

Absolute Maximum Ratings (Note)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Voltage
Operating Free Air Temperature Range
DM54LS and 54LS
DM74LS
Storage Temperature Range

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	DM54LS00			DM74LS00			Units
		Min	Nom	Max	Min	Nom	Max	
$\mathrm{V}_{\text {CC }}$	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
V_{IL}	Low Level Input Voltage			0.7			0.8	V
$\mathrm{IOH}^{\text {l }}$	High Level Output Current			-0.4			-0.4	mA
$\mathrm{lOL}^{\text {l }}$	Low Level Output Current			4			8	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 1)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	DM54	2.5	3.4		V
			DM74	2.7	3.4		
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	DM54		0.25	0.4	V
			DM74		0.35	0.5	
		$\mathrm{IOL}=4 \mathrm{~mA}$,	DM74		0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{l}}=7 \mathrm{~V}$				0.1	mA
$\mathrm{IIH}^{\text {H }}$	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$
IIL	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$				-0.36	mA
los	Short Circuit Output Current	$\begin{aligned} & V_{C C}=M a x \\ & (\text { Note 2) } \end{aligned}$	DM54	-20		-100	mA
			DM74	-20		-100	
ICCH	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			0.8	1.6	mA
$\mathrm{I}_{\text {CCL }}$	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			2.4	4.4	mA

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
		Min	Max	Min	Max	
$t_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	3	10	4	15	ns
$t_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	3	10	4	15	ns
Note 1: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.						

AC Electrical Characteristics（Note 4）
CD4001BC：$T_{A}=25^{\circ} \mathrm{C}$ ，Input $\mathrm{t}_{\mathrm{F}} ; \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} . \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{k}$ ．Typical temperature coefficient is $0.3 \% /{ }^{\circ} \mathrm{C}$

www.fairchildsemi.com

Absolute Maximum Ratings ${ }_{\text {(Note 1) }}$
(Note 2)
Supply Voltage (V_{CC})
DC Input Voltage ($\left.\mathrm{V}_{\text {IN }}\right)$
Clamp Diode Current ($I_{I K}, I_{\mathrm{OK}}$)
DC Output Current, per pin (IOUT)
DC $V_{C C}$ or GND Current, per pin (I $I_{C C}$)
Storage Temperature Range ($\mathrm{T}_{\mathrm{STG}}$)
Power Dissipation (P_{D})
(Note 3)
S.O. Package only

Lead Temperature (T_{L})
(Soldering 10 seconds)
-0.5 to +7.0 V
-1.5 to $\mathrm{V}_{\mathrm{CC}}+1.5 \mathrm{~V}$
-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ $\pm 20 \mathrm{~mA}$ $\pm 25 \mathrm{~mA}$ $\pm 50 \mathrm{~mA}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

600 mW
500 mW

Recommended Operating

 Conditions| | Min | Max | Units |
| :--- | :---: | :---: | :---: |
| Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$ | 2 | 6 | V |
| DC Input or Output Voltage | 0 | $\mathrm{~V}_{\mathrm{CC}}$ | V |
| $\left(\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\mathrm{OUT}}\right)$ | | | |

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.
Note 2: Unless otherwise specified all voltages are referenced to ground. Note 3: Power Dissipation temperature derating - plastic " N " package: $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from $65^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	V_{CC}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=-55$ to $125^{\circ} \mathrm{C}$	Units
				Typ	Guaranteed Limits			
V_{IH}	Minimum HIGH Level Input Voltage		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} 1.5 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} 1.5 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} 1.5 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Maximum LOW Level Input Voltage		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} \hline 0.5 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
V_{OH}	Minimum HIGH Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \\ & \mid \mathrm{I}_{\mathrm{OUT}} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \\ & \mid \mathrm{I}_{\text {OUT }} \leq 4.0 \mathrm{~mA} \\ & \left\|\mathrm{I}_{\text {OUT }}\right\| \leq 5.2 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4.2 \\ & 5.7 \end{aligned}$	$\begin{aligned} & 3.98 \\ & 5.48 \end{aligned}$	$\begin{aligned} & 3.84 \\ & 5.34 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 5.2 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
V_{OL}	Maximum LOW Level Output Voltage	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \\ & \mid \mathrm{I}_{\mathrm{OUT}} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \\ & \mid \mathrm{I}_{\text {OUT }} \leq 4.0 \mathrm{~mA} \\ & \left\|\mathrm{I}_{\text {OUT }}\right\| \leq 5.2 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.33 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
I_{IN}	Maximum Input Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND	6.0 V		± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
I_{CC}	Maximum Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mu \mathrm{~A} \end{aligned}$	6.0 V		2.0	20	40	$\mu \mathrm{A}$

