085B +16092A (or its equivalent)                                                   |
|                                              |                         |                        |                        |                        |                        |                        |                |                          |                          |                          |                        |                        |                       |                       |                        |                        |                       |                       |                       |                       | HP4195A + 41951 + 16092A (or its equivalent)<br>HP4294A + 16192A<br>HP4291A + 16193A (LK1005)<br>Measuring current:<br>1mA rms (0.047 to 4.7μH)<br>0.1mA rms (5.6 to 33μH)                                                                                                         |
|                                              |                         |                        |                        |                        |                        |                        |                |                          |                          |                          |                        |                        |                       |                       |                        |                        |                       |                       |                       |                       | HK Series:<br>Measuring frequency:<br>100MHz (HKQ0603,HK0603, HK1005)<br>Measuring frequency:<br>50 / 100MHz (HK1608, 2125)<br>Measuring equipment, jig:<br>HP4291A + 16197A(HKQ0603,HK0603)<br>HP4291A + 16193A(HK1005)<br>HP4195A + 16092A + in-house made jig<br>(HK1608, 2125) |
| 7.DC Resistance                              | 0.075~<br>1.50Ω<br>max. | 0.05~<br>0.80Ω<br>max. | 0.05~<br>1.10Ω<br>max. | 0.05~<br>0.75Ω<br>max. | 0.10~<br>0.90Ω<br>max. | 0.15~<br>0.80Ω<br>max. | 0.140Ω<br>max. | 0.025~<br>0.140Ω<br>max. | 0.020~<br>0.050Ω<br>max. | 0.30~<br>0.90Ω<br>(±30%) | 0.16~<br>0.65Ω<br>max. | 0.11~<br>0.20Ω<br>max. | 0.7~<br>1.70Ω<br>max. | 0.3~<br>2.95Ω<br>max. | 0.20~<br>1.25Ω<br>max. | 0.10~<br>0.83Ω<br>max. | 0.14~<br>4.0Ω<br>max. | 0.08~<br>4.8Ω<br>max. | 0.05~<br>2.6Ω<br>max. | 0.10~<br>1.5Ω<br>max. | Measuring equipment:<br>VOAC-7412 (made by Iwasaki Tsushinki)                                                                                                                                                                                                                      |
| 8.Self Resonance                             |                         |                        |                        |                        |                        |                        |                |                          |                          | 17~                      | 24~                    |                        | 40~                   | 9~                    | 13~                    | 4000~                  | 900~                  | 400~                  | 300~                  | 200~                  | VOAC-7512 (made by Iwasaki Tsushinki)<br>LK Series:                                                                                                                                                                                                                                |
| Frequency(SRF)                               |                         |                        |                        |                        |                        |                        |                |                          |                          | 33MHz<br>min.            | 235MHz<br>min.         |                        | 180MHz<br>min.        | 260MHz<br>min.        | 320MHz<br>min.         | 10000MHz<br>min.       | 10000MHz<br>min.      | 10000MHz<br>min.      | 10000MHz<br>min.      | 4000MHz<br>min.       | Measuring equipment: HP4195A<br>Measuring jig: 41951 + 16092A<br>(or its equivalent)<br>HK Series:<br>Measuring equipment: HP8719C<br>• HP8753D(HK2125)                                                                                                                            |
| 9.Temperature<br>Characteristic              |                         |                        |                        |                        |                        |                        |                |                          |                          |                          |                        |                        |                       | -                     | Inducta<br>Within:     | ance cha<br>±10%       | ange:                 |                       |                       |                       | HK Series:<br>Temperature range: -30 to +85°C<br>Reference temperature: +20°C                                                                                                                                                                                                      |
| 10. Resistance to<br>Flexure of<br>Substrate | No me                   | echanic                | al dama                | ige.                   |                        |                        |                |                          |                          |                          |                        |                        |                       |                       |                        |                        |                       |                       |                       |                       | Warp: 2mm<br>Testing board: glass epoxy-resin substrate<br>Thickness: 0.8mm                                                                                                                                                                                                        |
|                                              |                         |                        |                        |                        |                        |                        |                |                          |                          |                          |                        |                        |                       |                       |                        |                        |                       |                       |                       |                       | Board<br>R-230<br>Warp<br><u>Deviation ± (Unit: mm]</u>                                                                                                                                                                                                                            |

