
高周波積層チップインダクタ **MULTILAYER CHIP INDUCTOR** FOR HIGH FREQUENCY **HK SERIES**

0603 : −55~125°C 1005 : -55~125°C ** OPERATING TEMP. -55~85°C ******

> 1608 : −40~85°C 2125 : -40~85℃

*HK0603, HK1005を除く

*Except for HK0603, HK1005

**保証定格により変わります。

**Operating temperature depends on rated current.

特長 FEATURES

- ・内部導体として比抵抗値の低いAgを使用し、良好なQ特性と自己共振周 波数特性を実現
- ・積層シート工法による、高生産性、高品質、高インダクタンス値対応
- ・モノリシック構造のため、高い信頼性を有する

- · Multilayer inductor made of advanced ceramics with low-resistivity silver used as internal conductors provides excellent Q and SRF characteristics.
- · Designed to address surface mount inductor needs for applications above 100MHz.
- · Multilayer block structure ensures outstanding reliability, high productivity and product quality.

用途 APPLICATIONS

- ・携帯電話、PHS、無線LAN ・その他の高周波回路、中間周波増幅回路
- ・高周波帯域でのEMI対策

- · Portable telephones, PHS and W-LAN
- · Miscellaneous high-frequency circuits
- · EMI countermeasure in high-frequency circuits.

形名表記法 ORDERING CODE

形式 HK 高周波積層チップインダクタ

形状寸法(Li	×W) (mm)
0603 (0201)	0.6×0.3
1005 (0402)	1.0×0.5
1608 (0603)	1.6×0.8
2125 (0805)	2.0×1.2

3

公称イ	ンダクタンス [nH]
例	
3N9	3.9
10N	10
R10	100
R12	120

※R=小数点 ※N=nHとしての小数点

9							
インダクタンス許容差							
Н	± 3%						
J	± 5%						
С	±0.2nH						
S	±0.3nH						

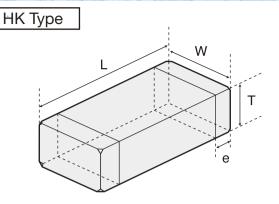
包装 リールテーピング

H K \triangle	² 0	6	0	3	1	0	N	J	_	T,
		2				6		4	5	

Type Multilaver chip inductors HK for high frequency

External Dim	ensions (mm
0603 (0201)	0.6×0.3
1005 (0402)	1.0×0.5
1608 (0603)	1.6×0.8
2125 (0805)	2.0×1.2

Nominal Inductance (nH)							
Example							
3N9	3.9						
10N	10						
R10	100						
R12	120						


*R=decimal point *N=0.0 (nH type)

Inductance Tolerances							
Н	± 3%						
J	± 5%						
С	±0.2nH						
S	±0.3nH						

外形寸法 EXTERNAL DIMENSIONS

Type	L	W	T	е
HK0603	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	0.15 ± 0.05
(0201)	(0.024 ± 0.001)	(0.012 ± 0.001)	(0.012 ± 0.001)	(0.006 ± 0.002)
HK1005	1.00 ± 0.05	0.5 ± 0.05	0.5 ± 0.05	0.25 ± 0.10
(0402)	(0.039 ± 0.002)	(0.020 ± 0.002)	(0.020 ± 0.002)	(0.010 ± 0.004)
HK1608	1.6 ± 0.15	0.8 ± 0.15	0.8 ± 0.15	0.3 ± 0.2
(0603)	(0.063 ± 0.006)	(0.031 ± 0.006)	(0.031 ± 0.006)	(0.012 ± 0.008)
	2.0 ± 0.3	1.25 ± 0.2	0.85 ± 0.2	0.5 ± 0.3
HK2125	- 0.1		1.0 ± 0.2	
(0805)	(0.079 + 0.012)	(0.049 ± 0.008)	(0.033 ± 0.008)	(0.020 ± 0.012)
	- 0.004		$(0.039 \ ^{+}\ 0.008)$	
	•			/

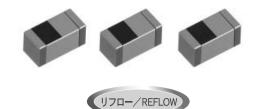
Unit: mm (inch)