Note 4: For a power supply of $5 \mathrm{~V} \pm 10 \%$ the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5 V . Thus the 4.5 V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ and 4.5 V respectively. (The V_{IH} value at 5.5 V is 3.85 V .) The worst case leakage current ($\mathrm{I}_{\mathrm{I}}, \mathrm{I}_{\mathrm{CC}}$, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0 V values should be used.

DM74LS221 Dual Non－Retriggerable One－Shot with Clear and Complementary Outputs

General Description

The DM74LS221 is a dual monostable multivibrator with Schmitt－trigger input．Each device has three inputs permit－ ting the choice of either leading－edge or trailing－edge trigger－ ing．Pin（A）is an active－low trigger transition input and pin （B）is an active－high transition Schmitt－trigger input that al－ lows jitter free triggering for inputs with transition rates as slow as $1 \mathrm{volt} /$ second．This provides the input with excellent noise immunity．Additionally an internal latching circuit at the input stage also provides a high immunity to V_{Cc} noise．The clear（CLR）input can terminate the output pulse at a prede－ termined time independent of the timing components．This （CLR）input also serves as a trigger input when it is pulsed with a low level pulse transition（）．To obtain the best and trouble free operation from this device please read operating rules as well as the NSC one－shot application notes carefully and observe recommendations．

Features

－Pin－out identical to＇LS123（Note 1）
－Output pulse width range from 30 ns to 70 seconds
－Hysteresis provided at（B）input for added noise immunity
－Direct reset terminates output pulse
－Triggerable from CLEAR input
－DTL，TTL compatible
－Input clamp diodes

Functional Description

The basic output pulse width is determined by selection of an external resistor $\left(\mathrm{R}_{\mathrm{x}}\right)$ and capacitor（ C_{x} ）．Once triggered，the basic pulse width is independent of further input transitions and is a function of the timing components，or it may be re－ duced or terminated by use of the active low CLEAR input． Stable output pulse width ranging from 30 ns to 70 seconds is readily obtainable．
Note 1：The pin－out is identical to＇LS123 but，functionally it is not；refer to Operating Rules \＃10 in this datasheet．
－A dual，highly stable one－shot
－Compensated for V_{CC} and temperature variations

Connection Diagram

Dual－In－Line Package

Order Number DM74LS221M or DM74LS221N See Package Number M16A or N16A

Function Table

Inputs			Outputs	
CLEAR	A	B	Q	$\overline{\mathbf{Q}}$
L	X	X	L	H
X	H	X	L	H
X	X	L	L	H
H	L	\uparrow	Ω	$工$
H	\downarrow	H	Ω	$工$
\uparrow（Note 2）	L	H	Ω	$工$

H＝High Logic Level
$\mathrm{L}=$ Low Logic Level
X＝Can Be Either Low or High
$\uparrow=$ Positive Going Transition
$\downarrow=$ Negative Going Transition
$\Omega=$ A Positive Pulse
r＝A Negative Pulse
Note 2：This mode of triggering requires first the B input be set from a low to high level while the CLEAR input is maintained at logic low level．Then with the B input at logic high level，the CLEAR input whose positive transition from low to high will trigger an output pulse．

Operating Rules

1. An external resistor $\left(R_{X}\right)$ and an external capacitor $\left(C_{x}\right)$ are required for proper operation. The value of C_{X} may vary from 0 to approximately $1000 \mu \mathrm{~F}$. For small time constants high-grade mica, glass, polypropylene, polycarbonate, or polystyrene material capacitor may be used. For large time constants use tantalum or special aluminum capacitors. If timing capacitor has leakages approaching 100 nA or if stray capacitance from either terminal to ground is greater than 50 pF the timing equations may not represent the pulse width the device generates.
2. When an electrolytic capacitor is used for C_{X} a switching diode is often required for standard TTL one-shots to prevent high inverse leakage current. This switching diode is not needed for the 'LS221 one-shot and should not be used.
Furthermore, if a polarized timing capacitor is used on the 'LS221, the positive side of the capacitor should be connected to the " $\mathrm{C}_{\text {EXT }}$ " pin (Figure 1).
3. For $C_{X} \gg 1000 \mathrm{pF}$, the output pulse width $\left(\mathrm{T}_{\mathrm{w}}\right)$ is defined as follows:
$T_{w}=K R_{x} C_{x}$
where $\left[R_{x}\right.$ is in $k \Omega$]

