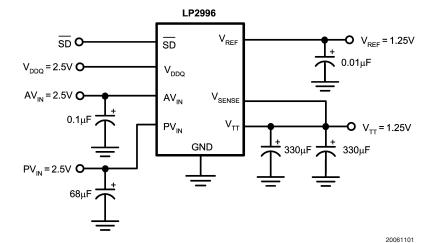
National Semiconductor Application Note 1268 Chance Dunlap December 2002



The LP2996 evaluation board is designed to provide the design engineer with a fully functional prototype system in which to evaluate the LP2996 in both a static environment and with a complete memory system. There are two versions of the board, while identical in functionality they differ in the package implemented, either a PSOP-8 or LLP-16 is used. This application note contains information regarding the

board, for more information regarding the LP2996 please refer to the datasheet.

Schematic

The following schematic was used to create the layout.

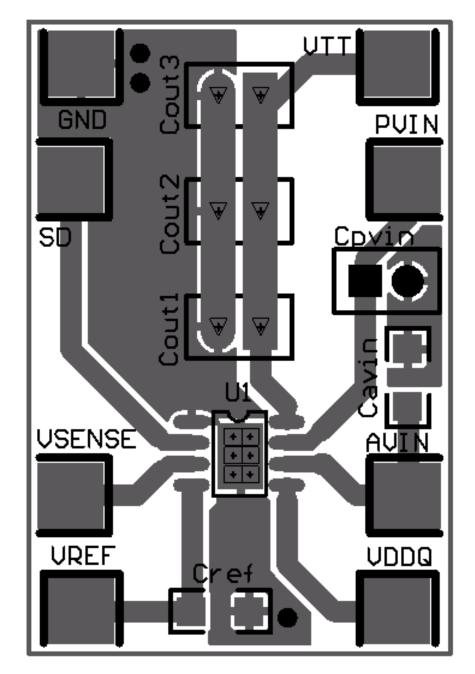
Bill of Materials

Name	Value	Description	Manufacturer	Model Number
U1		LP2996 DDR Linear Regulator	National	LP2996MR or LP2996LQ
			Semiconductor	
CAVIN	0.1µF	1206 Ceramic Capacitor X7R	Vishay Vitrammon	VJ1206Y104KXXAT
		25V		
COUT1	330µF	6.3V Electrolytic Radial FC	Panasonic	EEU-FC0J331S
		Series		
COUT2	330µF	6.3V Electrolytic Radial FC	Panasonic	EEU-FC0J331S
		Series		
CREF	0.01µF	1206 Ceramic Capacitor X7R	Vishay Vitrammon	VJ1206Y103KXXAT
		25V		
CPVIN	68µF	6.3V Electrolytic Radial FC	Panasonic	EEU-FC0J680
		series		

Application

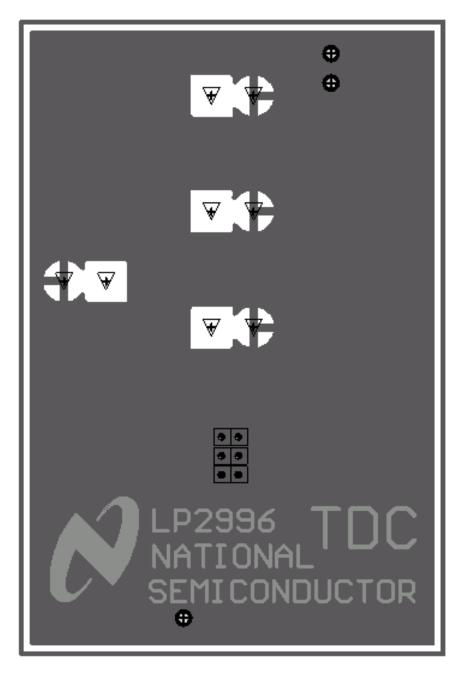
The LP2996 evaluation board can be used immediately in either a static test environment to check functionality or in a memory termination scheme on a motherboard. In either implementation the following steps should be taken to ensure correct operation.

- Connect leads from the evaluation board. The board layout has been designed to allow banana jack sockets to be directly soldered.
- AVIN and PVIN should be connected to a 2.5V power supply.
- The VDDQ input provides the internal divide by two reference voltage. Both VREF and VTT will track this internal voltage, nominally a 2.5V will be applied.
- 4. The VREF pad is the output for the VREF from the LP2996 after being bypassed by a ceramic capacitor. This can be connected either to a multimeter for confirmation or directly to the memory controller and DIMMS.
- 5. The SD pin can be initially left floating as it has an internal pull-up
- The remaining two pads are for the force and sense leads of the VTT output. These should be connected directly to the termination plane or a multimeter if inter-

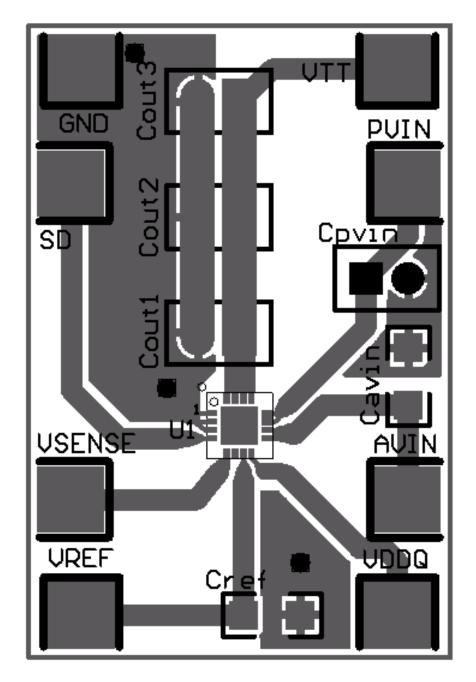

ested in verification. The output will be regulated where the VSENSE leads connect to the VTT leads permitting the connection to a motherboard without suffering from large resistance drops.

Performance

The LP2996 has been designed to accommodate several different capacitor options to allow the designer to optimize the solution for the specific application. For most desktop systems large aluminum electrolytic capacitors will be used for their low cost. However, in height limited situations such as laptops fewer high performance capacitors might be implemented such as specialty polymers. The table below lists some of the capacitors that can be used and a vendor that offers that product line.


Capacitor Series	Vendor	Vendor Phone Number
Oscon	Vishay	(207)-324-4140
SP	Panasonic	(714)-373-7857
MLCC	Taiyo Yuden	(800)-348-2496
Aluminum	Panasonic	(714)-373-7857

www.national.com


PSOP Top Layer

20061102

PSOP Bottom Layer

20061103

LLP Top Layer

20061104

LLP Bottom Layer

www.national.com 6

-	Ţ	J
1	ĺ	5
Č	(Š
Č	•	5
è	5	1
`		•
ľ	1	Ī
Ξ.		1
2	ľ	j
2		
	J,)
)
	5	5
t	J	U
è		Ĭ
è	7	
2		
C	5)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

Information

Board Material

Board Thickness

Copper Thickness

Thermal Vias Size

Board Thickness

Thermal Vias

Size

Layers

Plating

PSOP-8 Board

FR4

1.0 x 1.5 inches

0.062 inch

2

1oz.

HASL

6

10 mil

0.062 inch

LLP-16 Board

FR4

1.0 x 1.5 inches

0.062 inch

1oz.

HASL

4

13 mil

0.062 inch

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.national.com

National Semiconductor Europe

Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171

Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466

Email: ap.support@nsc.com

National Semiconductor Tel: 81-3-5639-7560 Fax: 81-3-5639-7507