
i

TABLE OF CONTENTS

PACKAGE CONTENTES ...1

SYSTEM REQUIREMENT ..1

DEVELOPMENT BOARD DETAILS...1

MCU Interface Sockets ..2

LCD interface header ...6

Dip switch setting...8

Jumper setting..8

AUXCLK Input...10

RESET Switch...10

Power supply socket H3 and H4 ...10

VLCD Power adjustment..10

Extension socket ..10

SSD1906 APPLICATION PROGRAM INTERFACE ..11

THE FILE STRUCTURE OF SSD1906 API ..11

SUMMARY OF SSD1906 API...11

SSD1906 API DESCRIPTION...13

Initialization...13

MCU Register Operation..13

SSD1906 Register Operation...14

Display Memory Operation..15

Bitmap Operation ...16

Display Rotation ...18

Virtual Display...20

Example of Virtual Display ..20

Cursor Operation..21

SSD1906 Series Rev 1.10 P ii/43 Feb 2005 Solomon Systech

Memory Operation..23

Miscellaneous ...23

PROCEDURE TO PORT SSD1906 API TO A SYSTEM..25

Microcontroller Register Access ..25

Data Size Setting ..25

Host bus interface ..25

Registers & Display Memory Mapping...31

LCD Interface ..32

SCHEMATIC OF DVK1906QT2-1-A1 DEVELOPMENT BOARD..33

SSD1906 Series Rev 1.10 P iii/43 Feb 2005 Solomon Systech

LIST OF FIGURES
Figure 1: DVK1906QT2-1-A1 board ..1
Figure 2: Example of virtual display...20
Figure 3: Generic #1 interface connection diagram ..26
Figure 4: Generic #2 interface connection diagram ..27
Figure 5: Hitachi SH-3/SH-4 interface connection diagram...28
Figure 6: Motorola MC68K interface connection diagram...29
Figure 7: Motorola MC68EZ/VZ/SZ328 interface diagram..30
Figure 8: SSD1906 Memory Mapping Example ..31

LIST OF TABLES
Table 1: Socket P2 Pin Descriptions ...2
Table 2: Socket P3 Pin Descriptions ...3
Table 3: Socket P4 Pin Descriptions ...4
Table 4: Socket P5 Pin Descriptions ...5
Table 5: Header H1 Pin Descriptions ..6
Table 6: Header H2 Pin Descriptions ..7
Table 7: Configuration of dip switch S1...8
Table 8: Configuration of dip switch S2...8
Table 9: Configuration of jumper ...8
Table 10: SSD1906 API program structure...11
Table 11: SSD1906 API summary...11
Table 12: Color setting of cursors..21
Table 13: Color value definition of cursor in 16 bpp ...21
Table 14: CF[5:0] setting for Generic #1 interface ..26
Table 15: High byte and word read/write signals for Generic #2 interface..27
Table 16: CF[5:0] setting for Generic #2 interface ..27
Table 17: CF[5:0] setting for Hitachi SH-3/SH-4 interface...28
Table 18: CF[5:0] setting for Motorola MC68K interface ...29
Table 19: CF[5:0] setting for Motorola MC68EZ/VZ/SZ328 interface ...30

This document contains information on information on a product under development. Solomon Systech reserves the
right to change or discontinue this product without notice.

http://www.solomon-systech.com

SSD1906 Series Rev 1.10
P
1/43 Feb 2005 Copyright  2005 Solomon Systech Limited

Product Information
SSD1906QT2 Development Kit

DVK1906QT2-1-A1 is a development board of SSD1906QT2.
It is intended to help users expedite their design-in of Solomon
Systech LCD graphics controller.

PACKAGE CONTENTES
DVK1906QT2-1-A1 package consists of the following items:

1. DVK1906QT2-1-A1 development board
2. Application program interface (API) routines in C Language

SYSTEM REQUIREMENT
DVK1906QT2-1-A1 is served as a start point in developing

application with SSD1906QT2. To manipulate this graphics
controller, a microcontroller board is required to connect to this
board. Moreover, a LCD module is attached to development board
to display image from SSD1906QT2. The +3.3V power supply for
IOVDD of SSD1906QT2 can be supplied either through:
1. IOVDD pins found in MCU connector sockets P2, P3, P4 and

P5.
2. Socket H3 pin +3.3V or VCC and select through jumper J9.

DEVELOPMENT BOARD DETAILS
The development board does not include a

microcontroller because SSD1906QT2 is able to interface
many types of MCU and it’d better for the developers to
connect the preference MCU by themselves. It shares the
same reason for the arrangement of LCD module.

Figure 1: DVK1906QT2-1-A1 board

Item Ordering Part Number
SSD1906QT2
Development Kit DVK1906QT2-1-A1

DVK1906QT2-1-A1

ORDERING INFORMATION

SSD1906 Series Rev 1.10 P 2/43 Feb 2005 Solomon Systech

MCU Interface Sockets
The SSD1906QT2 should be interfaced with external microcontroller to control it and input image data. The
connection is done through MCU interface sockets P2, P3, P4 and P5. The pin assignment and function of
these sockets are described in the following tables.

Table 1: Socket P2 Pin Descriptions

Pin No. Pin Name Function
1 COREVDD No connection is required
2 AB3 System address bus A3
3 AB2 System address bus A2
4 AB1 System address bus A1
5 AB0 This input pin has multiple functions.

• For Generic #1, this pin is not used and should be connected to VSS.
• For Generic #2, this is an input of system address bit 0 (A0).
• For SH-3/SH-4, this pin is not used and should be connected to Vss.
• For MC68K, this is an input of the lower data strobe (LDS#).
• For DragonBall, this pin is not used and should be connected to VSS.

6 CS# Chip select input
7 M/R# M/R# pin is set high to access display buffer and low to access control registers

of SSD1906QT2.
8 BS# Bus status pin has different functions for particular MCU interface:

� For Generic #1, this pin must be tied to IOVDD.
� For Generic #2, this pin must be tied to IOVDD.
� For SH-3/SH-4, this pin is the input of bus start signal (BS#).
� For MC68K, this is the input of address strobe (AS#).
� For Dragonball, this pin must be tied to IOVDD.

9 RD# This pin has different functions for particular MCU interface:
• For Generic #1, this is an input of the read command for the lower data byte

(RD0#).
• For Generic #2, this is an input of the read command (RD#).
• For SH-3/SH-4, this pin is the input of read signal (RD#).
• For MC68K, this pin must be tied to IOVDD.
• For DragonBall, this is an input of the output enable (OE#).

10 WE0# This pin has different functions for particular MCU interface:
• For Generic #1, this is an input of the write enable signal for the lower data

byte (WE0#).
• For Generic #2, this is an input of the write enable signal (WE#).
• For SH-3/SH-4, this pin is the input of write enable signal for low byte

(WE0#).
• For MC68K, this pin must be tied to IOVDD.
• For DragonBall, this is an input of the byte enable signal for the D[7:0] data

byte (LWE#).
11 WE1# This pin has different functions for particular MCU interface:

• For Generic #1, this is an input of the write enable signal for the upper data
byte (WE1#).

• For Generic #2, this is an input of the byte enable signal for the high data
byte (BHE#).

• For SH-3/SH-4, this pin is the input of write enable signal for high byte
(WE1#).

• For MC68K, this is an input of the upper data strobe (UDS#).
• For DragonBall, this is an input of the byte enable signal for the D[15:8] data

byte (UWE#).
12 RD/WR# This pin has different functions for particular MCU interface:

SSD1906 Series Rev 1.10 P 3/43 Feb 2005 Solomon Systech

• For Generic #1, this is an input of the read command for the upper data byte
(RD1#).

• For Generic #2, this pin must be tied to IOVDD .
• For SH-3/SH-4, this pin is the input of read/write signal (RD/WR#).
• For MC68K, this is an input of the R/W# signal.
• For DragonBall, this pin must be tied to IOVDD .

13 RESET# Active low input to set all internal registers to the default state and to force all
signals to their inactive states.