$$
\begin{aligned}
& \text { [} \left.\mathrm{C}_{\mathrm{x}} \text { is in } \mathrm{pF}\right] \\
& {\left[\mathrm{T}_{\mathrm{W}} \text { is in } \mathrm{ns}\right]} \\
& \mathrm{K} \approx \mathrm{Ln} 2=0.70
\end{aligned}
$$

4. The multiplicative factor K is plotted as a function of C_{x} for design considerations: (See Figure 2).
5. For $\mathrm{C}_{\mathrm{X}}<1000 \mathrm{pF}$ see Figure 3 for T_{w} vs C_{X} family curves with R_{X} as a parameter.
6. To obtain variable pulse widths by remote trimming, the following circuit is recommended: (See Figure 4).
7. Output pulse width versus V_{CC} and temperatures: Figure 5 depicts the relationship between pulse width variation versus V_{Cc}. Figure 6 depicts pulse width variation versus temperatures.
8. Duty cycle is defined as $T_{w} / T \times 100$ in percentage, if it goes above 50% the output pulse width will become shorter. If the duty cycle varies between low and high values, this causes output pulse width to vary, or jitter (a function of the $\mathrm{R}_{E X T}$ only). To reduce jitter, $\mathrm{R}_{\mathrm{EXT}}$ should be as large as possible, for example, with $R_{\text {EXT }}=100 \mathrm{k}$ jitter is not appreciable until the duty cycle approaches 90%.
9. Under any operating condition C_{X} and R_{X} must be kept as close to the one-shot device pins as possible to minimize stray capacitance, to reduce noise pick-up, and to reduce I-R and Ldi/dt voltage developed along their connecting paths. If the lead length from C_{X} to pins (6) and (7) or pins (14) and (15) is greater than 3 cm , for example, the output pulse width might be quite different from values predicted from the appropriate equations. A non-inductive and low capacitive path is necessary to ensure complete discharge of C_{x} in each cycle of its operation so that the output pulse width will be accurate.
10. Although the 'LS221's pin-out is identical to the 'LS123 it should be remembered that they are not functionally identical. The 'LS123 is a retriggerable device such that the output is dependent upon the input transitions when its output " Q " is at the "High" state. Furthermore, it is recommended for the 'LS123
to externally ground the $\mathrm{C}_{\text {EXT }}$ pin for improved system performance. However, this pin on the 'LS221 is not an internal connection to the device ground. Hence, if substitution of an 'LS221 onto an 'LS123 design layout where the $\mathrm{C}_{\mathrm{EXT}}$ pin is wired to the ground, the device will not function.
11. V_{Cc} and ground wiring should conform to good high-frequency standards and practices so that switching transients on the V_{CC} and ground return leads do not cause interaction between one-shots. A $0.01 \mu \mathrm{~F}$ to $0.10 \mu \mathrm{~F}$ bypass capacitor (disk ceramic or monolithic type) from V_{CC} to ground is necessary on each device. Furthermore, the bypass capacitor should be located as close to the V_{Cc}-pin as space permits.

FIGURE 1.

FIGURE 2.

FIGURE 3.

Note: " $\mathrm{R}_{\text {remote" }}$ should be as close to the one-shot as possible.
FIGURE 4.

