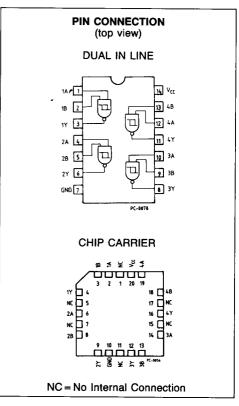
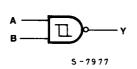

QUAD 2-INPUT SCHMITT TRIGGER NAND GATE


DESCRIPTION

The T54LS132/T74LS132 contains four 2-input NAND Gates which accept standard TTL input signals and provide standard TTL output levels. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. Additionally, they have greater noise margin than conventional NAND Gates.

Each circuit contains a 2-input Schmitt trigger followed by a Darlington level shifter and a phase splitter that drive a TTL totem pole output. The Schimtt trigger uses positive feedback to effectively speedup slow input transitions, and provide different input threshold voltages for positive and negative-going transitions. This hysteresis between the positive-going and negative-going input thresholds (typically 800 mV) is determined internally by resistor ratios and is essentially insensitive to temperature and supply voltage variations. As long as one input remains at a more positive voltage than V_{T+} (MAX), the gare will respond to the transition of the other input as shown in Figure 1.



LOGIC DIAGRAM AND TRUTH TABLE

II	OUT	
A	В	Y
L	Х	Н
Х	L	Н
Н	Н	L

L = LOW Voltage Level

H = HIGH Voltage Level X = Don't Care

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit	
V _{CC}	Supply Voltage	-0.5 to 7	V	
VI	Input Voltage, Applied to Input	-0.5 to 15	V	
v _o	Output Voltage, Applied to Output	-0.6 to 5.5	V	
- II	Input Current, Into Inputs	- 30 to 5	mA	
lo	Output Current, Into Outputs	50	mA	

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

GUARANTEED OPERATING RANGES

Part Numbers		Supply Voltage				
	Min	Тур	Max	Temperature		
T54LS132D2	4.5 V	5.0 V	5.5 V	-55°C to +125°C		
T74LS132XX	4.75 V	5.0 V	5.25 V	0°C to +70°C		

XX = package type.

224

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Comple of	B		Limits			Test Conditions		T
Symbol Parameter			Min.	Тур.	Max.	(Note 1)		Units
V _{T+}	Positive-Going Threshold Voltage		1.4	1.6	1.9	V _{CC} =5.0V		v
V _T _	Negative-Going Thereshold Voltage		0.5	0.8	1.0	V _{CC} = 5.0V		v
V _{T+} -V _{t-}	Hysteresis		0.4	0.8		V _{CC} = 5.0V		V
V _{CD}	Input Clamp Diode Voltage			- 0.65	- 1.5	V _{CC} = MIN,I _{IN} = -18mA		V
V _{OH}	Output HIGH Voltage	54	2.5	3.4		$V_{CC} = MIN, I_{OH} = -400 \mu A, V_{IN} = 0.5 V$		V
		74	2.7	3.4		VCC = IVIIIV,IOF	1 = 400μΑ, VIN = 0.5V	"
V _{OL}	Output LOW Voltage	54,74		0.25	0.4	I _{OL} = 4.0mA		
		74		0.35	0.5	I _{OL} = 8.0mA	$V_{CC} = MIN, V_{IN} = 1.9V$	\ \ \
I _{T+}	Input Current at Positive-Going Threshold			-0.14		V _{CC} = 5.0V, V	IN = V _{T+}	mA
l _T _	Input Current at Negative-Going Threshold			-0.18		V _{CC} = 5.0V, V _{IN} = V _T _		mA
I _{IH}	Input HIGH Current			1.0	20 0.1	V _{CC} = MAX,V _{IN} = 2.7V V _{CC} = MAX,V _{IN} = 7.0V		μA mA
l _{iL}	Input LOW Current				- 0.4	V _{CC} = MAX, V _{IN} = 0.4V		mA
los	Output Short Circuit Current (Note 2)		- 20		-100	V _{CC} = MAX,V _{OUT} = 0V		mA
ССН	Supply Current HIGH			6.0	11	V _{CC} = MAX,V _{IN} = 0V		mA
ICCL	Supply Current LOW			8.0	14	V _{CC} = MAX,V _{IN} = 4.5V		mA

AC CHARACTERISTICS: T_A = 25°C

Symbol	Parameter	Limits				
		Min.	Тур.	Max.	Test Conditions	Units
t _{PLH}	Turn Off Delay, Input to Output		15	22	V _{CC} =5.0V	ns
t _{PHL}	Turn On Delay, Input to Output		15	22	C _L = 15pF	ns

Notes:

1) For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operating ranges.

2) Not more than one output should be shorted at a time.

3) Typical values are at V_{CC} = 5.0V, T_A = 25°C

225

Fig. 1

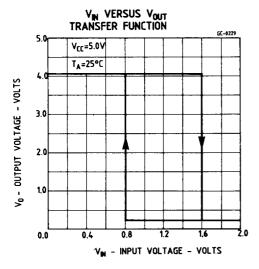


Fig. 2

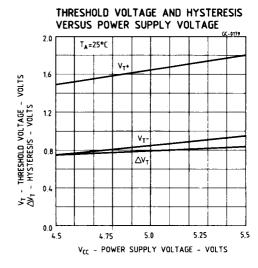


Fig. 3

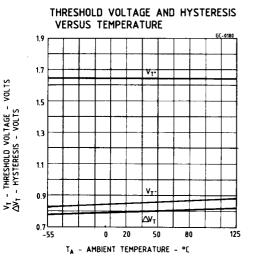
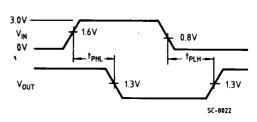



Fig. 4