14 GND Ground
15 CLKI Used as input clock source for bus clock and memory clock
16 IOVDD Power supply pin
17 WAIT# During a data transfer, this output pin is driven active to force the system to insert

wait states. It is driven inactive to indicate the completion of a data transfer.
WAIT# is released to the high impedance state after the data transfer is
complete. Its active polarity is configurable. A pull-up or pull-down resistor
should be used to resolve any data contention issues.
� For Generic #1, this pin outputs the wait signal (WAIT#).
• For Generic #2, this pin outputs the wait signal (WAIT#).
• For SH-3, this pin outputs the wait request signal (WAIT#).
• For SH-4, this pin outputs the device ready signal (RDY#).
• For MC68K, this pin outputs the data transfer acknowledge signal

(DTACK#).
• For DragonBall, this pin outputs the data transfer acknowledge signal

(DTACK#).
18 DB15 System data bus D15
19 DB14 System data bus D14
20 DB13 System data bus D13
21 DB12 System data bus D12
22 DB11 System data bus D11
23 DB10 System data bus D10
24 DB9 System data bus D9
25 GND Ground
26 GND Ground

Table 2: Socket P3 Pin Descriptions

Pin No. Pin Name Function
1 IOVDD Power supply pin
2 DB8 System data bus D8
3 DB7 System data bus D7
4 DB6 System data bus D6
5 DB5 System data bus D5
6 DB4 System data bus D4
7 DB3 System data bus D3
8 DB2 System data bus D2
9 DB1 System data bus D1
10 DB0 System data bus D0
11 GND Ground
12 IOVDD Power supply pin
13 LPWMOUT Connect to LPWMOUT pin of SSD1906QT2. This output pin has multiple

functions.
• PWM clock output
• General purpose output

14 GPIO6 General purpose IO pin 6 (GPIO6)
15 GPIO5 General purpose IO pin 5 (GPIO5)

SSD1906 Series Rev 1.10 P 4/43 Feb 2005 Solomon Systech

16 GPIO4 General purpose IO pin 4 (GPIO4)
17 GPIO3 This pin has multiple functions.

• SPL for Sharp HR-TFT
• General purpose IO pin 3 (GPIO3)

18 GPIO2 This pin has multiple functions.
• REV for Sharp HR-TFT
• General purpose IO pin 2 (GPIO2)

19 GPIO1 This pin has multiple functions.
• CLS for Sharp HR-TFT
• General purpose IO pin 1 (GPIO1)

20 GPIO0 This pin has multiple functions.
• PS for Sharp HR-TFT
• General purpose IO pin 0 (GPIO0)
• Hardware Color Invert input pin

21 LCVOUT Connect to LCVOUT pin of SSD1906QT2. This output pin has multiple
functions.
• CV Pulse Output
• General purpose output

22 GPO General purpose output (possibly used for controlling the LCD power)
23 LDEN Connect to LDEN pin of SSD1906QT2. This output pin has multiple functions.

• Display enable (DRDY) for TFT panels
• LCD backplane bias signal (MOD) for all other LCD panels

24 IOVDD Power input pin
25 GND Ground
26 GND Ground

Table 3: Socket P4 Pin Descriptions

Pin No. Pin Name Function
1 COREVDD No connection is required
2 LFRAME Connect to LFRAME pin of SSD1906QT2. This output pin has multiple

functions.
• Frame Pulse
• SPS for Sharp HR-TFT

3 LLINE Connect to LLINE pin of SSD1906QT2. This output pin has multiple functions.
• Line Pulse
• LP for Sharp HR-TFT

4 LSHIFT Connect to LSHIFT pin of SSD1906QT2. This output pin has multiple functions.
• Shift Clock
• CLK for Sharp HR-TFT

5 LDATA0 LCD panel data LDATA0
6 LDATA1 LCD panel data LDATA1
7 LDATA2 LCD panel data LDATA2
8 LDATA3 LCD panel data LDATA3
9 LDATA4 LCD panel data LDATA4
10 LDATA5 LCD panel data LDATA5
11 LDATA6 LCD panel data LDATA6
12 GND Ground
13 IOVDD Power supply pin
14 LDATA7 LCD panel data LDATA7
15 LDATA8 LCD panel data LDATA8
16 LDATA9 LCD panel data LDATA9
17 LDATA10 LCD panel data LDATA10
18 LDATA11 LCD panel data LDATA11
19 LDATA12 LCD panel data LDATA 12

SSD1906 Series Rev 1.10 P 5/43 Feb 2005 Solomon Systech

20 LDATA13 LCD panel data LDATA13
21 LDATA14 LCD panel data LDATA14
22 LDATA15 LCD panel data LDATA15
23 LDATA16 LCD panel data LDATA16
24 LDATA17 LCD panel data LDATA17
25 GND Ground
26 GND Ground

Table 4: Socket P5 Pin Descriptions

Pin No. Pin Name Function
1 IOVDD Power supply pin
2 AUXCLK Connect to AUXCLK of SSD1906. This pin may be used as input clock source

for pixel clock.
3 CF7 Configuration pin CF7. No connection is required.
4 CF6 Configuration pin CF6. No connection is required.
5 CF5 Configuration pin CF5. No connection is required.
6 CF4 Configuration pin CF4. No connection is required.
7 CF3 Configuration pin CF3. No connection is required.
8 CF2 Configuration pin CF2. No connection is required.
9 CF1 Configuration pin CF1. No connection is required.
10 CF0 Configuration pin CF0. No connection is required.
11 AB17 System address bus A17
12 AB16 System address bus A16
13 AB15 System address bus A15
14 AB14 System address bus A14
15 AB13 System address bus A13
16 AB12 System address bus A12
17 AB11 System address bus A11
18 AB10 System address bus A10
19 AB9 System address bus A9
20 AB8 System address bus A8
21 AB7 System address bus A7
22 AB6 System address bus A6
23 AB5 System address bus A5
24 AB4 System address bus A4
25 GND Ground
26 GND Ground

SSD1906 Series Rev 1.10 P 6/43 Feb 2005 Solomon Systech

LCD interface header
The socket header H1 and H2 is designed to be interfaced with external LCD panel module. The pin
assignment and description of these two sockets are show in the following tables.

Table 5: Header H1 Pin Descriptions

Pin No. Pin Name Function
1 LDATA0 LCD panel data LDATA0
2 GND Ground
3 LDATA1 LCD panel data LDATA1
4 LDATA16 LCD panel data LDATA16
5 LDATA2 LCD panel data LDATA2
6 LDATA17 LCD panel data LDATA17
7 LDATA3 LCD panel data LDATA3
8 GND Ground
9 LDATA4 LCD panel data LDATA4
10 GND Ground
11 LDATA5 LCD panel data LDATA5
12 GND Ground
13 LDATA6 LCD panel data LDATA6
14 GND Ground
15 LDATA7 LCD panel data LDATA7
16 GND Ground
17 LDATA8 LCD panel data LDATA8
18 GND Ground
19 LDATA9 LCD panel data LDATA9
20 GND Ground
21 LDATA10 LCD panel data LDATA10
22 GND Ground
23 LDATA11 LCD panel data LDATA11
24 GND Ground
25 LDATA12 LCD panel data LDATA12
26 GND Ground
27 LDATA13 LCD panel data LDATA13
28 LPWMOUT Connect to LPWMOUT pin of SSD1906QT2. This output pin has multiple functions.

• PWM Clock output
• General purpose output

29 LDATA14 LCD panel data LDATA14
30 NC No connection
31 LDATA15 LCD panel data LDATA15
32 VOUT Power supply to drive LCD panel
33 LSHIFT Connect to LSHIFT pin of SSD1906QT2. This output pin has multiple functions.

• Shift Clock
• CLK for Sharp HR-TFT

34 VDC +5V supply
35 LDEN Connect to LDEN pin of SSD1906QT2. This output pin has multiple functions.

• Display enable (DRDY) for TFT panels
• LCD backplane bias signal (MOD) for all other LCD panels

36 VLCD +5V to 15V Power supply for LCD
37 LLINE Connect to LLINE pin of SSD1906QT2. This output pin has multiple functions.

• Line Pulse
• LP for Sharp HR-TFT

38 LDEN This pin is connected to pin 35 LDEN
39 LFRAME Connect to LFRAME pin of SSD1906QT2. This output pin has multiple functions.

• Frame Pulse
• SPS for Sharp HR-TFT

SSD1906 Series Rev 1.10 P 7/43 Feb 2005 Solomon Systech

40 GPO General Purpose Output (possibly used for controlling the LCD power).

Table 6: Header H2 Pin Descriptions

Pin No. Pin Name Function
1 GPIO0 This pin has multiple functions.

• PS for Sharp HR-TFT
• General purpose IO pin 0 (GPIO0)
• Hardware Color Invert input pin

2 GND Ground
3 GPIO1 This pin has multiple functions.

• CLS for Sharp HR-TFT
• General purpose IO pin 1 (GPIO1)

4 GND Ground
5 GPIO2 This pin has multiple functions.

• REV for Sharp HR-TFT
• General purpose IO pin 2 (GPIO2)

6 GND Ground
7 GPIO3 This pin has multiple functions.

• SPL for Sharp HR-TFT
• General purpose IO pin 3 (GPIO3)

8 GND Ground
9 GPIO4 General purpose IO pin 4 (GPIO4)
10 GND Ground
11 GPIO5 General purpose IO pin 5 (GPIO5)
12 GND Ground
13 GPIO6 General purpose IO pin 6 (GPIO6)
14 GND Ground
15 LCVOUT Connect to LCVOUT pin of SSD1906QT2. This output pin has multiple functions.

• CV Pulse Output
• General purpose output

16 GND Ground

SSD1906 Series Rev 1.10 P 8/43 Feb 2005 Solomon Systech

Dip switch setting
In DVK1906QT2-1-A1 development board, there are two dip switches S1, S2 for different configuration
purpose. Their functions are described in the tables below.

Table 7: Configuration of dip switch S1

Dip switch S1 Close (On/0) Open (Off/1)
1 GPIO0 pull down (if J1 is set to 2-3) GPIO0 pull up (if J1 is set to 2-3)
2 GPIO1 pull down (if J2 is set to 2-3) GPIO1 pull up (if J2 is set to 2-3)
3 GPIO2 pull down (if J3 is set to 2-3) GPIO2 pull up (if J3 is set to 2-3)
4 GPIO3 pull down (if J4 is set to 2-3) GPIO3 pull up (if J4 is set to 2-3)
5 GPIO4 pull down (if J5 is set to 2-3) GPIO4 pull up (if J5 is set to 2-3)
6 GPIO5 pull down (if J6 is set to 2-3) GPIO5 pull up (if J6 is set to 2-3)
7 GPIO6 pull down (if J7 is set to 2-3) GPIO6 pull up (if J7 is set to 2-3)
8 Reserved Reserved

For dip switches S2, they are used to set configuration the logic level of inputs CF[7:0] of SSD1906QT2.
These input values are read on the rising edge of reset signal. The meanings of setting of CF[7:0] with respect
to dip switches S2 is described below.