GENERAL PURPOSE SINGLE BIPOLAR TIMERS

- LOW TURN OFF TIME
- MAXIMUM OPERATING FREQUENCY GREATER THAN 500 kHz
- TIMING FROM MICROSECONDS TO HOURS
- OPERATES IN BOTH ASTABLE AND MONOSTABLE MODES
- HIGH OUTPUT CURRENT CAN SOURCE OR SINK 200mA
- ADJUSTABLE DUTY CYCLE
- TTL COMPATIBLE
- TEMPERATURE STABILITY OF 0.005% PER ${ }^{\circ} \mathrm{C}$

DESCRIPTION

The NE555 monolithic timing circuit is a highly stable controller capable of producing accurate time delays or oscillation. In the time delay mode of operation, the time is precisely controlled by one external resistor and capacitor. For a stableoperation as an oscillator, the free running frequency and the duty cycle are both accurately controlled with two external resistors and one capacitor. The circuit may be triggered and reset on falling waveforms, and the output structure can source or sink up to 200 mA . The NE555 is available in plastic and ceramic minidip package and in a 8-lead micropackage and in metal can package version

ORDER CODES

Part Number	Temperature Range	Package	
		\mathbf{N}	\mathbf{D}
NE555	$0^{\circ} \mathrm{C}, 70^{\circ} \mathrm{C}$	\bullet	\bullet
SA555	$-40^{\circ} \mathrm{C}, 105^{\circ} \mathrm{C}$	\bullet	\bullet
SE555	$-55^{\circ} \mathrm{C}, 125^{\circ} \mathrm{C}$	\bullet	\bullet

PIN CONNECTIONS (top view)

OPERATING CONDITIONS

Symbol	Parameter	SE555	NE555 - SA555	Unit
V_{CC}	Supply Voltage	4.5 to 18	4.5 to 18	V
$\mathrm{~V}_{\text {th }}, \mathrm{V}_{\text {trig }}, \mathrm{V}_{\mathrm{cl}}, \mathrm{V}_{\text {reset }}$	Maximum Input Voltage	V_{CC}	V_{CC}	V

ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=+5 \mathrm{~V}$ to +15 V (unless otherwise specified)