2/4

5. 6

· · · · · · ·

-3 -

- -

:5

-

5 FERRITE PRODUCTS

2.19

420

#### Multilayer chip inductors and beads

|                  | Specified Value                                                                  |                                                          |         |          |        |         |          |          |          |                  |            |                                             |                                             |                         |                             |                                      |          |                    |               |                                                          |
|------------------|----------------------------------------------------------------------------------|----------------------------------------------------------|---------|----------|--------|---------|----------|----------|----------|------------------|------------|---------------------------------------------|---------------------------------------------|-------------------------|-----------------------------|--------------------------------------|----------|--------------------|---------------|----------------------------------------------------------|
| Item             | BK0603                                                                           | BK1005                                                   | BK1608  | BK2125   | AR     | RAY     | BKP1005  | BKP1608  | BKP2125  | CK1608           | CK2125     | CKP3216                                     | LK1005                                      | I K1608                 | I K2125                     | HKQ0603                              | HK0603   | HK1005             | HK1608 HK2125 | Test Methods and Remarks                                 |
|                  | 5.0000                                                                           | 5111000                                                  |         | 5112120  | BK2010 | BK3216  | 514 1000 | 514 1000 | 5.0 2120 | 0111000          | 0112120    | 011 0210                                    |                                             |                         |                             |                                      |          |                    |               |                                                          |
| 11.Solderability | At leas                                                                          | st 75%                                                   | of term | inal ele | ctrode | is cove | red by r | new sole | der.     | At lea           | st 75%     | of tern                                     | ninal el                                    | ectrode                 | is cove                     | ered by                              | new so   | lder.              |               | Solder temperature: 230±5°C                              |
|                  |                                                                                  |                                                          |         |          |        |         |          |          |          |                  |            |                                             |                                             |                         |                             |                                      |          | Duration: 4±1 sec. |               |                                                          |
|                  |                                                                                  |                                                          |         |          |        |         |          |          |          |                  |            |                                             |                                             |                         |                             |                                      |          |                    |               |                                                          |
| 12.Resistance to | Appearance: No significant abnormality No mechanical No mechanical No mechanical |                                                          |         |          |        |         |          |          |          |                  |            |                                             |                                             |                         | Solder temperature: 260±5°C |                                      |          |                    |               |                                                          |
| Soldering        | Impeo                                                                            | Impedance change: Within±30% damage. damage. damage.     |         |          |        |         |          |          |          |                  |            |                                             |                                             |                         |                             | Duration: 10±0.5 sec.                |          |                    |               |                                                          |
|                  |                                                                                  | Remaining terminal Remaining terminal Remaining terminal |         |          |        |         |          |          |          |                  |            |                                             |                                             |                         |                             | Preheating temperature: 150 to 180°C |          |                    |               |                                                          |
|                  | electrode: 70% min. electrode: 70% min.                                          |                                                          |         |          |        |         |          |          |          |                  |            |                                             |                                             | Preheating time: 3 min. |                             |                                      |          |                    |               |                                                          |
|                  | Inductance change Inductance change Inductance change:                           |                                                          |         |          |        |         |          |          |          |                  |            |                                             | Flux: Immersion into methanol solution with |                         |                             |                                      |          |                    |               |                                                          |
|                  | R10~4R7: 47N~4R7: Within±5%                                                      |                                                          |         |          |        |         |          |          |          |                  |            |                                             | colophony for 3 to 5 sec.                   |                         |                             |                                      |          |                    |               |                                                          |
|                  |                                                                                  |                                                          |         |          |        |         |          |          |          | Within           | ±10%       |                                             | Within                                      | ±10%                    |                             |                                      |          |                    |               | Recovery: 2 to 3 hrs of recovery under the stan-         |
|                  |                                                                                  |                                                          |         |          |        |         |          |          |          | 6R8~1            | 00:        |                                             | 5R6~:                                       | 330:                    |                             |                                      |          |                    |               | dard condition after the test. (See Note 1)              |
|                  |                                                                                  |                                                          |         |          |        |         |          |          |          | Within:          | Within±15% |                                             | Within                                      | ±15%                    |                             |                                      |          |                    |               |                                                          |
|                  |                                                                                  |                                                          |         |          |        |         |          |          |          | CKP32            | 16:        |                                             |                                             |                         |                             |                                      |          |                    |               |                                                          |
|                  |                                                                                  |                                                          |         |          |        |         |          |          |          | Within:          | ±30%       |                                             |                                             |                         |                             |                                      |          |                    |               |                                                          |
| 13.Thermal Shock | Appea                                                                            | arance:                                                  | No sigr | nificant | abnorm | ality   |          |          |          | No               |            | No                                          | No me                                       | chanica                 | al                          | No me                                | chanica  | al dama            | ige.          | Conditions for 1 cycle                                   |
|                  | Impec                                                                            | lance c                                                  | hange:  | Within : | ±30%   |         |          |          |          | mecha            | nical      | mechanical<br>damane                        | damag                                       | e.                      |                             | Induct                               | ance ch  | ange: \            | Within±10%    | step 1: Minimum operating temperature                    |
|                  |                                                                                  |                                                          |         |          |        |         |          |          |          | Inducta          | ance       | Inductance                                  | Inducta                                     | ance ch<br>+10%         | nange:                      | Qchan                                | nge: Wit | hin±20             | %             | +0/−3°C 30±3 min.<br>step 2: Room temperature 2 to 3min. |
|                  |                                                                                  |                                                          |         |          |        |         |          |          |          | change<br>Within | e:         | change:<br>Within                           | Qchan                                       | ae:                     |                             |                                      |          |                    |               | step 3: Minimum operating temperature                    |
|                  | ±20% ±30%<br>Ochanoe:                                                            |                                                          |         |          |        |         |          |          |          |                  | no.        | ±30%                                        | Within                                      | ±30%                    |                             |                                      |          |                    |               | +0/-3°C 30±3 min.<br>step 4: Room temperature 2 to 3min. |
|                  |                                                                                  |                                                          |         |          |        |         |          |          |          | Within           | 95.        |                                             |                                             |                         |                             |                                      |          |                    |               |                                                          |
|                  |                                                                                  |                                                          |         |          |        |         |          |          |          | ±30%             |            |                                             |                                             |                         |                             |                                      |          |                    |               | Recovery: 2 to 3 hrs of recovery under the stan-         |
|                  |                                                                                  |                                                          |         |          |        |         |          |          |          |                  |            | dard condition after the test. (See Note 1) |                                             |                         |                             |                                      |          |                    |               |                                                          |