Table 8: Configuration of dip switch S2

Dip switch S2 Close (On/Logic 0) Open (Off/Logic 1)
Switch 3 (CF2) Switch 2 (CF1) Switch 1 (CF0) Host bus interface
0 0 0 SH-3/SH-4
0 0 1 MC68K
0 1 0 Reserved
0 1 1 Generic #1
1 0 0 Generic #2
1 0 1 Reserved
1 1 0 Dragonball

1-3 (CF[2:0])

1 1 1 Reserved
4 (CF3) Configure GPIO pins as outputs at power-

on (for use by HR-TFT when selected)
Configure GPIO pins as inputs at power-on

5 (CF4) Little endian bus interface Big endian bus interface
6 (CF5) WAIT# is active low WAIT# is active high

Switch 4 (CF7) Switch (CF6) CLKI to BCLK divide ratio
0 0 1:1
0 1 2:1
1 0 3:1

7-8
(CF[7:6])

1 1 4:1

Jumper setting
The functions of each jumper positions are listed in the following table.

Table 9: Configuration of jumper

Jumper Function Position 1-2 Position 2-3 No Jumper
J1 GPIO0 connection Connect to LCD

output header H2
Either pull up and down
by dip switch S1 setting

N/A

J2 GPIO1 connection Connect to LCD
output header H2

Either pull up and down
by dip switch S1 setting

N/A

J3 GPIO2 connection Connect to LCD
output header H2

Either pull up and down
by dip switch S1 setting

N/A

J4 GPIO3 connection Connect to LCD Either pull up and down N/A

SSD1906 Series Rev 1.10 P 9/43 Feb 2005 Solomon Systech

output header H2 by dip switch S1 setting
J5 GPIO4 connection Connect to LCD

output header H2
Either pull up and down
by dip switch S1 setting

N/A

J6 GPIO5 connection Connect to LCD
output header H2

Either pull up and down
by dip switch S1 setting

N/A

J7 GPIO6 connection Connect to LCD
output header H2

Either pull up and down
by dip switch S1 setting

N/A

J8 COREVDD connection COREVDD is
connected to +2.5V
from H4 (for no
regulator version of
SSD1906QT2 only)

N/A COREVDD is
regulated by
SSD1906QT2 itself

J9 IOVDD connection IOVDD is connected
to +3.3V from H3

IOVDD is connected to
VCC from H3

No change on
connection (Note 1)

J10 VOUT (LCD panel
power) connection

VOUT is connected
to VDC

VOUT is connected to
VCC from H3 (Note 2)

N/A

J11 A0 connection N/A Connect to ground No change on
connection

J12 BS# connection BS# is connected to
IOVDD

BS# is connected to CS# No change in
connection

J13 RD# connection RD# is connected to
IOVDD

N/A No change in
connection

J14 WE0# connection WE0# is connected
to IOVDD

N/A No change in
connection

J15 WE1# connection N/A N/A No change in
connection

J16 Reset# connection N/A Reset generated from
SW1 reset switch

No change in
connection

J18 TESTEN connection N/A Connect to GND N/A
J19 M/R connection N/A N/A N/A

Connection Jumper Function
Short Open

J20 VDC connection VDC = +5V floated
J21 NC N/A N/A
J22 VLCD connection VLCD = +5 to 15V

(controlled by VR1)
floated

Jumper Function Position 1-2 Position 3-4 Position 5-6 No Jumper
J17 RD/WR#

connection
Connect to
IOVDD

N/A N/A No change in
connection

Note 1: Since DVK1906QT2-A0 board is usually connected to external microcontroller through sockets P2, P3,
P4 and P5, IOVDD is normally supplied from these sockets also. There is no need to give IOVDD from socket
H3.
Note 2: If VOUT (LCD panel signal power) is the same as IOVDD, VOUT can get power from IOVDD by
configuring the jumper connection like this: J9: 2-3 and J10: 2-3. If VOUT (LCD panel signal power) is +5V,
VOUT can get power from VDC by configuring the jumper connection like this: J10: 1-2 and J20: Short.
Otherwise, users have to supply VOUT power by wrapping an external power cable to pin 2 of J10.

SSD1906 Series Rev 1.10 P 10/43 Feb 2005 Solomon Systech

AUXCLK Input
If AUXCLK is enabled and input from AUXCLK pin of SSD1906QT2, users can plug an oscillator with
appropriate frequency into socket X1 to provide AUXCLK clock signal.

RESET Switch
If jumper J16 is connected to 2-3 position, the active low reset signal to SSD1906QT2 is generated when SW1
switch is pressed down.

Power supply socket H3 and H4
Since DVK1906QT2-A1 board is usually connected to external microcontroller through sockets P2, P3, P4 and
P5, IOVDD is normally supplied from these sockets also. There is no need to give IOVDD from socket H3
through +3.3V or VCC pins. In addition, SSD1906QT2 normally includes an internal regulator to provide +2.5V
COREVDD supply. Hence it’s not required to supply COREVDD from socket H4 through +2.5V pin.

VLCD Power adjustment
DVK1906QT2-A1 board provided a convenient power for most kind of LCD panels require a positive high
voltage VLCD power. The VLCD power signal exists in the connector from DVK1906QT2-A1 to LCD panel.
VR1 is used to adjust VLCD voltage from +5V to +15V.

Extension socket
The extension sockets P6, P7, P8 and P9 are designed for debugging use when the development board is
manufactured. These sockets are connected to Motorola Dragonball MC68VZ328. If the target system is
Dragonball VZ MCU, these 4 sockets can be considered as connection interface. The pin assignment can be
found at development board schematic section.

SSD1906 Series Rev 1.10 P 11/43 Feb 2005 Solomon Systech

SSD1906 Application Program Interface
The application program interface (API) is designed to ease programming effort by providing standard routines
to perform features of SSD1906. They are originally designed for NEC VR4181 and Motorola Dragonball
M68VZ328 platforms. However, it is easy to plot the APIs into other platforms as they are written in C
language.

The APIs described below are high-level functions for programmers to learn how to program SSD1906 quickly
and expedite the design process. If there is any specific function requirement that cannot be fulfilled by these
APIs, users are advised to study the source codes of these APIs and modify them to suit the need.

The File Structure of SSD1906 API
The APIs are constructed by several C programs and header files. The brief introduction of each file is as
follows.

Table 10: SSD1906 API program structure

Program File Description
Bitmap.c Contains functions for display and finding the properties of bitmaps
Cursor.c Cursor 1 and 2 display routines
Mc68vz328.c Program for initialization and low level operations of Motorola Dragonball

MC68VZ328 MCU.
VR4181.c Program for initialization and low level operations of NEC VR4181 MIPS

MCU.
lcddrv.c Initialize SSD1906 registers to enable its functions
Main.c The C program contains main loop
Memory.c Initialize, allocate and free display memory routines
Rotate.c Functions supporting display rotate mode with 0, 90, 180, 270 degree

counter-clockwise hardware rotation for display image.
SSD1906.c Low level routines to read/write registers and memory buffer of SSD1906

graphics controller
Virtual.c Routine provided for virtual display feature

Bitmap.h Bitmap file format structures definition
Mc68vz328.h Dragonball MCU registers address definition
VR4181.h VR4181 MCU registers address definition
Lcd.h LCD panels size definition
Lcdinfo.h SSD1906 control registers preset value definition
SSD1906.h SSD1906 control registers address definition

Summary of SSD1906 API
In the table below, these APIs are classified into several categories according to their functionalities.

Table 11: SSD1906 API summary

API name Function
Initialization

McuInit To initialize the MCU to make it able to communicate with SSD1906
LcdInit To initialize the registers and display memory of SSD1906

MCU Register Operation

SSD1906 Series Rev 1.10 P 12/43 Feb 2005 Solomon Systech

RdMcuByteReg Read MCU register value with size of one byte
RdMcuWordReg Read MCU register value with size of one word
RdMcuDWordReg Read MCU register value with size of one double word
WtMcuByteReg Write value into MCU register with size of one byte
WtMcuWordReg Write value into MCU register with size of one word
WtMcuDWordReg Write value into MCU register with size of one double word

SSD1906 Register Operation
ReadRegByte Read SSD1906 register value with size of one byte
ReadRegWord Read SSD1906 register value with size of one word
ReadRegDword Read SSD1906 register value with size of one double word
WriteRegByte Write value into SSD1906 register with size of one byte
WriteRegWord Write value into SSD1906 register with size of one word
WriteRegDword Write value into SSD1906 register with size of one double word
Disp1906AllReg Display the content of all SSD1906 registers on debugger console

window
Display Memory Operation

ReadDisplayByte Read SSD1906 display memory value with size of one byte
ReadDisplayWord Read SSD1906 display memory value with size of one word
ReadDisplayDword Read SSD1906 display memory value with size of one double word
WriteDisplayBytes Write value into SSD1906 display memory with size of one byte and

certain number of times
WriteDisplayWords Write value into SSD1906 display memory with size of one word and

certain number of times
WriteDisplayDwords Write value into SSD1906 display memory with size of one double

word and certain number of times
Disp1906Mem Display the content of SSD1906 memory with the specified start and

end address on debugger console window
Bitmap Operation

MainWinDispOn Display bitmap on main window of SSD1906
MainWinDispFree Free the allocated memory occupied by bitmap displayed on main

window of SSD1906
FloatWinDispOn Display bitmap on floating window of SSD1906
FloatWinDispOff Turn off floating window and free the allocated memory occupied by

bitmap displayed on floating window of SSD1906
ReadBMPInfo Read the width, height and bit-per-pixel of bitmap
WriteBmpLUT Read LUT of bitmap and write into LUT entries of SSD1906