Symbol	Parameter	SE555			NE555-SA555			Unit
		Min.	Typ.	Max.	Min.	Typ.	Max.	
Icc	$\begin{array}{ll} \hline \text { Supply Current }\left(R_{L} \infty\right)(- \text { note } 1) \\ \text { Low State } & V_{C C}=+5 \mathrm{~V} \\ & V_{C C}=+15 \mathrm{~V} \\ \text { High State } & V_{C C}=5 \mathrm{~V} \\ \hline \end{array}$		$\begin{gathered} 3 \\ 10 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ 12 \end{gathered}$		$\begin{gathered} 3 \\ 10 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 6 \\ 15 \end{gathered}$	mA
	Timing Error (monostable) ($\mathrm{R}_{\mathrm{A}}=2 \mathrm{k}$ to $100 \mathrm{k} \Omega, \mathrm{C}=0.1 \mu \mathrm{~F}$) Initial Accuracy - (note 2) Drift with Temperature Drift with Supply Voltage		$\begin{gathered} 0.5 \\ 30 \\ 0.05 \end{gathered}$	$\begin{gathered} 2 \\ 100 \\ 0.2 \\ \hline \end{gathered}$		$\begin{gathered} 1 \\ 50 \\ 0.1 \end{gathered}$	$\begin{gathered} 3 \\ 0.5 \\ \hline \end{gathered}$	$\stackrel{\%}{\mathrm{ppm} /{ }^{\circ} \mathrm{C}}$
	Timing Error (astable) ($\mathrm{R}_{\mathrm{A}}, \mathrm{R}_{\mathrm{B}}=1 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega, \mathrm{C}=0.1 \mu \mathrm{~F}$, $\mathrm{V}_{\mathrm{cc}}=+15 \mathrm{~V}$) Initial Accuracy - (note 2) Drift with Temperature Drift with Supply Voltage		$\begin{gathered} 1.5 \\ 90 \\ 0.15 \end{gathered}$			$\begin{array}{r} 2.25 \\ 150 \\ 0.3 \end{array}$		$\begin{gathered} \% \\ \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \% / \mathrm{V} \end{gathered}$
VCL	Control Voltage level $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 9.6 \\ & 2.9 \end{aligned}$	$\begin{aligned} & 10 \\ & 3.33 \end{aligned}$	$\begin{gathered} 10.4 \\ 3.8 \end{gathered}$	$\begin{gathered} 9 \\ 2.6 \end{gathered}$	$\begin{gathered} 10 \\ 3.33 \end{gathered}$	$\begin{gathered} 11 \\ 4 \end{gathered}$	V
$\mathrm{V}_{\text {th }}$	$\begin{aligned} & \text { Threshold Voltage } \\ & \text { Vcc }=+15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{cc}}=+5 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 9.4 \\ & 2.7 \end{aligned}$	$\begin{gathered} 10 \\ 3.33 \end{gathered}$	$\begin{gathered} 10.6 \\ 4 \end{gathered}$	$\begin{aligned} & 8.8 \\ & 2.4 \end{aligned}$	$\begin{gathered} 10 \\ 3.33 \end{gathered}$	$\begin{gathered} 11.2 \\ 4.2 \end{gathered}$	V
$\mathrm{I}_{\text {th }}$	Threshold Current - (note 3)		0.1	0.25		0.1	0.25	$\mu \mathrm{A}$
$\mathrm{V}_{\text {trig }}$	$\begin{aligned} & \hline \text { Trigger Voltage } \\ & V_{\mathrm{CC}}=+15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4.8 \\ & 1.45 \end{aligned}$	$\begin{gathered} 5 \\ 1.67 \end{gathered}$	$\begin{aligned} & 5.2 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 1.1 \end{aligned}$	$\begin{gathered} 5 \\ 1.67 \end{gathered}$	$\begin{aligned} & 5.6 \\ & 2.2 \end{aligned}$	V
Itrig	Trigger Current ($\mathrm{V}_{\text {trig }}=0 \mathrm{~V}$)		0.5	0.9		0.5	2.0	$\mu \mathrm{A}$
$\mathrm{V}_{\text {reset }}$	Reset Voltage - (note 4)	0.4	0.7	1	0.4	0.7	1	V
$I_{\text {reset }}$	$\begin{aligned} \text { Reset Current } & \begin{aligned} \mathrm{V}_{\text {reset }} & =+0.4 \mathrm{~V} \\ \mathrm{~V}_{\text {reset }} & =0 \mathrm{~V} \end{aligned} \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.4 \end{aligned}$	$\begin{gathered} 0.4 \\ 1 \end{gathered}$		$\begin{aligned} & 0.1 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 1.5 \end{aligned}$	mA
VoL	Low Level Output Voltage		$\begin{gathered} 0.1 \\ 0.4 \\ 2 \\ 2.5 \\ 0.1 \\ 0.05 \end{gathered}$	$\begin{gathered} 0.15 \\ 0.5 \\ 2.2 \\ 0.25 \\ 0.2 \end{gathered}$		$\begin{gathered} 0.1 \\ 0.4 \\ 2 \\ 2.5 \\ 0.3 \\ 0.25 \end{gathered}$	$\begin{gathered} 0.25 \\ 0.75 \\ 2.5 \\ 0.4 \\ 0.35 \end{gathered}$	V
Vor	High Level Output Voltage $\mathrm{VCC}=+15 \mathrm{~V}, \quad \mathrm{l}_{\mathrm{O}}$ (source) $=200 \mathrm{~mA}$ $\begin{array}{ll}\mathrm{VCC}=+5 \mathrm{~V}, & \mathrm{l}(\text { (source })=100 \mathrm{~mA} \\ \mathrm{l}(\text { (source })=100 \mathrm{~mA}\end{array}$	$\begin{gathered} 13 \\ 3 \\ \hline \end{gathered}$	$\begin{array}{r} 12.5 \\ 13.3 \\ 3.3 \end{array}$		$\begin{gathered} 12.75 \\ 2.75 \end{gathered}$	$\begin{gathered} 12.5 \\ 13.3 \\ 3.3 \\ \hline \end{gathered}$		V

Notes: 1. Supply current when output is high is typically 1 mA less.
2. Tested at $\mathrm{V}_{\mathrm{cc}}=+5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{Cc}}=+15 \mathrm{~V}$.
3. This will determine the maximum value of $R_{A}+R_{B}$ for +15 V operation the max total is $R=20 \mathrm{M} \Omega$ and for 5 V operation the max total $\mathrm{R}=3.5 \mathrm{M} \Omega$.