(Note 1) When there are questions concerning

mesurement result : measurement shall be made after 48 $\pm$ 2 hrs of recovery under the standard condition.

#### Multilayer chip inductors and beads

|                                      | Specified Value |         |          |                |           |                      |         |         |         |                                                                        |                                                                          |                                                                        |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                   |                                     |                                          |                        |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------|-----------------|---------|----------|----------------|-----------|----------------------|---------|---------|---------|------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------|------------------------|---------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Item                                 |                 |         |          | Γ              |           | ARRAY                |         |         |         |                                                                        |                                                                          |                                                                        |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                   |                                     |                                          |                        |         |        | Test Methods and Bemarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| nom                                  | BK0603          | BK1005  | BK1608   | BK2            | 2125      | (2010 BK2216         | BKP1005 | BKP1608 | BKP2125 | CK1                                                                    | 608 CK2125                                                               | CKP3216                                                                | LK1005                                                                                         | LK1608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LK2125                                                                                            | HKQ0603                             | HK0603                                   | HK1005                 | HK1608  | HK2125 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14. Damp Heat<br>(Steady state)      | Appe            | dance c | k No sig | nifica<br>With | BK.       | (2010) <u>BK3216</u> |         |         |         | No<br>mea<br>dan<br>Indu<br>cha<br>Witt<br>±20<br>Q c<br>Witt<br>±30   | chanica<br>nage.<br>uctance<br>inge:<br>hin<br>0%<br>hange:<br>hin<br>0% | No<br>mechanica<br>damage.<br>Inductance<br>change:<br>₩ifthin<br>±30% | No mech<br>damage.<br>Inductan<br>Within±1<br>Q change<br>Within±3                             | nica<br>e change:<br>1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No<br>mechanica<br>damage.<br>Inductance<br>change:<br>₩ifhin<br>±10%<br>Q change:<br>±30%        | No me<br>Induct<br>Within<br>Q char | chanica<br>ance cha<br>±10%<br>nge: With | damagıange:<br>nin±20% | 6       |        | BK Series:<br>Temperature: 40±2°C<br>Humidity: 90 to 95%RH<br>Duration: 500 <sup>+</sup> 2 <sup>4</sup> hrs<br>Recovery: 2 to 3 hrs of recovery under the<br>standard condition after the removal<br>from test chamber. (See Note1)<br>LK, CK, HK Series:<br>Temperature: 40±2°C (LK, CK Series)<br>60±2°C (HK Series)<br>Humidity: 90 to 95%RH<br>Duration: 500±12 hours<br>Recovery: 2 to 3 hrs of recovery under the<br>standard condition after the removal<br>from test chamber. (See Note1)                                                                                                                                                                  |
| 15.Loading under<br>Damp Heat        | No m<br>withir  | echanic | cal dam  | age,           | ı, Induct | tance chang          | ge      |         |         | No med<br>dan<br>Indu<br>cha<br>Witti<br>±20<br>Q c<br>Witti<br>±30    | chanica<br>nage.<br>uctance<br>inge:<br>hin<br>0%<br>hange:<br>hin<br>0% | No<br>mechanica<br>damage.<br>Inductance<br>change:<br>Within<br>±30%  | No mechanica damage.<br>Inductance change:<br>Within $\pm 10\%$ Q change:<br>Within $\pm 30\%$ | No mechanica<br>damage.<br>Inductance<br>change:<br>0.047 to<br>15.0 | No mechanica<br>damage.<br>Inductance<br>change:<br>Within<br>±10%<br>Q change:<br>Within<br>±30% | No me<br>Induct<br>Within<br>Q chas | chanica<br>ance cha<br>±10%<br>nge: Witt | damagıange:<br>nin±20% | ə.<br>6 |        | BK Series:<br>Temperature: 40±2°C (LK Series)<br>Humidity: 90 to 95%RH<br>Duration: 500±6 <sup>4</sup> hrs<br>Applied current: Rated current<br>Recovery: 2 to 3 hrs of recovery under the<br>standard condition after the removal<br>from test chamber. (See Note1)<br>LK, CK, HK Series:<br>Temperature: 40±2°C (LK, CK Series)<br>60±2°C (HK Series)<br>Humidity: 90 to 95%RH<br>Duration: 500±12 hrs<br>Applied current: Rated current<br>Recovery: 2 to 3 hrs of recovery under the<br>standard condition after the removal<br>from test chamber. (See Note1)                                                                                                 |
| 16.Loading at<br>High<br>Temperature | Appe            | arance: | : No sig | nifica<br>With | xant abr  | normality<br>30%     |         |         |         | No<br>med<br>dan<br>Indu<br>cha<br>Witit<br>±20<br>Q c<br>Witit<br>±30 | chanica<br>nage.<br>uctance<br>inge:<br>hin<br>0%<br>hange:<br>hin<br>0% | No mechanica<br>damage.<br>Inductance<br>Within<br>±30%                | No<br>mechanica<br>damage:<br>Inductance<br>Within<br>±10%<br>Q change:<br>Within<br>±30%      | No mechanica<br>damage.<br>Inductance<br>0.047 to<br>12.0 µH:<br>Within<br>±10%<br>Q change:<br>±30%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No mechanica<br>damaga:<br>Inductance<br>Within<br>±10%<br>Q change:<br>Within<br>±30%            | No me<br>Induct<br>Within<br>Q char | chanica<br>ance che<br>±10%              | damagı                 | 9.      |        | BK Series:<br>Temperature: 125±3°C<br>Applied current: Rated current<br>Duration: 500 <sup>+</sup> 0 <sup>24</sup> hrs<br>Recovery: 2 to 3 hrs of recovery under the<br>standard condition after the removal<br>from test chamber. (See Note1)<br>LK, CK, HK Series, BK Series P type:<br>Temperature: 85±2°C (LK, CK Series)<br>:85±2°C (HK 1608, 2125)<br>:85±2°C (HK 1005 operating<br>temperature range -55 to +85°C)<br>:125±2°C (HK 0003, HK 0003, HK 1005)<br>operating temperature range<br>-55 to +125°C)<br>Applied current: Rated current<br>Duration: 500±12 hrs<br>Recovery: 2 to 3 hrs of recovery under the<br>standard condition after the removal |