Display Rotation
Rot0MainBmp Rotate the main bitmap window by 0 degree counter-clockwise
Rot90MainBmp Rotate the main bitmap window by 90 degree counter-clockwise
Rot180MainBmp Rotate the main bitmap window by 180 degree counter-clockwise
Rot270MainBmp Rotate the main bitmap window by 270 degree counter-clockwise
Rot0FloatBmp Rotate the floating bitmap window by 0 degree counter-clockwise
Rot90FloatBmp Rotate the floating bitmap window by 90 degree counter-clockwise
Rot180FloatBmp Rotate the floating bitmap window by 180 degree counter-clockwise
Rot270FloatBmp Rotate the floating bitmap window by 270 degree counter-clockwise

Virtual Display
VirtMovePic Move the virtual main bitmap window

Cursor Operation
Cursor1Blink Set the blinking period of cursor 1
Cursor2Blink Set the blinking period of cursor 2
Cursor1Color Define the RGB color value for cursor 1
Cursor2Color Define the RGB color value for cursor 2
Cursor1DispOn Display cursor 1 on LCD panel
Cursor2DispOn Display cursor 2 on LCD panel

SSD1906 Series Rev 1.10 P 13/43 Feb 2005 Solomon Systech

Cursor1DispOff Turn off cursor 1
Cursor2DispOff Turn off cursor 2

Memory Operation
MemRemainSize Find the remaining size of memory available to be further used
MemUsedSize Find the already allocated size of displayed memory

Miscellaneous
Disp1906LUT Display SSD1906 color look-up table content on debugger console

window
SSD1906Delay Create a delay time in seconds by SSD1906
CheckEndian Check if the MCU system is big or little endian
DispBlank Enable/disable blanking of the screen
DispMainNxNChecker Display a n by n checker board image

SSD1906 API description

Initialization

McuInit
Prototype: void McuInit(void)
Description: Initialize the microcontroller system such that it can communicate with SSD1906. For different

type of microcontrollers, the initialization procedures are difference. If the system is not
MC68VZ328 or VR4181, user should make following changes in this routine.
1. Preserve memory space to map SSD1906 registers and display buffer into the system.
2. Configure MCU memory control pins such that it can interface with SSD1906.
This function should be called first before any other SSD1906 APIs.

Parameters: None
Return value: None

LcdInit
Prototype: void LcdInit(void)
Description: This function initializes SSD1906 LCD graphics controller by setting the control registers with

values defined in “LcdInfo.h” file. Moreover, it initializes display memory and clears its
contents.

Parameters: None
Return value: None

MCU Register Operation
These functions are used to access the control registers of microcontroller. Since these routines are written
such that the real address of register is calculated as “base address + reg”, where reg is the offset address of
register. Users have to define the correct “base address” value for their microcontroller system.

RdMcuByteReg
Prototype: BYTE RdMcuByteReg(DWORD reg)
Description: Read the value of register from MCU with size of one byte at address "reg".
Parameters: reg The offset address of register to be read
Return value: Read value is returned in BYTE size

RdMcuWordReg
Prototype: WORD RdMcuWordReg(DWORD reg)
Description: Read the value of register from MCU with size of one word at address "reg".

SSD1906 Series Rev 1.10 P 14/43 Feb 2005 Solomon Systech

Parameters: reg The offset address of register to be read
Return value: Read value is returned in WORD size

RdMcuDWordReg
Prototype: DWORD RdMcuDWordReg(DWORD reg)
Description: Read the value of register from MCU with size of one double word at address "reg".
Parameters: reg The offset address of register to be read
Return value: Read value is returned in DWORD (double word) size

WtMcuByteReg
Prototype: void WtMcuByteReg(DWORD reg, BYTE val)
Description: Write the value into register with size of one byte at address "reg".
Parameters: reg The offset address of register to be written
 val The byte value to be written
Return value: None

WtMcuWordReg
Prototype: void WtMcuWordReg(DWORD reg, WORD val)
Description: Write the value into register with size of one word at address "reg".
Parameters: reg The offset address of register to be written
 val The word value to be written
Return value: None

WtMcuDWordReg
Prototype: void WtMcuDWordReg(DWORD reg, DWORD val)
Description: Write the value into register with size of one double word at address "reg".
Parameters: reg The offset address of register to be written
 val The double word value to be written
Return value: None

SSD1906 Register Operation
These routines provide function to access the control register of SSD1906. As the real address of the registers
are found by “RegAddress + index”, users have to define the value of “RegAddress” according to the mapping
address of control registers into MCU system memory space.

ReadRegByte
Prototype: BYTE ReadRegByte(DWORD index)
Description: Read the value of register with size of one byte at address "index".
Parameters: index The offset address of register to be read
Return value: Read value is returned in BYTE size

ReadRegWord
Prototype: WORD ReadRegWord(DWORD index)
Description: Read the value of register with size of one word at address "index".
Parameters: index The offset address of register to be read
Return value: Read value is returned in WORD size

ReadRegDword
Prototype: DWORD ReadRegDword(DWORD index)
Description: Read the value of register with size of one double word at address "index".
Parameters: index The offset address of register to be read
Return value: Read value is returned in DWORD (double word) size

SSD1906 Series Rev 1.10 P 15/43 Feb 2005 Solomon Systech

WriteRegByte
Prototype: void WriteRegByte(DWORD index, BYTE value)
Description: Write the value into register with size of one byte at address "index".
Parameters: index The offset address of register to be written
 value The byte value to be written
Return value: None

WriteRegWord
Prototype: void WriteRegWord(DWORD index, WORD value)
Description: Write the value into register with size of one word at address "index".
Parameters: index The offset address of register to be written
 value The word value to be written
Return value: None

WriteRegDword
Prototype: void WriteRegDword(DWORD index, DWORD value)
Description: Write the value into register with size of one double word at address "index".
Parameters: index The offset address of register to be written
 value The double word value to be written
Return value: None

Disp1906AllReg
Prototype: void Disp1906AllReg(void)
Description: Display all control registers value of SSD1906 on debugger console window.
Parameters: None
Return value: None

Display Memory Operation
These routines are used to access the display memory of SSD1906. As the real address of the display
memory are calculated by “MemAddress + adrOff”, users have to define the value of “MemAddress” according
to the mapping address of display memory into MCU system memory space.

ReadDisplayByte
Prototype: BYTE ReadDisplayByte(DWORD adrOff)
Description: Read the value of display memory with size of one byte at address "adrOff".
Parameters: adrOff The offset address of display memory to be read
Return value: Read value is returned in BYTE size

ReadDisplayWord
Prototype: WORD ReadDisplayWord(DWORD adrOff)
Description: Read the value of display memory with size of one word at address "adrOff".
Parameters: adrOff The offset address of display memory to be read
Return value: Read value is returned in WORD size

ReadDisplayDword
Prototype: DWORD ReadDisplayDword(DWORD adrOff)
Description: Read the value of display memory with size of one double word at address "adrOff".
Parameters: adrOff The offset address of display memory to be read
Return value: Read value is returned in DWORD size

WriteDisplayBytes
Prototype: void WriteDisplayBytes(DWORD adrOff, BYTE value, DWORD count)

SSD1906 Series Rev 1.10 P 16/43 Feb 2005 Solomon Systech

Description: Write the value into register with size of one byte at address "adrOff" with repeat number of
times "count".
Parameters: adrOff The offset address of display memory to be written
 value The byte value to be written
 count Number of the same byte value to be written
Return value: None

WriteDisplayWords
Prototype: void WriteDisplayWords(DWORD adrOff, WORD value, DWORD count)
Description: Write the value into register with size of one word at address "adrOff" with repeat number of

times "count".
Parameters: adrOff The offset address of display memory to be written
 value The word value to be written
 count Number of the same word value to be written
Return value: None

WriteDisplayDwords
Prototype: void WriteDisplayDwords(DWORD adrOff, DWORD value, DWORD count)
Description: Write the value into register with size of one double word at address "adrOff" with repeat

number of times "count".
Parameters: adrOff The offset address of display memory to be written
 value the double word value to be written
 count number of the same double word value to be written
Return value: None

Disp1906Mem
Prototype: void Disp1906Mem(int startAdr, int endAdr)
Description: Show display memory values of SSD1906 on debugger console window.
Parameters: startAdr the start offset address of display memory content to be shown
 endAdr the end offset address of display memory content to be shown
Return value: None

Bitmap Operation
SSD1906 API is able to display bitmap on LCD panel. However, the bitmap file should be converted into a
specified format in C program first. A program utility “bmpconv.exe” provides such service. The procedure to
use this utility to change a bitmap file into C program is as follows.