FAIRCHILD
 sEMICロNロபロTロロ
 DM74LS90／DM74LS93
 Decade and Binary Counters

General Description

Each of these monolithic counters contains four master－slave flip－flops and additional gating to provide a divide－by－two counter and a three－stage binary counter for which the count cycle length is divide－by－five for the＇LS90 and divide－by－eight for the＇LS93．
All of these counters have a gated zero reset and the LS90 also has gated set－to－nine inputs for use in BCD nine＇s complement applications．
To use their maximum count length（decade or four bit bi－ nary），the B input is connected to the Q_{A} output．The input
count pulses are applied to input A and the outputs are as described in the appropriate truth table．A symmetrical divide－by－ten count can be obtained from the＇LS90 counters by connecting the Q_{D} output to the A input and applying the input count to the B input which gives a divide－by－ten square wave at output Q_{A}

Features

－Typical power dissipation 45 mW
－Count frequency 42 MHz

Connection Diagrams（Dual－ln－Line Packages）

Order Number DM74LS90M or DM74LS90N See Package Number M14A or N14A

Order Number DM74LS93M or DM74LS93N See Package Number M14A or N14A

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage (Reset)	7 V
Input Voltage (A or B)	5.5 V

Operating Free Air Temperature Range DM74LS
Storage Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter		DM74LS90			Units
			Min	Nom	Max	
V_{CC}	Supply Voltage		4.75	5	5.25	V
V_{IH}	High Level Input Voltage		2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage				0.8	V
I_{OH}	High Level Output Current				-0.4	mA
l_{OL}	Low Level Output Current				8	mA
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 2)	A to Q_{A}	0		32	MHz
		B to Q_{B}	0		16	
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 3)	A to Q_{A}	0		20	MHz
		B to Q_{B}	0		10	
t_{w}	Pulse Width (Note 2)	A	15			ns
		B	30			
		Reset	15			
$\mathrm{t}_{\text {w }}$	Pulse Width (Note 3)	A	25			ns
		B	50			
		Reset	25			
$\mathrm{t}_{\text {REL }}$	Reset Release Time (Note 2)		25			ns
$\mathrm{t}_{\text {REL }}$	Reset Release Time (Note 3)		35			ns
T_{A}			0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these
limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating
Conditions" table will define the conditions for actual device operation.
Note 2: $C_{L}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: $C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

'LS90 Electrical Characteristics

Symbol	Parameter	Conditions		Min	Typ (Note 4)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.7	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \\ & \text { (Note 7) } \end{aligned}$			0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$			0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{1} \\ & \hline \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{1}=5.5 \mathrm{~V} \\ & \hline \end{aligned}$	Reset			0.1	
			A			0.2	mA
			B			0.4	
I_{H}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$	Reset			20	
			A			40	$\mu \mathrm{A}$
			B			80	

'LS93 Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$							
Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock	A to Q_{A}	32		20		MHz
	Frequency	B to Q_{B}	16		10		
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	A to $Q_{\text {A }}$		16		20	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A to $Q_{\text {A }}$		18		24	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	A to Q_{D}		70		85	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	A to Q_{D}		70		90	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	B to Q_{B}		16		23	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{B}		21		30	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	B to Q_{C}		32		37	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{C}		35		44	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	B to Q_{D}		51		60	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	B to Q_{D}		51		70	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output	SET-0 to Any Q		40		52	ns

Features

- Synchronous Counting and Asynchronous Loading
- Two Outputs for N-Bit Cascading
- Look-Ahead Carry for High-Speed Counting
- Fanout (Over Temperature Range)
- Standard Outputs \qquad 10 LSTTL Loads
- Bus Driver Outputs 15 LSTTL Loads
- Wide Operating Temperature Range ... $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- HC Types
- 2V to 6V Operation
- High Noise Immunity: $\mathrm{N}_{\mathrm{IL}}=30 \%, \mathrm{~N}_{\mathrm{IH}}=30 \%$ of V_{CC} at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
- HCT Types
- 4.5V to 5.5V Operation
- Direct LSTTL Input Logic Compatibility, $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$ (Max), $\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}$ (Min)
- CMOS Input Compatibility, $\mathrm{I}_{\mathrm{I}} \leq 1 \mu \mathrm{~A}$ at $\mathrm{V}_{\mathrm{OL}}, \mathrm{V}_{\mathrm{OH}}$