Note on standard condition: "standard condition" referred to herein is defined as follows:

5 to 35  $^\circ C$  of temperature, 45 to 85% relative humidity, and 86 to 106kPa of air pressure.

When there are questions concerning measurement results:

In order to provide correlation data, the test shall be conducted under condition of 20±2°C of temperature, 60 to 70% relative humidity,

and 86 to 106kPa of air pressure. Unless otherwise specified, all the tests are conducted under the "standard condition."

(Note 1) measurement shall be made after 48±2 hrs of recovery under the standard condition.



|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |                                                                  | ·                                                       |                                                      |                                                        |                                    |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|------------------------------------|
| Stages            | Precautions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           |                                                                  | Technical cor                                           | nsiderations                                         |                                                        |                                    |
| 1. Circuit Design | <ul> <li>Verification of operating environment, electrical rating and performance</li> <li>A malfunction in medical equipment, spacecraft, nuclear reactors, etc. may cause serious harm to human life or have severe social ramifications. As such, any inductors to be used in such equipment may require higher safety and/or reliability considerations and should be clearly differentiated from components used in general purpose applications.</li> <li>Operating Current (Verification of Rated current)</li> <li>The operating current for inductors must always be lower than their rated values.</li> <li>Do not apply current in excess of the rated value because the inductance may be reduced due to the magnetic saturation effect.</li> </ul> |                                           |                                                                  |                                                         |                                                      |                                                        |                                    |
| 2. PCB Design     | <ul> <li>Pattern configurations<br/>(Design of Land-patterns)</li> <li>1. When inductors are mounted on a PCB, the amount of<br/>solder used (size of fillet) can directly affect inductor</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1. The fo<br>patterr<br>the co<br>also sl | Ilowing diagram<br>ns to prevent exc<br>mponent end ter<br>hown. | as and tables sl<br>essive solder ar<br>minations). Exa | now some exa<br>nounts (larger fi<br>amples of impre | mples of recor<br>illets which exte<br>oper pattern de | nmended<br>and above<br>asigns are |
|                   | performance. Therefore, the following items must be carefully considered in the design of solder land pat-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (1) Reco                                  | mmended land o                                                   | dimensions for a                                        | a typical chip ir                                    | nductor land pa                                        | atterns for                        |
|                   | terns:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PCBS                                      | Chip indu                                                        | ctor                                                    | older-resist                                         | Chip induc                                             | tor                                |
|                   | (1) The amount of solder applied can affect the ability of<br>chips to withstand mechanical stresses which may lead<br>to breaking or cracking. Therefore, when designing<br>land-patterns it is necessary to consider the appropri-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | c↑                                        |                                                                  |                                                         |                                                      | ↓                                                      | ∎ <u>†</u> w<br>→                  |
|                   | ate size and configuration of the solder pads which in<br>turn determines the amount of solder pads which in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Recomm                                    | ended land dime                                                  | ensions for wav                                         | e-soldering (ui                                      | nit: mm)                                               |                                    |
|                   | the fillets.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Type                                      | 1608                                                             | 2125                                                    | 3216                                                 |                                                        |                                    |
|                   | 2) When more than one part is jointly soldered onto the same land or pad, the pad must be designed so that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>Size</sup> W                         | 0.8                                                              | 1.25                                                    | 1.6                                                  |                                                        |                                    |
|                   | each component's soldering point is separated by sol-<br>der-resist.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A                                         | 0.8~1.0                                                          | 1.0~1.4                                                 | 1.8~2.5                                              |                                                        |                                    |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C                                         | 0.6~0.8                                                          | 0.9~1.2                                                 | 1.2~1.6                                              |                                                        |                                    |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Becomm                                    | ended land dime                                                  | ensions for reflo                                       | w-soldering (I                                       | unit: mm)                                              |                                    |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Туре                                      | 0603                                                             | 1005                                                    | 1608                                                 | 2125                                                   | 3216                               |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           | 0.6                                                              | 1.0                                                     | 1.6                                                  | 2.0                                                    | 3.2                                |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A                                         | 0.3                                                              | 0.5                                                     | 0.8                                                  | 0.8~1.2                                                | 1.6                                |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | В                                         | 0.20~0.30                                                        | 0.40~0.50                                               | 0.6~0.8                                              | 0.8~1.2                                                | 0.6~1.5                            |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | С                                         | 0.25~0.40                                                        | 0.45~0.55                                               | 0.6~0.8                                              | 0.9~1.6                                                | 1.2~2.0                            |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Excess s<br>Therefore                     | older can affect<br>e, please take pr                            | the ability of ch<br>oper precaution                    | nips to withstar<br>ns when desigr                   | nd mechanical<br>ning land-patter                      | stresses.<br>ms.                   |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           | C                                                                | <mark>∢ →</mark>                                        | Recomme<br>dimension<br>Reflow-sol                   | nded land<br>for<br>Idering (unit: n                   | nm)                                |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |                                                                  |                                                         |                                                      | 3216                                                   | 2010                               |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |                                                                  |                                                         | Size W                                               | 3.2                                                    | 2.0                                |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | م                                         |                                                                  |                                                         | a                                                    | 0.7~0.9                                                | 0.5~0.6                            |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |                                                                  |                                                         | b                                                    | 0.8~1.0                                                | 0.5~0.6                            |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ↓!                                        |                                                                  |                                                         | c<br>d                                               | 0.4~0.5                                                | 0.2~0.3                            |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           |                                                                  |                                                         | L                                                    |                                                        |                                    |