1. Suppose there is a bitmap file called “abc.bmp” in the same directory as bmpconv.exe.
2. Type the command: bmpconv.exe c abc.bmp to convert bitmap file.
3. If the command is success, the C program file abc.c is generated.
4. The C program abc.c can be converted back to bitmap file by typing the command: bmpconv.exe b

abc.c.

The content of abc.c program is an array with the name abc[]. Afterwards, this bitmap can be displayed by
calling appropriate routine which reads the image content at starting address “abc”.

Care should be taken on the physical dimension of bitmap file. The horizontal size of bitmap should be
multiple of value 32/bit-per-pixel. For instance, if the image of bitmap is 8bpp, the horizontal size should be
multiple of 4 (32/8 = 4).

Before displaying a bitmap on screen, it has to ensure that enough display buffer is available for the bitmap.
Users can call memory operation APIs to find out the remaining display buffer size in SSD1906. The memory
size required by a bitmap can be calculated as the equation below.

Required buffer size = Width x Height x (bit-per-pixel / 8)

SSD1906 Series Rev 1.10 P 17/43 Feb 2005 Solomon Systech

It is difficult to find 16 bit-per-pixel bitmaps. A 24-bit, i.e. true color, bitmap can be used and SSD1906 APIs
translate it into 16 bit-per-pixel format automatically.

MainWinDispOn
Prototype: BOOL MainWinDispOn(const unsigned char *Image)
Description: Allocate display buffer memory and display bitmap on main window of SSD1906. In 1, 2, 4, 8

bit-per-pixel situations, the Lookup Table (LUT) is read from bitmap and written into LUT
entries of SSD1906.

Parameters: Image the starting address of bitmap array in system
Return value: TRUE success to display bitmap on main window
 FALSE fail to allocate memory to display bitmap

MainWinDispFree
Prototype: void MainWinDispFree(void)
Description: Free the allocated display buffer memory occupied by bitmap on main window of SSD1906.

The sequence of calling MainWinDispOn and this routine should be taken care such that the
memory is properly freed.

Parameters: None
Return value: None

FloatWinDispOn
Prototype: BOOL FloatWinDispOn (const unsigned char *Image, int startx, int starty)
Description: Allocate display buffer memory to display bitmap on floating window of SSD1906 and define

the display position on LCD panel. The origin of the position (0, 0) is at upper left corner of the
screen.

 In 1, 2, 4, 8 bit-per-pixel situations, the color of image in floating window is referenced to the
LUT of main window. Therefore, it has to ensure that the LUT of bitmap of floating window is
the same as the LUT of main window for correct color display. Moreover, the bit-per-pixel of
bitmap in main and floating windows should be the same.

Parameters: Image the starting address of bitmap array in system
 startx upper left x-coordinate of floating window
 starty upper left y-coordinate of floating window
Return value: TRUE success to display bitmap on floating window
 FALSE fail to allocate memory to display bitmap

FloatWinDispOff
Prototype: void FloatWinDispOff (void)
Description: Free the allocated display buffer memory occupied by bitmap on floating window of SSD1906.

Besides, the floating window is turned off. The sequence of calling FloatWinDispOn and this
routine should be taken care such that the memory is properly freed.

Parameters: None
Return value: None

ReadBMPInfo
Prototype: void ReadBMPInfo (const unsigned char *BmpPtr, DWORD *bWidth, DWORD *bHeight,

WORD *bmpBpp)
Description: Read the width, height and bit-per-pixel of a bitmap
Parameters: BmpPtr the starting address of bitmap array in system
 bWidth width of bitmap file to be read back
 bHeight Height of bitmap file to be read back
 bmpBpp Bit-per-pixel of bitmap file to be read back
 Return value: None

SSD1906 Series Rev 1.10 P 18/43 Feb 2005 Solomon Systech

WriteBmpLUT
Prototype: void WriteBmpLUT (const unsigned char *BmpPtr)
Description: Read the Lookup table (LUT) of bitmap and write into LUT entries of SSD1906. If the bit-per-

pixel of bitmap is greater than 8-bit, no action in this routine is performed.
Parameters: BmpPtr the starting address of bitmap array in system
Return value: None

Example of Bitmap Operation
Suppose we want to display a bitmap with array Img1 on main window. This bitmap is converted by Img1.bmp
with bmpconv.exe. Moreover, another bitmap with array Img2 is displayed on floating window for a while.
Afterwards, the floating window is turned off and main window occupied memory is freed. The program is
written as below.

MainWinDispOn(Img1);
FloatWinDispOn(Img2, 120, 5); //Display position(x,y) = (120, 5)
SSD1906Delay(2); //Delay loop for 2 seconds
FloatWinDispOff(); //Pay attention to sequence of calling
MainWinDispFree(); //these two functions to free memory

Display Rotation
This feature provides 0, 90, 180 and 270 degree counter-clockwise rotation of main and floating windows.
However, attention should be paid before performing rotation. In 0 and 180 degree cases, the image width
should be a multiple of 32 ÷ bit-per-pixel. For 90 and 270 situations, the height of image should be a multiple
of 32 ÷ bit-per-pixel. These criterions are applied to rotated image in main and floating windows.

Whenever there is a main and floating window displaying on LCD panel at the same time, their display
orientation should be the same. User has to ensure this in the program.

Rot0MainBmp
Prototype: void Rot0MainBmp (const unsigned char *Image)
Description: Rotate the image to 0-degree orientation in main window. This image should be the one

which is displayed by calling the function MainWinDispOn.
Parameters: Image the starting address of bitmap array in system
Return value: None

Rot90MainBmp
Prototype: void Rot90MainBmp (const unsigned char *Image)
Description: Rotate the image to 90-degree counter-clockwise orientation in main window. This image

should be the one which is displayed by calling the function MainWinDispOn.
Parameters: Image the starting address of bitmap array in system
Return value: None

Rot180MainBmp
Prototype: void Rot180MainBmp (const unsigned char *Image)
Description: Rotate the image to 180-degree counter-clockwise orientation in main window. This image

should be the one which is displayed by calling the function MainWinDispOn.
Parameters: Image the starting address of bitmap array in system
Return value: None

Rot270MainBmp
Prototype: void (const unsigned char *Image)
Description: Rotate the image to 270-degree counter-clockwise orientation in main window. This image

should be the one which is displayed by calling the function MainWinDispOn.
Parameters: Image the starting address of bitmap array in system

SSD1906 Series Rev 1.10 P 19/43 Feb 2005 Solomon Systech

Return value: None

Rot0FloatBmp
Prototype: void Rot0FloatBmp (const unsigned char *Image, int startx, int starty)
Description: Rotate the image to 0-degree orientation in floating window. The image should be the one

which is displayed by calling the function FloatWinDispOn. This routine can also be used to
move the position of floating window on the screen.

Parameters: Image the starting address of bitmap array in system
startx Upper left x-coordinate of floating window

 starty Upper left y-coordinate of floating window
Return value: None

Rot90FloatBmp
Prototype: void Rot90FloatBmp (const unsigned char *Image, int startx, int starty)
Description: Rotate the image to 90-degree counter-clockwise orientation in floating window. The image

should be the one which is displayed by calling the function FloatWinDispOn. This routine can
also be used to move the position of floating window on the screen.

Parameters: Image the starting address of bitmap array in system
startx Upper left x-coordinate of floating window

 starty Upper left y-coordinate of floating window
 Return value: None

Rot180FloatBmp
Prototype: void Rot180FloatBmp (const unsigned char *Image, int startx, int starty)
Description: Rotate the image to 180-degree counter-clockwise orientation in floating window. The image

should be the one which is displayed by calling the function FloatWinDispOn. This routine can
also be used to move the position of floating window on the screen.

Parameters: Image the starting address of bitmap array in system
startx Upper left x-coordinate of floating window

 starty Upper left y-coordinate of floating window
Return value: None

Rot270FloatBmp
Prototype: void (const unsigned char *Image, int startx, int starty)
Description: Rotate the image to 270-degree counter-clockwise orientation in floating window. The image

should be the one which is displayed by calling the function FloatWinDispOn. This routine can
also be used to move the position of floating window on the screen.

Parameters: Image the starting address of bitmap array in system
startx Upper left x-coordinate of floating window

 starty Upper left y-coordinate of floating window
Return value: None

Example of Display Rotation
Now we have Img1 bitmap array displaying on main window and Img2 bitmap array displaying on floating
window. Then we rotate both windows from 0 to 90, 180, 270 and back to 0 in step by step. Afterwards, the
floating window is moved around the screen. It is noted that whenever the main window rotates to a particular
orientation, the floating window has to follow the same orientation and this is done by programming SSD1906
to do so.