概略バリエーション AVAILABLE INDUCTANCE RANGE

Range	Туре	HK0603		HK1	005		HK1608	3	HK2125	5
.a.igo		使用温度範囲 -55~+125℃ 使用温度範囲 -55~+125℃ -55~+85℃					使用温度範囲 一4		使用温度範囲4	
			lmax		Imax			Imax		Imax
	[nH]		[mA]		[mA]	[mA]		[mA]		[mA]
	1.0	1N0 🗆	250	1N0	1	900	1N0	1		
	1.2	1N2□	250	1N2□		900	1N2			
	1.5	1N5□	230	1N5	1	850	1N5		1N5S	1
	1.8	1N8□		1N8□		700	1N8□		1N8S	
	2.2	2N2□	200	2N2□		700	2N2□		2N2S	
	2.7	2N7□	\forall	2N7□		650	2N7□		2N7S	
	3.3	3N3□	180	3N3□		550	3N3□		3N3S	
	3.9	3N9□	170	3N9□		500	3N9□		3N9S	
	4.7	4N7□		4N7□	300	500	4N7□		4N7S	
	5.6 5N6□	5N6□		5N6□	300	430	5N6□		5N6S	
_	6.8	6N8O	150	6N8O	1	430	6N8O		6N8J	
Ē	8.2	8N2O		8N2O		380	8N2O		8N2J	
	10.0	10NO	\forall	10NO	1	340	10NO		10NJ	
JG	12.0	12NO	A	12NO		330	12NO	300	12NJ	
inductance	15.0	15NO	100	15NO	1	320	15NO		15NJ	
Ď	18.0	18NO	100	18NO		310	18NO		18NJ	
.⊑	22.0	22N〇	\forall	22NO	1	300	22N〇		22NJ	
	27.0	27N〇	Å	27NO	1 ₩	300	27N〇		27NJ	300
	33.0	33NO		33NO	1 ♠	250	33NO		33NJ	
	39.0	39NO		39NO	1 1	250	39NO		39NJ	
	47.0	47N〇	50	47NO	200	230	47NO		47NJ	
	56.0	56N○		56NO	1 ₩	220	56N○		56NJ	
	68.0	68NO		68NO	180		68NO		68NJ	
	82.0	82NO	\downarrow	82NO	A		82NO		82NJ	
	100.0	R10○	40	R100	150		R10〇		R10J	
	120.0			R12〇	₩		R12〇		R12J	
	150.0			R15〇	140	200	R15〇		R15J	
	180.0			R18〇	130		R18〇		R18J	
	220.0			R22〇	120		R22()	- ↓	R22J	
	270.0			R27〇	110	\downarrow	R27〇	Ă	R27J	
	330.0					*	R33 🔾		R33J	
	390.0						R39()	150	R39J	
	470.0						R47〇	V	R47J	\downarrow
								▼		•

価 Si	Inductance	Imax [mA]	Rdcmax [Ω]	Imax [mA]				Rdcmax [Ω]	Imax [mA]	Rdcmax [Ω]	Imax [mA]	Rdcmax [Ω]
, <u>ə</u>				- 55 ~+ 125°C	- 55 ~+ 85℃							
₩ Ju	1.5nH	230	0.18	300	850	0.1	300	0.1	300	0.1		
∜ × ×	10.0nH	150	0.63	300	340	0.31	300	0.26	300	0.3		
	100.0nH	40	4.0	150	200	1.5	300	1	300	0.9		

※形名の□、○にはインダクタンス許容差記号が入ります。±0.3nH(□)、±5%(○)以下の許容差も対応可能ですので、お問い合わせ下さい。 \square , \bigcirc mark indicates the Inductance tolerance code. The product with tolerance less than ± 0.3 nH (\square), $\pm 5\%$ (\bigcirc) is also available. Please contact your local sales office.



高周波積層チップインダクタ MULTILAYER CHIP INDUCTOR FOR HIGH FREQUENCY **HKQ SERIES**

0603 : −55~125°C OPERATING TEMP.

特長 FEATURES

- ・内部導体として比抵抗値の低いAgを使用し、良好なQ特性と自己共振周 波数特性を実現
- ・積層シート工法による、高生産性、高品質、高インダクタンス値対応
- ・モノリシック構造のため、高い信頼性を有する

- · Multilayer inductor made of advanced ceramics with low-resistivity silver used as internal conductors provides excellent Q and SRF characteristics.
- · Designed to address surface mount inductor needs for applications above 100MHz.
- · Multilayer block structure ensures outstanding reliability, high productivity and product quality.

用途 APPLICATIONS

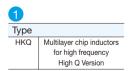
- ・携帯電話、PHS、無線LAN ・その他の高周波回路、中間周波増幅回路
- ・高周波帯域でのEMI対策

- · Portable telephones, PHS and W-LAN
- · Miscellaneous high-frequency circuits
- · EMI countermeasure in high-frequency circuits.

形名表記法 ORDERING CODE

形状寸法 (L×W) [mm] 0603 (0201) 0.6×0.3

公称インダクタンス〔nH〕 例 3N9 3.9


10N 10 ※N=nHとしての小数点

インダクタンス許容差 Н ± 3% ± 5% ±0.2nH ±0.3nH

 \pm 0.3nH

5 包装 リールテーピング

External Dimensions (mm) 0603 (0201) 0.6×0.3

Nominal Inductance (nH) Example 3N9

Н 10N 10 S *N=0.0 (nH type)

Inductance Tolerances Packaging **-**Т Tape & Reel ± 3% ± 5% ±0.2nH

HKQ Type W Т

Type	L	W	T	е
HKQ0603	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	0.15 ± 0.05
(0201)	(0.024 ± 0.001)	(0.012 ± 0.001)	(0.012 ± 0.001)	(0.006 ± 0.002)
				. / \

Unit : mm (inch)

- *製品の仕様につきましてはお問い合せ下さい。 *Please Contact Our Sales Department office for Products Details.