# PRECAUTIONS

## Precautions on the use of Multilayer chip Inductors, Multilayer chip inductors for high frequency, Multilayer ferrite chip beads

| Stages       | Precautions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Technical considerations                                                                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                                               |  |  |  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 2.PCB Design |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (2) Examples                                                                                                                                                                                                                 | s of good and bad solder a                                                                                                                         | pplication                                                                                                                                                                    |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                              | Not recommended                                                                                                                                    | Recommended                                                                                                                                                                   |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mixed mounting<br>of SMD and<br>leaded compo-<br>nents                                                                                                                                                                       | Lead wire of component                                                                                                                             | Sokler-resist                                                                                                                                                                 |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C o m p o n e n t<br>placement close<br>to the chassis                                                                                                                                                                       | Chassis<br>Solder(for grounding)                                                                                                                   | Solder-resist                                                                                                                                                                 |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hand-soldering<br>of leaded com-<br>ponents near<br>mounted compo-<br>nents                                                                                                                                                  | Lead wire of component<br>Soldering iron                                                                                                           | Solder-resist                                                                                                                                                                 |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Horizontal com-<br>ponent place-<br>ment                                                                                                                                                                                     |                                                                                                                                                    | Sokier-resist                                                                                                                                                                 |  |  |  |
|              | <ul> <li>Pattern configurations</li> <li>(Inductor layout on panelized [breakaway] PC boards)</li> <li>1. After inductors have been mounted on the boards, chips can be subjected to mechanical stresses in subsequent manufacturing processes (PCB cutting, board inspection, mounting of additional parts, assembly into the chassis, wave soldering the reflow soldered boards etc.)</li> <li>For this reason, planning pattern configurations and the position of SMD inductors should be carefully per-</li> </ul> | 1-1. The following are examples of good and bad inductor layout; SMD inductors                                                                                                                                               |                                                                                                                                                    |                                                                                                                                                                               |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | should be located to minimize any possible mechanical stresses from boar                                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                                               |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ltem                                                                                                                                                                                                                         | Not recommended                                                                                                                                    | Becommended                                                                                                                                                                   |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Deflection of<br>the board                                                                                                                                                                                                   |                                                                                                                                                    | Postion the component<br>at a right angle to the<br>direction of the<br>mechanical stresses that<br>are anticipated.                                                          |  |  |  |
|              | formed to minimize stress.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1-2. To layout the inductors for the breakaway PC board, it should be noted that<br>the amount of mechanical stresses given will vary depending on inductor<br>layout. An example below should be counted for better design. |                                                                                                                                                    |                                                                                                                                                                               |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                              |                                                                                                                                                    |                                                                                                                                                                               |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                              |                                                                                                                                                    |                                                                                                                                                                               |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                              |                                                                                                                                                    |                                                                                                                                                                               |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                              | A Slit<br>Magnitude of stres                                                                                                                       | B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B                                                                                   |  |  |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1-3. When break<br>cal stress or<br>following me<br>push-back, s                                                                                                                                                             | ing PC boards along their<br>the inductors can vary a<br>thods are listed in order fi<br>lit, V-grooving, and perfor<br>also consider the PCB soli | perforations, the amount of mechani-<br>ccording to the method used. The<br>rom least stressful to most stressful:<br>ation. Thus, any ideal SMD inductor<br>tting procedure. |  |  |  |