MainWinDispOn(Img1);
FloatWinDispOn(Img2, 10, 5); //Display position (x,y) = (10,5)
Rot90MainBmp(Img1); //Rotate 90 degree
Rot90FloatBmp(Img2, 10, 5);
SSD1906Delay(2); //Delay loop for 2 seconds
Rot180MainBmp(Img1); //Rotate 180 degree
Rot180FloatBmp(Img2, 10, 5);
SSD1906Delay(2); //Delay loop for 2 seconds

SSD1906 Series Rev 1.10 P 20/43 Feb 2005 Solomon Systech

Rot270MainBmp(Img1); //Rotate 270 degree
Rot270FloatBmp(Img2, 10, 5);
SSD1906Delay(2); //Delay loop for 2 seconds
Rot0MainBmp(Img1); //Rotate back to 0 degree
Rot0FloatBmp(Img2, 10, 5);
Rot0FloatBmp(Img2, 90, 5); //Move floating window to (x,y) = (90, 5)
SSD1906Delay(2); //Delay loop for 2 seconds
Rot0FloatBmp(Img2, 90, 75); //Move floating window to (x,y) = (90, 75)
FloatWinDispOff(); //Turn off floating window
MainWinDispFree(); //Release memory of main window for future use

Virtual Display
When either the height or width of bitmap image is larger than the display physical dimension of LCD panel,
the remaining part of the image can be shown by panning (moving horizontally) and scrolling (moving
vertically) it. This feature is called virtual display.

VirtMovePic
Prototype: void VirtMovePic (DWORD PosX, DWORD PosY, const unsigned char *Image)
Description: Move the virtual image inside main window.
Parameters: PosX x-coordinate offset position of image with reference to its upper left corner. The value

should be a multiple of 32 ÷ bit-per-pixel.
 PosY y-coordinate offset position of image with reference to its upper left corner.
 Image The starting address of bitmap array in system
 Return value: None

Example of Virtual Display
A bitmap array Img1 is displayed on main window. The physical size of this bitmap is larger than that of LCD
panel screen size. The image is then move around the screen to enable the other part to be seen. Since the
image is displayed with its upper left corner attached to the upper left corner of the LCD screen by
MainWinDispOn routine, the image can only be moved either in left or up direction with positive offset values.

MainWinDispOn(Img1);
VirtMovePic(40, 0, Img1); //Move image horizontally 40 pixels in left direction
SSD1906Delay(2); //Delay loop for 2 seconds
VirtMovePic(40, 36, Img1); //Move image vertically 36 pixels in up direction
SSD1906Delay(2); //Delay loop for 2 seconds
VirtMovePic(0, 0, Img1); //Move image back to starting position
SSD1906Delay(2); //Delay loop for 2 seconds
MainWinDispFree(); //Release memory of main window for future use

Figure 2: Example of virtual display

 Img1

LCD display
boundary

Img1 40

36 LCD display
boundary

VirtMovePic(40, 36 ,Img1)

SSD1906 Series Rev 1.10 P 21/43 Feb 2005 Solomon Systech

Cursor Operation
There are two cursors available in SSD1906 and they can be displayed simultaneously. The maximum size of
cursors is 1024x1024 pixels. The available color depth value is 4, 8 and 16 bit-per-pixel only and this value
should be the same as that of main window image.

However, the image data architecture of cursor is a little bit different from normal bitmap. For any color depth
setting, the cursor image data structure is the same as 2 bit-per-pixel bitmap, i.e., each pixel occupies two bits
of memory space. Hence, there are only four color values (3 colors + transparent) available to be chosen for
each pixel.

Table 12: Color setting of cursors

Pixel value Color
00 Transparent
01 Color 1 defined in color index 1
10 Color 2 defined in color index 2
11 Color 3 defined in color index 3

The color indexes are defined according to different color depth setting. For 4 and 8 bit-per-pixel, the color
indexes are actually the LUT entries value of SSD1906. In 16 bit-per-pixel, the colors are defined as direct
RGB value with the following format.

Table 13: Color value definition of cursor in 16 bpp

Bit position 15 13 12 8 7 3 2 0
Color component Green bit 5 to 3 Blue Red Green bit 2 to 0

To produce bitmap for cursor, the bitmap is edited with image editor as 4 bit-per-pixel. The maximum available
color is 4 only by using the first four color index. Painting the section with color belonging to color index 0
generates transparent. After being saved the changes, the bitmap is converted into C program bitmap array
by calling bmpconv.exe.

Cursor1Blink
Prototype: void Cursor1Blink (WORD TotalPeriod, WORD OnPeriod)
Description: Define the blinking period of cursor 1.
Parameters: TotalPeriod Total period used in calculation of blinking period. The unit is in frame.
 OnPeriod Cursor turns on period in a “TotalPeriod” time. The unit is in frame.
 Return value: None

Cursor2Blink
Prototype: void Cursor2Blink (WORD TotalPeriod, WORD OnPeriod)
Description: Define the blinking period of cursor 2.
Parameters: TotalPeriod Total period used in calculation of blinking period. The unit is in frame.
 OnPeriod Cursor turns on period in a “TotalPeriod” time. The unit is in frame.
Return value: None

Cursor1Color
Prototype: void Cursor1Color (WORD Color1, WORD Color2, WORD Color3)
Description: Set the color for cursor 1.
 In 4, 8 bit-per-pixel, the arguments are color index pointing to LUT entries of SSD1906.
 In 16 bit-per-pixel, the arguments are direct color RGB value definition.

SSD1906 Series Rev 1.10 P 22/43 Feb 2005 Solomon Systech

Parameters: Color1 Color 1 index/ RGB value
 Color2 Color 2 index/ RGB value
 Color3 Color 3 index/ RGB value
Return value: None

Cursor2Color
Prototype: void Cursor2Color (WORD Color1, WORD Color2, WORD Color3)
Description: Set the color for cursor 2.
 In 4, 8 bit-per-pixel, the arguments are color index pointing to LUT entries of SSD1906.
 In 16 bit-per-pixel, the arguments are direct color RGB value definition.
Parameters: Color1 Color 1 index/ RGB value
 Color2 Color 2 index/ RGB value
 Color3 Color 3 index/ RGB value
Return value: None

Cursor1DispOn
Prototype: BOOL Cursor1DispOn (const unsigned char *Image, DWORD PosX, DWORD PosY)
Description: Allocate space in display buffer and display cursor 1 on the screen. This function can be used

to move the position of cursor. Whenever a rotation occurs in main window, this routine
should be called then to update the display rotation of cursor.

Parameters: Image the starting address of bitmap array in system
 PosX x-coordinate of cursor with origin at upper left corner of screen.
 PosY y-coordinate of cursor with origin at upper left corner of screen.
Return value: TRUE success to display cursor 1 on the screen
 FALSE fail to allocate memory to display cursor 1

Cursor2DispOn
Prototype: BOOL Cursor2DispOn (const unsigned char *Image, DWORD PosX, DWORD PosY)
Description: Allocate space in display buffer and display cursor 2 on the screen. This function can be used

to move the position of cursor. Whenever a rotation occurs in main window, this routine
should be called then to update the display rotation of cursor.

Parameters: Image the starting address of bitmap array in system
 PosX x-coordinate of cursor with origin at upper left corner of screen.
 PosY y-coordinate of cursor with origin at upper left corner of screen.
Return value: TRUE success to display cursor 2 on the screen
 FALSE fail to allocate memory to display cursor 2

Cursor1DispOff
Prototype: void Cursor1DispOff (void)
Description: Turn off cursor 1 and free the memory occupied by it. The sequence of calling Cursor1DispOn

and this routine should be taken care such that the memory is properly freed.
Parameters: None
Return value: None

Cursor2DispOff
Prototype: void Cursor2DispOff (void)
Description: Turn off cursor 2 and free the memory occupied by it. The sequence of calling Cursor2DispOn

and this routine should be taken care such that the memory is properly freed.
Parameters: None
Return value: None

SSD1906 Series Rev 1.10 P 23/43 Feb 2005 Solomon Systech

Example of Cursor Operation
There are two bitmap arrays available for cursors: Cur1 and Cur2, and a bitmap array Img1 for main window
display. After displaying these two cursors, we move cursor 2 around the screen. Then the main window is
rotated 90 degree. Note that the two cursors have to be updated their positions at this time by program to
keep the same orientation as the main window.

MainWinDispOn(Img1); //Display bitmap on main window
Cursor1Blink(100, 80); //In 100 frames, cursor 1 turn on at 80 frames period
Cursor1Color(38,213,251); //Set color indexes to LUT entries 38, 213, 251
Cursor1DispOn(Cur1, 64, 80); //Display cursor 1 at position (x,y) = (64, 80)

Cursor2Blink(20, 20); //No blinking on cursor 2
Cursor2Color(0,251,3); //Set color indexes to LUT entries 0, 251, 3
Cursor2DispOn(Cur2, 32, 0); //Display cursor 2 at position (x,y) = (32, 0)

SSD1906Delay(2); //Delay loop for 2 seconds
Cursor2DispOn(Cur2, 32, 90); //Cursor 2 is moved to position (x,y) = (32, 90)
SSD1906Delay(2); //Delay loop for 2 seconds
Cursor2DispOn(Cur2, 120, 90); //Cursor 2 is moved to position (x,y) = (120, 90)
SSD1906Delay(2); //Delay loop for 2 seconds

Rot90MainBmp(Img1); //Main window is rotated 90 degree
Cursor1DispOn(Cur1, 64, 80); //Cursor 1 will be rotated 90 degree automatically
Cursor2DispOn(Cur2, 120, 90); //Cursor 2 will be rotated 90 degree automatically

SSD1906Delay(2); //Delay loop for 2 seconds

Cursor2DispOff(); //Turn off cursor 2, note the calling sequence
Cursor1DispOff(); //Turn off cursor 1
MainWinDispFree(); //Release memory of main window for future use

Memory Operation
The memory operations APIs are targeted on 256K bytes display buffer of SSD1906.