Pinout

CD74HC192, CD74HC193, CD74HCT193 (PDIP, SOIC)
TOP VIEW

Description

The Harris CD74HC192, CD74HC193 and CD74HCT193 are asynchronously presettable BCD Decade and Binary Up/Down synchronous counters, respectively.
Presetting the counter to the number on the preset data inputs (PO-P3) is accomplished by a LOW asynchronous parallel load input $(\overline{\mathrm{PL}})$. The counter is incremented on the low-to-high transition of the Clock-Up input (and a high level on the ClockDown input) and decremented on the low to high transition of the Clock-Down input (and a high level on the Clock-up input). A high level on the MR input overrides any other input to clear the counter to its zero state. The Terminal Count up (carry) goes low half a clock period before the zero count is reached and returns to a high level at the zero count. The Terminal Count Down (borrow) in the count down mode likewise goes low half a clock period before the maximum count (9 in the 192 and 15 in the 193) and returns to high at the maximum count. Cascading is effected by connecting the carry and borrow outputs of a less significant counter to the Clock-Up and CLock-Down inputs, respectively, of the next most significant counter.
If a decade counter is present to an illegal state or assumes an illegal state when power is applied, it will return to the normal sequence in one count as shown in state diagram.

Ordering Information

PART NUMBER	TEMP. RANGE ($\left.{ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. NO.
CD74HC192E	-55 to 125	16 Ld PDIP	E 16.3
CD74HC193E	-55 to 125	16 Ld PDIP	E16.3
CD74HCT193E	-55 to 125	16 Ld PDIP	E 16.3
CD74HCT193M	-55 to 125	16 Ld SOIC	M 16.15

NOTES:

1. When ordering, use the entire part number. Add the suffix 96 to obtain the variant in the tape and reel.
2. Wafer or die for this part number is available which meets all electrical specifications. Please contact your local sales office or Harris customer service for ordering information.

Functional Diagram

TRUTH TABLE

CLOCK UP	CLOCK DOWN	RESET	PARALLEL LOAD	FUNCTION
\uparrow	H	L	H	Count Up
H	\uparrow	L	H	Count Down
X	X	H	X	Reset
X	X	L	L	Load Preset Inputs

NOTE: $\mathrm{H}=$ High Voltage Level, $\mathrm{L}=$ Low Voltage Level, $\mathrm{X}=$ Don't Care, $\uparrow=$ Transition from Low to High Level

DM74LS194A

4-Bit Bidirectional Universal Shift Register

General Description

This bidirectional shift register is designed to incorporate virtually all of the features a system designer may want in a shift register; they feature parallel inputs, parallel outputs, right-shift and left-shift serial inputs, operating-mode-control inputs, and a direct overriding clear line. The register has four distinct modes of operation, namely:
Parallel (broadside) load
Shift right (in the direction Q_{A} toward Q_{D})
Shift left (in the direction Q_{D} toward Q_{A})
Inhibit clock (do nothing)
Synchronous parallel loading is accomplished by applying the four bits of data and taking both mode control inputs, S0 and S1, HIGH. The data is loaded into the associated flip-flops and appear at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited.
Shift right is accomplished synchronously with the rising edge of the clock pulse when S0 is HIGH and S1 is LOW. Serial data for this mode is entered at the shift-right data input. When S0 is LOW and S1 is HIGH, data shifts left synchronously and new data is entered at the shift-left serial input.
Clocking of the flip-flop is inhibited when both mode control inputs are LOW.

Features

- Parallel inputs and outputs

■ Four operating modes: Synchronous parallel load Right shift Left shift Do nothing
■ Positive edge-triggered clocking

- Direct overriding clear

Ordering Code:

Order Number	Package Number	Package Description
DM74LS194AM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
DM74LS194AN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Connection Diagram

Function Table

Inputs										Outputs			
Clear	Mode		Clock	Serial		Parallel				$Q_{\text {A }}$	Q_{B}	Q_{C}	Q_{D}
	S1	S0		Left	Right	A	B	C	D				
L	X	X	X	X	X	X	X	X	X	L	L	L	L
H	X	X	L	X	X	X	X	X	X	$\mathrm{Q}_{\mathrm{A} 0}$	$\mathrm{Q}_{\mathrm{B0} 0}$	Q_{C0}	$Q_{\text {D0 }}$
H	H	H	\uparrow	X	X	a	b	C	d	a	b	c	d
H	L	H	\uparrow	X	H	X	X	X	X	H	$Q_{\text {An }}$	Q_{Bn}	$Q_{C n}$
H	L	H	\uparrow	X	L	X	X	X	X	L	$Q_{\text {An }}$	Q_{Bn}	Q_{Cn}
H	H	L	\uparrow	H	X	X	X	X	X	Q_{Bn}	$\mathrm{Q}_{\text {Cn }}$	$Q_{D n}$	H
H	H	L	\uparrow	L	X	X	X	X	X	Q_{Bn}	Q_{Cn}	$Q_{D n}$	L
H	L	L	X	X	X	X	X	X	X	$\mathrm{Q}_{\text {A0 }}$	$\mathrm{Q}_{\mathrm{B} 0}$	$\mathrm{Q}_{\mathrm{C} 0}$	$\mathrm{Q}_{\mathrm{D} 0}$