# PRECAUTIONS

| Stages                                      | Precautions                                                                                                                                                                                                                                                                                                                                                                        | Technical considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                       |                                                                                                                                               |  |  |  |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 3.Considerations for<br>automatic placement | <ul> <li>Adjustment of mounting machine</li> <li>Excessive impact load should not be imposed on the inductors when mounting onto the PC boards.</li> <li>The maintenance and inspection of the mounter should be conducted periodically.</li> </ul>                                                                                                                                | <ol> <li>If the lower limit of the pick-up nozzle is low, too much force may be imposed<br/>on the inductors, causing damage. To avoid this, the following points should<br/>be considered before lowering the pick-up nozzle:</li> <li>The lower limit of the pick-up nozzle should be adjusted to the surface level of<br/>the PC board after correcting for deflection of the board.</li> <li>The pick-up pressure should be adjusted between 1 and 3 N static loads.</li> <li>To reduce the amount of deflection of the board caused by impact of the pick-<br/>up nozzle, supporting pins or back-up pins should be used under the PC board.<br/>The following diagrams show some typical examples of good pick-up nozzle<br/>placement:</li> </ol> |                                                                                                                                                                                       |                                                                                                                                               |  |  |  |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Improper method                                                                                                                                                                       | Proper method                                                                                                                                 |  |  |  |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                    | Single-sided mounting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | chipping<br>or cracking                                                                                                                                                               | supporting pins<br>or back-up pins                                                                                                            |  |  |  |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                    | Double-sided<br>mounting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | chicone<br>or cracking                                                                                                                                                                | supporting Dirs<br>or back-up pins                                                                                                            |  |  |  |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                    | 2. As the alignm<br>chipping or cr<br>inductors. To<br>in the stopped<br>pin should be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nent pin wears out, adjustmer<br>racking of the inductors beca<br>avoid this, the monitoring of th<br>d position, and maintenance, i<br>conducted periodically.                       | nt of the nozzle height can cause<br>use of mechanical impact on the<br>e width between the alignment pin<br>nspection and replacement of the |  |  |  |
|                                             | <ul> <li>Selection of Adhesives</li> <li>Mounting inductors with adhesives in preliminary assembly, before the soldering stage, may lead to degraded inductor characteristics unless the following factors are appropriately checked; the size of land patterns, type of adhesive, amount applied, hardening temperature and hardening period. Therefore, it is impera-</li> </ul> | <ol> <li>Some adhesives may cause reduced insulation resistance. The difference<br/>between the shrinkage percentage of the adhesive and that of the inductors<br/>may result in stresses on the inductors and lead to cracking. Moreover, too<br/>little or too much adhesive applied to the board may adversely affect compo-<br/>nent placement, so the following precautions should be noted in the applica-<br/>tion of adhesives.</li> </ol>                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                       |                                                                                                                                               |  |  |  |
|                                             | tive to consult the manufacturer of the adhesives on<br>proper usage and amounts of adhesive to use.                                                                                                                                                                                                                                                                               | <ul> <li>(1)Required adhesive characteristics</li> <li>a. The adhesive should be strong enough to hold parts on the board during the mounting &amp; solder process.</li> <li>b. The adhesive should have sufficient strength at high temperatures.</li> <li>c. The adhesive should have good coating and thickness consistency.</li> <li>d. The adhesive should be used during its prescribed shelf life.</li> <li>e. The adhesive should harden rapidly</li> <li>f. The adhesive must not be contaminated.</li> <li>g. The adhesive should have excellent insulation characteristics.</li> <li>h. The adhesive should not be toxic and have no emission of toxic gasses.</li> </ul>                                                                     |                                                                                                                                                                                       |                                                                                                                                               |  |  |  |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                    | c. The adhesive<br>d. The adhesive<br>e. The adhesive<br>f. The adhesive<br>g. The adhesive<br>h. The adhesive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | should have good coating and<br>should be used during its pre-<br>should harden rapidly<br>must not be contaminated.<br>should have excellent insulat<br>should not be toxic and have | d thickness consistency.<br>scribed shelf life.<br>ion characteristics.<br>no emission of toxic gasses.                                       |  |  |  |

