

LM78LXX Series 3-Terminal Positive Regulators General Description

The LM78LXX series of three terminal positive regulators is available with several fixed output voltages making them useful in a wide range of applications. When used as a zener diode/resistor combination replacement, the LM78LXX usually results in an effective output impedance improvement of two orders of magnitude, and lower quiescent current. These regulators can provide local on card regulation, eliminating the distribution problems associated with single point regulation. The voltages available allow the LM78LXX to be used in logic systems, instrumentation, HiFi, and other solid state electronic equipment.

The LM78LXX is available in the plastic TO-92 (*Z*) package, the plastic SO-8 (M) package and a chip sized package (8-Bump micro SMD) using National's micro SMD package technology. With adequate heat sinking the regulator can deliver 100mA output current. Current limiting is included to limit the peak output current to a safe value. Safe area protection for the output transistors is provided to limit internal power dissipation. If internal power dissipation becomes too high for the heat sinking provided, the thermal shutdown circuit takes over preventing the IC from overheating.

Features

- LM78L05 in micro SMD package
- Output voltage tolerances of ±5% over the temperature range
- Output current of 100mA
- Internal thermal overload protection
- Output transistor safe area protection
- Internal short circuit current limit
- Available in plastic TO-92 and plastic SO-8 low profile packages
- No external components
- Output voltages of 5.0V, 6.2V, 8.2V, 9.0V, 12V, 15V
- See AN-1112 for micro SMD considerations

Connection Diagrams SO-8 Plastic (M) (TO-92) (Narrow Body) Plastic Package (Z) OUTPUT INPUT V_{OUT} VIN GND GND GND · GND NC NC GND 00774403 00774402 **Bottom View Top View** micro SMD Marking Orientation 8-Bump micro SMD XT = Date Code NC Β3 C3 GND V_{OUT} C2 GND VOUT C1 NC V_{IN} 00774424 **Top View** Pin A1 Corner Pin A1 is identified by lower left corner with respect to the text. (Bump Side Down) 00774433 **Top View**

Package	NSC Drawing	Output Voltage	Order Number	Supplied As
micro SMD	BPA08AAB	5V	LM78L05IBP	Reel of 250
	DFAUGAAD	57	LM78L05IBPX	Reel of 3000
		5V	LM78L05ITP	Reel of 250
Thin micro SMD	TPA08AAA	57	LM78L05ITPX	Reel of 3000
	TFAUOAAA	9V	LM78L09ITP	Reel of 250
		90	LM78L09ITPX	Reel of 3000
		5V	LM78L05ACM	Rail of 95
		JUD	LM78L05ACMX	Reel of 2500
SOIC Narrow	M08A	12V	LM78L12ACM	Rail of 95
SOIC Nariow	MUOA	120	LM78L12ACMX	Reel of 2500
		15V	LM78L15ACM	Rail of 95
		150	LM78L15ACMX	Reel of 2500
		5V	LM78L05ACZ	Box of 1800
		6.2V	LM78L62ACZ	Box of 1800
TO-92	Z03A	8.2V	LM78L82ACZ	Box of 1800
10-32	ZUJA	9V	LM78L09ACZ	Box of 1800
		12V	LM78L12ACZ	Box of 1800
		15V	LM78L15ACZ	Box of 1800

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Power Dissipation (Note 5)	Internally Limited
Input Voltage	35V
Storage Temperature	-65°C to +150°C
ESD Susceptibility (Note 2)	1kV

Operating Junction Temperature	
SO-8, TO-92	0°C to 125°C
micro SMD	–40°C to 85°C
Soldering Information	
Infrared or Convection (20 sec.)	235°C
Wave Soldering (10 sec.)	260°C (lead time)

LM78LXX Electrical Characteristics Limits in standard typeface are for $T_J = 25^{\circ}C$, **Bold typeface** applies over 0°C to 125°C for SO-8 and TO-92 packages, and -40°C to 85°C for micro SMD package. Limits are guaranteed by production testing or correlation techniques using standard Statistical Quality Control (SQC) methods. Unless otherwise specified: $I_O = 40$ mA, $C_I = 0.33\mu$ F, $C_O = 0.1\mu$ F.