MemRemainSize
Prototype: DWORD MemRemainSize (void)
Description: Find out the remain size of display buffer
Parameters: None
Return value: Remain size of available display memory in the unit of byte

MemUsedSize
Prototype: DWORD MemUsedSize (void)
Description: Find out the size of display buffer already allocated
Parameters: None
Return value: Size of total allocated display memory in the unit of byte

Miscellaneous

Disp1906LUT
Prototype: VOID Disp1906LUT (void)
Description: Read 256 LUT entries of SSD1906 and display them on debug console.
Parameters: None
Return value: None

SSD1906Delay
Prototype: VOID SSD1906Delay (int sec)
Description: Create a delay time in seconds by polling vertical non-display status bit
Parameters: sec Number of second of time delay
Return value: None

SSD1906 Series Rev 1.10 P 24/43 Feb 2005 Solomon Systech

CheckBigEndian
Prototype: BOOL CheckBigEndian (void)
Description: Check if the microcontroller is a big or little endian system
Parameters: None
Return value: TRUE it is a big endian system.
 FALSE it is a little endian system.

DispBlank
Prototype: void DispBlank(BOOL ENABLE)
Description: Either blank or not blank the LCD screen
Parameters: ENABLE TRUE for blank screen
 FALSE for not blank screen
Return value: None

DispMainNxNChecker
Prototype: void DispMainNxNChecker(int n, BYTE *LUT1, BYTE *LUT2)
Description: Display a checker board with size of each checker to be N by N
Parameters: n Length of each square checker in pixel

*LUT1 Address of an array which contain red, green and blue color value of LUT for defining
the color of first checker of first row.
*LUT2 Address of an array which contain red, green and blue color value of LUT for defining
the color of second checker of first row.

Return value: None
Note: The content of LUT1 or LUT2 array contains
 LUTX[0] = red color, LUTX[1] = green color, LUTX[2] = blue color, where X = 1 or 2

SSD1906 Series Rev 1.10 P 25/43 Feb 2005 Solomon Systech

Procedure to port SSD1906 API to a system
SSD1906 API is written in C language. Hence, it is not difficult to port it to another platform that supports C
compiler. This section describes the steps to change the program to serve for a new system.

Microcontroller Register Access
The McuInit routine is used to initialize the microcontroller to able to interface with SSD1906. The first thing
to do is enable the program to read/write the control registers of MCU so as to configure it to communicate with
SSD1906. The example program m68vz328.c and vr4181.c provide sample routines on how to perform these
functions. For most MCU platform, the only variable required to be changed in order to make these routines
work is “_BaseAdr”. This is the base address used to calculate the final address of control registers of MCU.

For example, all the registers have address of 0xFFFFF000 + index in Dragonball MC68VZ328. “_BaseAdr” is
set to 0xFFFFF000 in m68vz328.h file. Afterwards, we can use the API “RdMcuWordReg (0x112)” to read the register
CSB which has the address of 0xFFFFF112.

Data Size Setting
SSD1906 API requires the definitions of BYTE (8-bit byte), WORD (16-bit word) and DWORD (32-bit double
word) for size declaration of program variables. The example program header m68vz328.h and vr4181.h
demonstrate how they are defined. Each MCU platform has its own meaning of the length of char, int, long
which are used to set the above definitions and it can be found in MCU or program compiler user menu.

Host bus interface
The MCU is configured to deploy one of the available CPU interfaces of SSD1906, namely, Generic #1,
Generic #2, Motorola MC68K or Motorola DragonBall MC68EZ/VZ/SZ328. In SSD1906, this is done by setting
the CF[5:0] pins for the appropriate host bus. Please refer to Table 8 Configuration of dip switch S2.

In microcontroller side, the dedicated I/O function pins are configured to reserve for interface with SSD1906.
These I/O pins name varies for different systems. However, the main functionalities of them are the same. In
below, the different host interface configuration is introduced.

SSD1906 Series Rev 1.10 P 26/43 Feb 2005 Solomon Systech

Generic #1

Figure 3: Generic #1 interface connection diagram

Generic #1 is a SRAM type interface. It uses control pins and communication protocol similar to SRAM one.
Therefore, if the microcontroller supports SRAM, it can interface with SSD1906 by using Generic #1
configuration.

Here are some properties of Generic #1 host bus interface:
� WE0# is driven low for low byte write cycle
� WE1# is driven low for high byte write cycle
� RD0# is driven low for low byte read cycle
� RD/WR# is driven low for high byte read cycle
� WAIT# is driven low to inform MCU to wait until data is ready (read cycle) or accepted (write cycle) and

WAIT# is driven high then

The following table shows the setting of CF[5:0] logic for Generic #1 MCU interface.

Table 14: CF[5:0] setting for Generic #1 interface

SSD1906 pin 1 (High) 0 (Low)
CF[2:0] 011\b => Generic #1 interface
CF3 GPIO pins set as inputs at

power on
GPIO pins set as HR-TFT output
signals.

CF4 Big Endian bus interface Little Endian bus interface
CF5 Active high WAIT# Active low WAIT#

AUXCLKBS#

M/R#

CS#

A[17:1]
D[15:0]

WE0#
WE1#
RD0#
RD/WR#
WAIT#

CLKI
RESET#
A0

Generic #1
BUS

A[27:18]
CSn#

A[17:1]
D[15:0]
WE0#
WE1#
RD0#
RD1#

WAIT#
BUSCLK
RESET#

Oscillator

Decoder

SSD1906

IOVDD

10kΩ

4.7kΩ
0.1u

SSD1906 Series Rev 1.10 P 27/43 Feb 2005 Solomon Systech

Generic #2

Figure 4: Generic #2 interface connection diagram

In Generic #2, the interface pins and communication protocol is similar to an ISA type bus interface. Hence, if
the microcontroller supports ISA bus device, it can interface SSD1906 in Generic #2 mode.

Properties of Generic #2 host bus interface are:
� WE0# is driven low for every write cycle
� RD# is driven low for every read cycle
� WE1# is driven low for high byte read or write cycle.
� Selection of either read/write high byte or word is done by controlling WE1# and A0 pins according to the

following table.

Table 15: High byte and word read/write signals for Generic #2 interface

 WE1# A0
High byte read/write 0 1
Word read/write 0 0

The following table shows the setting of CF[5:0] logic for Generic #2 MCU interface.

Table 16: CF[5:0] setting for Generic #2 interface

SSD1906 pin 1 (High) 0 (Low)
CF[2:0] 100\b => Generic #2 interface
CF3 GPIO pins set as inputs at

power on
GPIO pins set as HR-TFT output
signals.

CF4 Big Endian bus interface Little Endian bus interface
CF5 Active high WAIT# Active low WAIT#

AUXCLKBS#
RD/WR#

M/R#

CS#

A[17:0]
D[15:0]

WE0#
WE1#
RD#

WAIT#

CLKI
RESET#

Generic #2
BUS

A[27:18]
CSn#

A[17:0]
D[15:0]

WE#
BHE#

RD#
WAIT#

BUSCLK
RESET#

Oscillator

Decoder

SSD1906

IOVDD

10kΩ 10kΩ

0.1u

SSD1906 Series Rev 1.10 P 28/43 Feb 2005 Solomon Systech

Hitachi SH-3/SH-4

Figure 5: Hitachi SH-3/SH-4 interface connection diagram

SH-3/SH-4 host bus interface supports Hitachi SuperH SH-3 and SH-4 series microprocessor. Following are
the properties of this communication protocol.
� WE0# is driven low for every low byte (D7 – D0) write cycle
� WE1# is driven low for every high byte (D15 – D8) write cycle
� BS# is driven low at every start of bus cycle
� RD/WR# is driven low to indicate write and driven high for read data
� RD# is driven low in read cycle
� For SH-3, WAIT# is driven low in wait cycle
� For SH-4, WAIT# is driven high in wait cycle

The following table shows the setting of CF[5:0] logic for SH-3/SH-4 interface.

Table 17: CF[5:0] setting for Hitachi SH-3/SH-4 interface

SSD1906 pin 1 (High) 0 (Low)
CF[2:0] 000\b => Hitachi SH-3/SH-4 interface
CF3 GPIO pins set as inputs at

power on
GPIO pins set as HR-TFT output
signals.

CF4 Big Endian bus interface Little Endian bus interface
CF5 Active high WAIT# (for SH-4) Active low WAIT# (for SH-3)

AUXCLK

M/R#

CS#
A[17:1]
D[15:0]
WE0#
WE1#
BS#
RD/WR#

WAIT#

CLKI
RESET#

SH-3/SH-4
BUS

A[25:18]

A[17:1]
D[15:0]

WE0#
WE1#

BS#
RD/WR#

RDY# (SH-4)
WAIT# (SH-3)

CLK
RESET#

Oscillator

SSD1906

Decoder

0.1u

CSn#

RD#RD#

A0

4.7kΩ

SSD1906 Series Rev 1.10 P 29/43 Feb 2005 Solomon Systech

Motorola MC68K

Figure 6: Motorola MC68K interface connection diagram

Motorola MC68K host bus interface supports Motorola M68000 series CPU. Following are the properties of
this communication protocol.
� A0# is driven low for every low byte read/write cycle
� WE1# is driven low for every high byte read/write cycle
� BS# is driven low when address on address bus is valid
� RD/WR# is driven low in write cycle and driven high in read cycle

The following table shows the setting of CF[5:0] logic for MC68K interface.