### Precautions on the use of Multilayer chip Inductors, Multilayer chip inductors for high frequency, Multilayer ferrite chip beads



| Stages                                      | Precaution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                        |                                                                                                                                                                                                                                                                            | Technical considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.Considerations for<br>automatic placement |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | When<br>adhes<br>adhes<br>Too m<br>sive o<br>[Reco                                     | using adhesives<br>ive on the board<br>ive may cause th<br>uch adhesive m<br>n to the land or s<br>mmended condi                                                                                                                                                           | s to mount inductors on a PCB, inappropriate amounts of<br>d may adversely affect component placement. Too little<br>ne inductors to fall off the board during the solder process.<br>ay cause defective soldering due excessive flow of adhe-<br>solder pad.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                        | Figure                                                                                                                                                                                                                                                                     | 0805 case sizes as examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                        | а                                                                                                                                                                                                                                                                          | 0.3mm min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                        | b                                                                                                                                                                                                                                                                          | 100 ~120 μm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                        | С                                                                                                                                                                                                                                                                          | Area with no adhesive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | =                                                                                      |                                                                                                                                                                                                                                                                            | After inductors are bonded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4.Soldering                                 | <ul> <li>Selection of Flux</li> <li>Since flux may have a significant effect on the performance of inductors, it is necessary to verify the following conditions prior to use;</li> <li>Flux used should be with less than or equal to 0.1 wt% (Chlorine conversion method) of halogenated content. Flux having a strong acidity content should not be applied.</li> <li>When soldering inductors on the board, the amount of flux applied should be controlled at the optimum level.</li> <li>When using water-soluble flux, special care should be taken to properly clean the boards.</li> </ul> | 1-1. W<br>ac<br>du<br>ra<br>1-2. Fl<br>ap<br>af<br>m<br>1-3. Si<br>th<br>m<br>re<br>sc | then too much h<br>trivate the flux, c<br>ue after soldering<br>dation of insulat<br>ux is used to in<br>oplied, a large a<br>fect solderabilit<br>ended to use a f<br>nee the residue o<br>e air, the residu<br>ay cause a deg<br>liability of the con<br>achines used sh | alogenated substance (Chlorine, etc.) content is used to<br>r highly acidic flux is used, an excessive amount of resi-<br>g may lead to corrosion of the terminal electrodes or deg-<br>ion resistance on the surface of the Inductor.<br>crease solderability in flow soldering, but if too much is<br>mount of flux gas may be emitted and may detrimentally<br>y. To minimize the amount of flux applied, it is recom-<br>lux-bubbling system.<br>of water-soluble flux is easily dissolved by water content in<br>e on the surface of Inductor in high humidity conditions<br>radation of insulation resistance and therefore affect the<br>mponents. The cleaning methods and the capability of the<br>iould also be considered carefully when selecting water- |
|                                             | ◆Soldering<br>Temperature, time, amount of solder, etc. are specified in<br>accordance with the following recommended conditions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1-1. Pr<br>He<br>13<br>cc<br>Cl<br>cc<br>m<br>cc                                       | reheating when a<br>eating: Chip ind<br>30°C of the solde<br>mponents and of<br>nip inductors are<br>oncentrated hea<br>ust be conducted<br>mponents due t                                                                                                                 | soldering<br>uctor components should be preheated to within 100 to<br>rring. Cooling: The temperature difference between the<br>sleaning process should not be greater than 100 °C.<br>e susceptible to thermal shock when exposed to rapid or<br>ting or rapid cooling. Therefore, the soldering process<br>ed with a great care so as to prevent malfunction of the<br>o excessive thermal shock.                                                                                                                                                                                                                                                                                                                                                                  |



| Stages      | Precautions                                                                                                                                                                                                                                                                                              | Technical considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.Soldering | ◆And please contact us about peak temperature when you use lead-free paste.                                                                                                                                                                                                                              | Recommended conditions for soldering<br>[Reflow soldering]<br>Temperature profile<br>Temperature<br>Control of the solder ing is to have solder mass (fillet) controlled to 1/2 to 1/3 of the solder is to 1/2 to 1/3 of the solder is to the solder mass is the sold is to 1/2 to 1/3 of the solder is to the solder is to the solder is to the solder mass is the sold is to 1/2 to 1/3 of the solder is to the solder mass is the sold is to 1/2 to 1/3 of the solder is to the solder mass is the sold is to 1/2 to 1/3 of the solder is to the solder is to the solder is to the solder is to the solder mass is the sold is to 1/2 to 1/3 of the solder is to the solder is to the solder is to 1/2 to 1/3 of the solder is to 1/2 to 1/3 of the solder is to the solder is to 1/2 to 1/3 of the solder is to  |
|             |                                                                                                                                                                                                                                                                                                          | <ul> <li>the thickness of the inductor, as shown below:</li> <li> <sup>1</sup>/<sub>2</sub>T~<sup>1</sup>/<sub>3</sub>T<br/>PC board     </li> <li>2. Because excessive dwell times can detrimentally affect solderability, soldering duration should be kept as close to recommended times as possible     </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                                                                                                                                                                                                                                                                                          | Ide.<br>[Wave soldering]<br>Temperature profile<br>Temperature profile<br>Temperature of the soldering of the solder |
|             |                                                                                                                                                                                                                                                                                                          | <ul> <li>Caution</li> <li>1. Make sure the inductors are preheated sufficiently.</li> <li>2. The temperature difference between the inductor and melted solder should not be greater than 100 to 130°C</li> <li>3. Cooling after soldering should be as gradual as possible.</li> <li>4. Wave soldering must not be applied to the inductors designated as for reflow soldering only.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             |                                                                                                                                                                                                                                                                                                          | [Hand soldering]<br>Temperature profile<br>Temperature $\begin{pmatrix} 230\ C\\ 300\ 0\\ 200\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |                                                                                                                                                                                                                                                                                                          | Caution<br>1. Use a 20W soldering iron with a maximum tip diameter of 1.0 mm.<br>2. The soldering iron should not directly touch the inductor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5.Cleaning  | <ul> <li>Cleaning conditions</li> <li>When cleaning the PC board after the Inductors are all mounted, select the appropriate cleaning solution according to the type of flux used and purpose of the cleaning (e.g. to remove soldering flux or other materials from the production process.)</li> </ul> | <ol> <li>The use of inappropriate solutions can cause foreign substances such as flux<br/>residue to adhere to the inductor, resulting in a degradation of the inductor's<br/>electrical properties (especially insulation resistance).</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |





| Stages                     | Precautions                                                                                                                                                                                                                                                                                                                                                     | Technical considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.Cleaning                 | 2. Cleaning conditions should be determined after verify-<br>ing, through a test run, that the cleaning process does<br>not affect the inductor's characteristics.                                                                                                                                                                                              | <ul> <li>2. Inappropriate cleaning conditions (insufficient or excessive cleaning) may detrimentally affect the performance of the inductors.</li> <li>(1)Excessive cleaning <ul> <li>In the case of ultrasonic cleaning, too much power output can cause excessive vibration of the PC board which may lead to the cracking of the inductor or the soldered portion, or decrease the terminal electrodes' strength. Thus the following conditions should be carefully checked;</li> <li>Ultrasonic output Below 20 w/l</li> <li>Ultrasonic frequency Below 40 kHz</li> <li>Ultrasonic washing period 5 min. or less</li> </ul> </li> </ul> |
| 6. Post cleaning processes | <ul> <li>Application of resin coatings, moldings, etc. to the PCB and components.</li> <li>1. With some type of resins a decomposition gas or chemical reaction vapor may remain inside the resin during</li> </ul>                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                            | the hardening period or while left under normal storage<br>conditions resulting in the deterioration of the inductor's<br>performance.                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                            | <ol> <li>When a resin's hardening temperature is higher than<br/>the inductor's operating temperature, the stresses gen-<br/>erated by the excess heat may lead to inductor dam-<br/>age or destruction.</li> </ol>                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                            | 3. Stress caused by a resin's temperature generated ex-<br>pansion and contraction may damage inductors.                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                            | The use of such resins, molding materials etc. is not rec-<br>ommended.                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7. Handling                | Breakaway PC boards (splitting along perforations)                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                            | <ol> <li>When splitting the PC board after mounting inductors<br/>and other components, care is required so as not to<br/>give any stresses of deflection or twisting to the board.</li> </ol>                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                            | <ol> <li>Board separation should not be done manually, but by<br/>using the appropriate devices.</li> </ol>                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                            | <ul> <li>General handling precautions</li> <li>Always wear static control bands to protect against ESD.</li> <li>Keep the inductors away from all magnets and magnetic objects.</li> <li>Use non-magnetic tweezers when handling inductors.</li> <li>Any devices used with the inductors (soldering irons.</li> </ul>                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                            | <ul> <li>measuring instruments) should be properly grounded.</li> <li>5. Keep bare hands and metal products (i.e., metal desk) away from chip electrodes or conductive areas that lead to chip electrodes.</li> <li>6. Keep inductors away from items that generate magnetic fields such as speakers or coils.</li> </ul>                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                            | Mechanical considerations                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                            | <ol> <li>Be careful not to subject the inductors to excessive<br/>mechanical shocks.</li> <li>If inductors are dropped on the floor or a hard surface<br/>they should not be used.</li> <li>When handling the mounted boards, be careful that<br/>the mounted components do not come in contact with<br/>or bump against other boards or components.</li> </ol> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

5 FERRITE PRODUCTS





Precautions Technical considerations Stages ♦ Storage 8. Storage conditions 1. If the parts are stocked in a high temperature and humidity environment, prob-1. To maintain the solderability of terminal electrodes and lems such as reduced solderability caused by oxidation of terminal electrodes and deterioration of taping/packaging materials may take place. For this reato keep the packaging material in good condition, care son, components should be used within 6 months from the time of delivery. If must be taken to control temperature and humidity in the storage area. Humidity should especially be kept exceeding the above period, please check solderability before using the inas low as possible. ductors Recommended conditions Ambient temperature Below 40 ℃ Humidity Below 70% RH The ambient temperature must be kept below 30 °C. Even under ideal storage conditions inductor electrode solderability decreases as time passes, so inductors should be used within 6 months from the time of delivery. \*The packaging material should be kept where no chlorine or sulfur exists in the air.

#### Precautions on the use of Multilayer chip Inductors, Multilayer chip inductors for high frequency, Multilayer ferrite chip beads