LM78L05

Unless otherwise specified, $V_{IN} = 10V$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Vo	Output Voltage		4.8	5	5.2	
		$7V \le V_{IN} \le 20V$ $1mA \le I_O \le 40mA$ (Note 3)	4.75		5.25	v
		$1mA \le I_O \le 70mA$ (Note 3)	4.75		5.25	
ΔV _O	Line Regulation	$7V \le V_{IN} \le 20V$		18	75	
		$8V \le V_{IN} \le 20V$		10	10 54	
ΔV_O	Load Regulation	$1 \text{mA} \le \text{I}_{O} \le 100 \text{mA}$		20	60	mV
		$1\text{mA} \le I_{O} \le 40\text{mA}$		5	30	
l _Q	Quiescent Current			3	5	i
Δl _Q C	Quiescent Current Change	$8V \le V_{IN} \le 20V$			1.0	
		$1 \text{mA} \le \text{I}_{O} \le 40 \text{mA}$			0.1	
V _n	Output Noise Voltage	f = 10 Hz to 100 kHz (Note 4)		40		μV
ΔV _{IN} ΔV _{OUT}	Ripple Rejection	$ f = 120 \text{ Hz} \\ 8V \le V_{\text{IN}} \le 16V $	47	62		dB
I _{PK}	Peak Output Current			140		mA
$\frac{\Delta V_O}{\Delta T}$	Average Output Voltage Tempco	I _O = 5mA		-0.65		mV/°C
V _{IN} (Min)	Minimum Value of Input Voltage Required to Maintain Line Regulation			6.7	7	V
θ_{JA}	Thermal Resistance (8-Bump micro SMD)			230.9		°C/W

LM78L62AC

Unless otherwise specified, $V_{IN} = 12V$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Vo	Output Voltage		5.95	6.2	6.45	
		$\begin{array}{l} 8.5 V \leq V_{\rm IN} \leq 20 V \\ 1 m A \leq I_{\rm O} \leq 40 m A \\ ({\rm Note} \ 3) \end{array}$	5.9		6.5	v
	$1mA \le I_O \le 70mA$ (Note 3)	5.9		6.5		

LM78LXX Electrical Characteristics Limits in standard typeface are for $T_J = 25^{\circ}C$, **Bold typeface** applies over 0°C to 125°C for SO-8 and TO-92 packages, and -40°C to 85°C for micro SMD package. Limits are guaranteed by production testing or correlation techniques using standard Statistical Quality Control (SQC) methods. Unless otherwise specified: $I_O = 40$ mA, $C_I = 0.33\mu$ F, $C_O = 0.1\mu$ F. (Continued)

LM78L62AC (Continued)

Unless otherwise specified, $V_{IN} = 12V$

Symbol	Parameter	Conditions	Min	Тур	Мах	Units
ΔV_{O}	Line Regulation	$8.5V \le V_{IN} \le 20V$		65	175	
		$9V \le V_{IN} \le 20V$		55	125	mV
ΔV _O	Load Regulation	$1\text{mA} \le \text{I}_{O} \le 100\text{mA}$		13	80	
		$1\text{mA} \le \text{I}_{O} \le 40\text{mA}$		6	40	1
l _Q	Quiescent Current			2	5.5	
Δl _Q	Quiescent Current Change	$8V \le V_{IN} \le 20V$			1.5	-
		$1mA \le I_O \le 40mA$			0.1	
V _n	Output Noise Voltage	f = 10 Hz to 100 kHz		50		μV
		(Note 4)	_			
$\frac{\Delta V_{IN}}{\Delta V_{OUT}}$	Ripple Rejection	$f = 120 \text{ Hz}$ $10 \text{V} \le \text{V}_{\text{IN}} \le 20 \text{V}$	40	46		dB
I _{PK}	Peak Output Current			140		mA
<u>ΔV_O</u> ΔT	Average Output Voltage Tempco	I _O = 5mA		-0.75		mV/°C
V _{IN} (Min)	Minimum Value of Input Voltage Required to Maintain Line Regulation			7.9		V

LM78L82AC

Unless otherwise specified, $V_{IN} = 14V$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Vo	Output Voltage		7.87	8.2	8.53	
		$11V \le V_{IN} \le 23V$ $1mA \le I_O \le 40mA$ (Note 3)	7.8		8.6	v
		$1 \text{mA} \le I_{O} \le 70 \text{mA}$ (Note 3)	7.8		8.6	
ΔV _O	Line Regulation	$11V \le V_{IN} \le 23V$		80	175	
		$12V \leq V_{IN} \leq 23V$		70	125	mV
ΔV _O	Load Regulation	$1 \text{mA} \le \text{I}_{O} \le 100 \text{mA}$		15	80	
		$1\text{mA} \le I_{O} \le 40\text{mA}$		8	40	
l _Q	Quiescent Current			2	5.5	
Δl _Q	Quiescent Current Change	$12V \le V_{IN} \le 23V$			1.5	mA
		$1\text{mA} \le \text{I}_{O} \le 40\text{mA}$			0.1	
V _n	Output Noise Voltage	f = 10 Hz to 100 kHz (Note 4)		60		μV
$\frac{\Delta V_{IN}}{\Delta V_{OUT}}$	Ripple Rejection	f = 120 Hz	39	45		dB
I _{PK}	Peak Output Current			140		mA
<u>ΔV_O</u> ΔT	Average Output Voltage Tempco	I _O = 5mA		-0.8		mV/°
V _{IN} (Min)	Minimum Value of Input Voltage Required to Maintain Line Regulation			9.9		v