$\mathrm{H}=$ HIGH Level (steady state)
L = LOW Level (steady state)
X = Don't Care (any input, including transitions)
$\uparrow=$ Transition from LOW-to-HIGH level
$a, b, c, d=$ The level of steady state input at inputs A, B, C or D, respectively.
$Q_{A 0}, Q_{B 0}, Q_{C 0}, Q_{D 0}=$ The level of Q_{A}, Q_{B}, Q_{C}, or Q_{D}, respectively, before the indicated steady state input conditions were established. $\mathrm{Q}_{\mathrm{An}}, \mathrm{Q}_{\mathrm{Bn}}, \mathrm{Q}_{\mathrm{C} n}, \mathrm{Q}_{\mathrm{Dn}}=$ The level of $\mathrm{Q}_{\mathrm{A}}, \mathrm{Q}_{\mathrm{B}}, \mathrm{Q}_{\mathrm{C}}$, respectively, before the most-recent \uparrow transition of the clock.

Logic Diagram

DISTINCTIVE CHARACTERISTICS

- As fast as 5-ns propagation delay and 142.8 MHz fmax (external)
- Low-power EE CMOS
- 10 macrocells programmable as registered or combinatorial, and active high or active low to match application needs
- Varied product term distribution allows up to 16 product terms per output for complex functions
- Peripheral Component Interconnect (PCI) compliant (-5/-7/-10)

■ Global asynchronous reset and synchronous preset for initialization

- Power-up reset for initialization and register preload for testability
- Extensive third-party software and programmer support through FusionPLD partners
- 24-pin SKINNYDIP, 24-pin SOIC, 24-pin Flatpack and 28-pin PLCC and LCC packages save space
■ 5-ns and 7.5-ns versions utilize split leadframes for improved performance

GENERAL DESCRIPTION

The PALCE22V10 provides user-programmable logic for replacing conventional SSI/MSI gates and flip-flops at a reduced chip count.
The PAL device implements the familiar Boolean logic transfer function, the sum of products. The PAL device is a programmable AND array driving a fixed OR array. The AND array is programmed to create custom product terms, while the OR array sums selected terms at the outputs.
The product terms are connected to the fixed OR array with a varied distribution from 8 to16 across the outputs (see Block Diagram). The OR sum of the products feeds the output macrocell. Each macrocell can be programmed as registered or combinatorial, and active
high or active low. The output configuration is determined by two bits controlling two multiplexers in each macrocell.
AMD's FusionPLD program allows PALCE22V10 designs to be implemented using a wide variety of popular industry-standard design tools. By working closely with the FusionPLD partners, AMD certifies that the tools provide accurate, quality support. By ensuring that thirdparty tools are available, costs are lowered because a designer does not have to buy a complete set of new tools for each device. The FusionPLD program also greatly reduces design time since a designer can use a tool that is already installed and familiar.

BLOCK DIAGRAM

CONNECTION DIAGRAMS

Top View

SKINNYDIP/SOIC/FLATPACK

CLK/Io 1^{\bullet}	24
$1{ }_{1} \square_{2}$	23
$\mathrm{I}_{2} \square_{3}$	22
$1_{3} \square 4$	21
$14 \zeta 5$	20
6	19
7	18
8	17
9	16
10	15
10011	14
GND 12	13

16564D-3

* For -5 , this pin must be grounded for guaranteed data sheet performance. If not grounded, AC timing may degrade by about 10\%.

Note:

Pin 1 is marked for orientation.

PIN DESIGNATIONS

```
CLK = Clock
GND = Ground
I = Input
I/O = Input/Output
NC = No Connect
Vcc = Supply Voltage
```


LOGIC DIAGRAM
 SKINNYDIP/SOIC/FLATPACK (PLCC/LCC) Pinouts

