DATA SHEET

74F1245
 Octal transceiver (3-State)

Product specification
IC15 Data Handbook

FEATURES

- Same function and pinout as 74F245
- High impedance NPN base inputs for reduced loading $(70 \mu \mathrm{~A}$ in Low and High states)
- Useful in applications where light loading bus loading or direct interface with output of a MOS microprocessor is desired
- Octal bidirectional bus interface
- Glitch free during 3-State power up and power down
- 3-State buffer outputs sink 64mA and source 15 mA

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 1245	5.0 ns	115 mA

DESCRIPTION

The 74F1245 is an octal transceiver featuring non-inverting 3-State bus compatible outputs in both transmit and receive directions. The B port outputs are capable of sinking 64 mA and sourcing up to 15 mA , producing very good capacitive drive characteristics. The device features an Output Enable (OE) input for easy cascading and Transmit/Receive (T/R) input for direction control. The 3-State outputs, B0-B7, have been designed to prevent output bus loading if the power is removed from the device.

ORDERING INFORMATION

DESCRIPTION	COMMERCIAL RANGE $\mathbf{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%$, $\mathrm{T}_{\mathrm{amb}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	DRAWING NUMBER
20-Pin Plastic DIP	N74F1245N	SOT146-1
20-Pin Plastic SOL	N74F1245D	SOT163-1

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	$74 F$ (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
A0-A7, B0-B7	A and B port inputs	$3.5 / 0.117$	$70 \mu \mathrm{~A} / 70 \mu \mathrm{~A}$
$\overline{\mathrm{OE}}$	Output Enable input (active Low)	$2.0 / 0.033$	$40 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
T/R	Transmit/Receive input	$2.0 / 0.033$	$40 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
A0-A7	A port outputs	$150 / 40$	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$
B0-B7	B port outputs	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$

NOTE: One (1.0) FAST unit load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATION

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

FUNCTION TABLE

INPUTS		INPUTS/OUTPUTS	
$\overline{\mathrm{OE}}$	T / \mathbf{R}	An	Bn
L	L	$\mathrm{A}=\mathrm{B}$	INPUTS
L	H	INPUTS	$\mathrm{B}=\mathrm{A}$
H	X	Z	Z

$\mathrm{H}=$ High voltage level
L = Low voltage level
X = Don't care
$Z=$ High impedance "off" state

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limits set forth in this table may impair the useful life of the device.
Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER		RATING	UNIT
$\mathrm{V}_{\text {CC }}$	Supply voltage		-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	Input voltage		-0.5 to +7.0	V
In	Input current		-30 to +5	mA
$\mathrm{V}_{\text {OUT }}$	Voltage applied to output in High output state		-0.5 to +5.5	V
lout	Current applied to output in Low output state	A0-A7	48	mA
		B0-B7	128	mA
$\mathrm{T}_{\text {amb }}$	Operating free-air temperature range		0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature range		-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			MIN	NOM	MAX	
V_{CC}	Supply voltage		4.5	5.0	5.5	V
V_{IH}	High-level input voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8	V
I_{IK}	Input clamp current				-18	mA
Іон	High-level output current	A0-A7			-3	mA
		B0-B7			-15	mA
${ }^{\text {lob }}$	Low-level output current	A0-A7			24	mA
		B0-B7			64	mA
$\mathrm{T}_{\text {amb }}$	Operating free-air temperature range		0		70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{\text {NO TAG }}$			LIMITS			UNIT			
			MIN	TYP	MAX							
V_{OH}	High-level output voltage	A0-A7, B0-B7				$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{IOH}^{\prime}=-3 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$	2.4			V
			$\pm 5 \% \mathrm{~V}_{\text {CC }}$	2.7	3.3				V			
		B0-B7	$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$	2.0				V			
				$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.0				V			
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	A0-A7	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{l} \mathrm{OL}=24 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$		0.35	0.50	V			
					$\pm 5 \% \mathrm{~V}_{\text {CC }}$		0.35	0.50	V			
		B0-B7		$\mathrm{l}_{\mathrm{OL}}=48 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{Cc}}$		0.30	0.55	V			
				$\mathrm{IOL}=64 \mathrm{~mA}$	$\pm 5 \% \mathrm{~V}_{\text {cc }}$		0.42	0.55	V			
V_{IK}	Input clamp voltage		$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{I}} \mathrm{K}$				-0.73	-1.2	V			
1	Input current at maximum input voltage	$\overline{\mathrm{OE}, \mathrm{T} / \bar{R}}$	$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
		A0-A7, B0-B7	$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=5.5 \mathrm{~V}$					100	$\mu \mathrm{A}$			
$\mathrm{IIH}^{\text {H }}$	High-level input current	OE, T/R only	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$					40	$\mu \mathrm{A}$			
1 IL	Low-level input current	OE, T/R only	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{I}}=0.5 \mathrm{~V}$					-20	$\mu \mathrm{A}$			
${ }^{1} \mathrm{IH}^{+} \mathrm{l}_{\text {OZH }}$	Off-state output current High-level voltage applied		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					70	$\mu \mathrm{A}$			
${ }_{\text {IL }}+{ }_{\text {l }}^{\text {OZL }}$	Off-state output current Low-level voltage applied		$V_{C C}=$ MAX,	$=0.5 \mathrm{~V}$				-70	$\mu \mathrm{A}$			
los	Short-circuit output currentNO TAG	A0-A7	$V_{C C}=M A X$			-60		-150	mA			
		B0-B7				-100		-225	mA			
I_{CC}	Supply current (total)	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=$ MAX				120	155	mA			
		$\mathrm{I}_{\text {CCL }}$					116	150	mA			
		I ccz					110	165	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{gathered} \mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{~T}_{\text {amb }}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			MIN	TYP	MAX	MIN	MAX	
$\overline{t_{\text {PLH }}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay An to Bn, Bn to An	Waveform NO TAG	$\begin{aligned} & 2.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.0 \end{aligned}$	ns
$\begin{aligned} & \text { tpzH } \\ & \text { tpZL } \end{aligned}$	Output Enable time OE to An or Bn	Waveform NO TAG Waveform NO TAG	$\begin{aligned} & 3.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.5 \end{aligned}$	$\begin{gathered} 8.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$	$\begin{gathered} 9.0 \\ 11.0 \end{gathered}$	ns
$\begin{aligned} & \text { tpHz } \\ & \text { tpLZ } \end{aligned}$	Output Disable time OE to An or Bn	Waveform NO TAG Waveform NO TAG	$\begin{aligned} & 2.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	$\begin{gathered} 8.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 11.0 \end{gathered}$	ns