Table 18: CF[5:0] setting for Motorola MC68K interface

SSD1906 pin 1 (High) 0 (Low)
CF[2:0] 001\b => MC68K interface
CF3 GPIO pins set as inputs at

power on
GPIO pins set as HR-TFT output
signals.

CF4 1 => Big Endian bus interface
CF5 Active high WAIT# Active low WAIT#

AUXCLKRD#
WE0#
M/R#

CS#

A[17:1]
D[15:0]
A0

WE1#
BS#
RD/WR#
WAIT#

CLKI
RESET#

MC68K BUS

A[23:18],
FC0, FC1

A[17:1]
D[15:0]

LDS#
UDS#

AS#
R/W#

DTACK#

CLK
RESET#

Oscillator

SSD1906

Decoder

Decoder

IOVDD

10kΩ 10kΩ

0.1u

SSD1906 Series Rev 1.10 P 30/43 Feb 2005 Solomon Systech

Motorola Dragonball MC68EZ/VZ/SZ328

Figure 7: Motorola MC68EZ/VZ/SZ328 interface diagram

This interface is dedicated designed for Dragonball MC68EZ/VZ/SZ328 microcontroller. The properties of this
interface are:
� WE0# is driven low for low byte write cycle. Data is available at D[15:8] bus.
� WE1# is driven low for high byte write cycle. Data is available at D[7:0] bus.
� RD# is driven low for every 16-bit word read cycle. In DragonBall interface, there is no byte read.

The following table shows the setting of CF[5:0] logic for Dragonball interface.

Table 19: CF[5:0] setting for Motorola MC68EZ/VZ/SZ328 interface

SSD1906 pin 1 (High) 0 (Low)
CF[2:0] 110\b => Dragonball interface
CF3 GPIO pins set as inputs at

power on
GPIO pins set as HR-TFT output
signals.

CF4 1 => Big Endian bus interface
CF5 1 => Active high WAIT#

AUXCLKBS#
RD/WR#

M/R#

CS#

A[17:1]
D[15:0]

WE0#
WE1#
RD #
WAIT#
CLKI
RESET#
A0

DragonBall
BUS

A[25:18]
CSX#

A[17:1]
D[15:0]
LWE#
UWE#

OE#
DTACK#

CLKO
RESET#

Oscillator

SSD1906

Decoder

IOVDD

10kΩ 10kΩ

4.7kΩ
0.1u

SSD1906 Series Rev 1.10 P 31/43 Feb 2005 Solomon Systech

Registers & Display Memory Mapping
Since SSD1906 control registers and display buffer are memory mapped, MCU system is required to reserve
sections of its memory space to achieve this purpose. Normally, a microcontroller has several chip select pins
to interface to different peripheral devices. Each chip select occupies a certain memory space. Once a slice
of space is allocated for SSD1906, a chip select (CS#) pin of MCU is assigned for this address space and it is
used to select SSD1906 for communication.

In the reserved MCU memory space for SSD1906, it is divided into control registers and display buffer area.
Therefore, address pin(s) can be used to connect to M/R# pin of SSD1906 to select between memory and
register address space in every access. In below, an example of how M/R# connected to address pin is
shown.

Figure 8: SSD1906 Memory Mapping Example

Actually, the total memory space occupied by SSD1906 is found by
 Size of control registers space + Size of display buffer space
 = 0x112 + 256k bytes = 262418 bytes = 256.27k bytes

For the simplicity of address pin connection to M/R# pin without address decoder, the address of the space
occupied by control registers and display buffer are aligned such that only one address pin is connected to
M/R# pin. In the above example, control registers of SSD1906 are allocated with lower 256K bytes while
display buffer occupies upper 256K bytes of MCU memory address space.

If control registers takes up address 0x00000, display memory starts at 0x40000 and range to 0x7FFFF to
occupy 256K bytes display buffer space. When accessing display memory, address bit 18 should be set to 1
since value 0x40000 is equivalent to bit 18 to be 1. Therefore, MCU can use address pin A18 connecting to
M/R# pin for selecting either accessing control registers or display memory. This configuration is suitable for
microprocessor with available continuous address space of 256K bytes.

This setting is made effective by defining the addresses in SSD1906 API inside the program header
ssd1906.h. Let take the above example, the starting address of control registers is 0x00000 and the constant
“RegAddress” should be set with this value. Another constant “MemAddress” is set with value 0x40000 like
below.
#define RegAddress 0x00000 // Registers starting address
#define MemAddress 0x40000 // Display buffer starting address

Unused

Display
Buffer

Control
Registers

0x00000

0x00111

0x40000

0x7ffff

256K Bytes

256K Bytes

MCU

M/R#

1

0

A18

SSD1906 Memory Mapping

SSD1906 Series Rev 1.10 P 32/43 Feb 2005 Solomon Systech

For various type of MCU platform, the available memory space and its starting addresses are different and it’d
better to consult the MCU user menu for possible settings.

LCD Interface
SSD1906 can interface to different types of LCD panels include STN, CSTN, TFT, HR-TFT in various data
widths. There are several changes to be done in SSD1906 API program for interface a new LCD panel.

In program header lcd.h, the new panel is defined by specifying its panel width and panel height with constant
values PANEL_W and PANEL_H respectively. This program header allows more than one type of LCD panel
to be defined and this arrangement facilitates SSD1906 API to be changed to interface with other type of
panels easily.

Another program header file to be changed is lcdinfo.h. It contains the control registers values which are
written into SSD1906 by LcdInit() routine during start up of the SSD1906 API program. In this header, it is
allowed to define more than one type of LCD panel control registers settings. These settings are enabled by
the LCD panel definition in program header lcd.h.

Below is an example of the definition of LCD panel control registers values in lcdinfo.h file.
#ifdef TFT
 {REG_PCLK_CONFIG ,0x12}, // Reg 5h

 {REG_PANEL_TYPE ,0x41}, // Reg 10h
 {REG_MOD_RATE ,0x00}, // Reg 11h
 {REG_HORIZ_TOTAL ,0x22}, // Reg 12h
 {REG_HDP ,0x1d}, // Reg 14h

 {REG_HDP_START_POS0 ,0x0c}, // Reg 16h
 {REG_HDP_START_POS1 ,0x00}, // Reg 17h

 {REG_VERT_TOTAL0 ,0xc7}, // Reg 18h
 {REG_VERT_TOTAL1 ,0x00}, // Reg 19h
 {REG_VDP0 ,0x9f}, // Reg 1ch
 {REG_VDP1 ,0x00}, // Reg 1dh

 {REG_VDP_START_POS0 ,0x14}, // Reg 1eh
 {REG_VDP_START_POS1 ,0x00}, // Reg 1fh
 {REG_HSYNC_PULSE_WIDTH ,0x87}, // Reg 20h
 {REG_HSYNC_PULSE_START_POS0 ,0x00}, // Reg 22h
 {REG_HSYNC_PULSE_START_POS1 ,0x00}, // Reg 23h
 {REG_VSYNC_PULSE_WIDTH ,0x80}, // Reg 24h

 {REG_VSYNC_PULSE_START_POS0 ,0x00}, // Reg 26h
 {REG_VSYNC_PULSE_START_POS1 ,0x00}, // Reg 27h

#endif

In each bracket, the first parameter is the control register address. For example, REG_PCLK_CONFIG is the
address of pixel clock configuration register. These constant addresses are defined in ssd1906.h header file.
The second parameter inside the bracket is the value to be set in this register. All the registers embraced by
#ifdef TFT to #endif are related to LCD panels properties settings. Programmers should change all the above
registers setting according to timing diagram and specification inside the datasheet of the LCD panel. The
detailed description of these control registers can be found in section 7 Registers of SSD1906 specification.

At the last section of lcdinfo.h header file, there are two items deserved concern.
16000, // ClkI (kHz)
6000, // AUXCLK (kHz)

It defines the CLKI and AUXCLK frequency in unit of kHz. These values are set for the calculation of timing in
SSD1906 API routine like SSD1906Delay().

SSD1906 Series Rev 1.10 P 33/43 Feb 2005 Solomon Systech

Schematic of DVK1906QT2-1-A1 Development board

SSD1906 Series Rev 1.10 P 34/43 Feb 2005 Solomon Systech

SSD1906 Series Rev 1.10 P 35/43 Feb 2005 Solomon Systech

SSD1906 Series Rev 1.10 P 36/43 Feb 2005 Solomon Systech

SSD1906 Series Rev 1.10 P 37/43 Feb 2005 Solomon Systech

SSD1906 Series Rev 1.10 P 38/43 Feb 2005 Solomon Systech

SSD1906 Series Rev 1.10 P 39/43 Feb 2005 Solomon Systech

Solomon Systech reserves the right to make changes without further notice to any products herein. Solomon Systech makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does Solomon Systech assume any liability arising out of the application or
use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical”
parameters can and do vary in different applications. All operating parameters, including “Typical” must be validated for each customer application by
customer’s technical experts. Solomon Systech does not convey any license under its patent rights nor the rights of others. Solomon Systech products are
not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the Solomon Systech product could create a situation where personal injury or
death may occur. Should Buyer purchase or use Solomon Systech products for any such unintended or unauthorized application, Buyer shall indemnify
and hold Solomon Systech and its offices, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses,
and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Solomon Systech was negligent regarding the design or manufacture of the part.