AC WAVEFORMS

For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.

Waveform 1. Propagation Delay for Non-Inverting Output

Waveform 2. 3-State Output Enable Time to High Level and Output Disable Time from High Level

TEST CIRCUIT AND WAVEFORMS

DEFINITIONS:

$R_{L}=$ Load resistor; see AC electrical characteristics for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance; see AC electrical characteristics for value.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to $\mathrm{Z}_{\text {OUT }}$ of pulse generators.

family	INPUT PULSE REQUIREMENTS					
	amplitude	$\mathbf{V}_{\mathbf{M}}$	rep. rate	$\mathbf{t}_{\mathbf{w}}$	$\mathbf{t}_{\text {TLH }}$	$\mathbf{t}_{\text {THL }}$
74 F	3.0 V	1.5 V	1 MHz	500 ns	2.5 ns	2.5 ns

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\underset{\max }{A}$	A_{1} min.	A_{2} max.	b	b_{1}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	e_{1}	L	M_{E}	\mathbf{M}_{H}	w	$\mathbf{Z a x}^{(1)}$
mm	4.2	0.51	3.2	$\begin{aligned} & 1.73 \\ & 1.30 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 26.92 \\ & 26.54 \end{aligned}$	$\begin{aligned} & 6.40 \\ & 6.22 \end{aligned}$	2.54	7.62	$\begin{aligned} & 3.60 \\ & 3.05 \end{aligned}$	$\begin{aligned} & 8.25 \\ & 7.80 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.3 \end{gathered}$	0.254	2.0
inches	0.17	0.020	0.13	$\begin{aligned} & 0.068 \\ & 0.051 \end{aligned}$	$\begin{aligned} & 0.021 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.014 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 1.060 \\ & 1.045 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.24 \end{aligned}$	0.10	0.30	$\begin{aligned} & 0.14 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.33 \end{aligned}$	0.01	0.078

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT146-1			SC603	- ¢	$\begin{aligned} & 92-11-17 \\ & 95-05-24 \end{aligned}$

detail X

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	\mathbf{A} max.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(1)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(1)}$	θ
mm	2.65	0.30	2.45	0.10	2.25	0.25	0.49	0.36	0.32	13.0	7.6	12.6	7.4	1.27	10.65	10.00	1.4	1.1 0.4
	0.10	0.012	0.096	0.01	0.019	0.013	0.51	0.30	0.050	0.419	0.25	0.25	0.1	0.9				

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT163-1	075E04	MS-013AC		\square -	$\begin{aligned} & -95-01-24 \\ & 97-05-22 \end{aligned}$

NOTES

DEFINITIONS

Data Sheet Identification	Product Status	Definition
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS
Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors
811 East Arques Avenue
P.O. Box 3409

Sunnyvale, California 94088-3409
Telephone 800-234-7381

Philips Semiconductors and Philips Electronics North America Corporation register eligible circuits under the Semiconductor Chip Protection Act. © Copyright Philips Electronics North America Corporation 1995 All rights reserved. Printed in U.S.A.