LM78LXX Electrical Characteristics Limits in standard typeface are for $T_J = 25^{\circ}C$, **Bold typeface** applies over 0°C to 125°C for SO-8 and TO-92 packages, and -40°C to 85°C for micro SMD package. Limits are guaranteed by production testing or correlation techniques using standard Statistical Quality Control (SQC) methods. Unless otherwise specified: $I_O = 40$ mA, $C_I = 0.33\mu$ F, $C_O = 0.1\mu$ F. (Continued)

LM78L09AC

Unless otherwise specified, $V_{IN} = 15V$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Vo	Output Voltage		8.64	9.0	9.36	
		$11.5V \le V_{IN} \le 24V$ $1mA \le I_O \le 40mA$ (Note 3)	8.55		9.45	v
		$1mA \le I_O \le 70mA$ (Note 3)	8.55		9.45	-
ΔV _O	Line Regulation	$11.5V \le V_{IN} \le 24V$		100	200	
		$13V \le V_{IN} \le 24V$		90	150	
ΔV_{O}	Load Regulation	$1\text{mA} \le \text{I}_{O} \le 100\text{mA}$		20	90	mV
		$1 \text{mA} \le \text{I}_{O} \le 40 \text{mA}$		10	45	
l _Q	Quiescent Current			2	5.5	
Δl _Q	Quiescent Current Change	$11.5V \le V_{IN} \le 24V$			1.5	mA
		$1mA \le I_O \le 40mA$			0.1	
V _n	Output Noise Voltage			70		μV
ΔV _{IN} ΔV _{OUT}	Ripple Rejection	$f = 120 \text{ Hz}$ $15 \text{V} \le \text{V}_{\text{IN}} \le 25 \text{V}$	38	44		dB
I _{PK}	Peak Output Current			140		mA
<u>ΔV_O</u> ΔT	Average Output Voltage Tempco	I _O = 5mA		-0.9		mV/°C
V _{IN} (Min)	Minimum Value of Input Voltage Required to Maintain Line Regulation			10.7		V

LM78L12AC

Unless otherwise specified, $V_{IN} = 19V$

Symbol	Parameter	Conditions	Min	Тур	Мах	Units
Vo	Output Voltage		11.5	12	12.5	
		$14.5V \le V_{IN} \le 27V$				1
		$1\text{mA} \le \text{I}_{O} \le 40\text{mA}$	11.4		12.6	v
		(Note 3)				v
		$1\text{mA} \le \text{I}_{O} \le 70\text{mA}$	11.4		12.6	
		(Note 3)	11.4		12.0	
ΔV_{O}	Line Regulation	$14.5V \leq V_{IN} \leq 27V$		30	180	
		$16V \le V_{IN} \le 27V$		20	110	mV
ΔV_O	Load Regulation	$1mA \le I_O \le 100mA$		30	100	
		$1mA \le I_O \le 40mA$		10	50	
l _Q	Quiescent Current			3	5	
ΔI_Q	Quiescent Current Change	$16V \le V_{IN} \le 27V$			1	mA
		$1mA \le I_O \le 40mA$			0.1	
V _n	Output Noise Voltage			80		μV
ΔV _{IN}	Ripple Rejection	f = 120 Hz				
ΔV _{OUT}		$15V \le V_{\text{IN}} \le 25$	40	54		dB
I _{PK}	Peak Output Current			140		mA
$\frac{\Delta V_O}{\Delta T}$	Average Output Voltage Tempco	I _O = 5mA		-1.0		mV/°C

LM78LXX Electrical Characteristics Limits in standard typeface are for $T_J = 25^{\circ}C$, Bold typeface applies over 0°C to 125°C for SO-8 and TO-92 packages, and -40°C to 85°C for micro SMD package. Limits are guaranteed by production testing or correlation techniques using standard Statistical Quality Control (SQC) methods. Unless otherwise specified: $I_O = 40$ mA, $C_I = 0.33\mu$ F, $C_O = 0.1\mu$ F. (Continued)

LM78L12AC (Continued)

Unless otherwise specified, $V_{IN} = 19V$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{IN} (Min)	Minimum Value of Input Voltage Required to Maintain Line Regulation			13.7	14.5	V

Units

V

mV

mΑ

μV

dB

mΑ

mV/°C

V

Parameter	Conditions	Min	Тур	Max
Output Voltage		14.4	15.0	15.6
	$17.5V \le V_{IN} \le 30V$			
	$1mA \le I_O \le 40mA$	14.25		15.75
	(Note 3)			
	$1mA \le I_O \le 70mA$	14.95		15.75
	(Note 3)	14.25		15.75
Line Regulation	$17.5V \le V_{IN} \le 30V$		37	250
	$20V \le V_{IN} \le 30V$		25	140
Load Regulation	$1\text{mA} \le I_{O} \le 100\text{mA}$		35	150
	$1\text{mA} \le I_{O} \le 40\text{mA}$		12	75
Quiescent Current			3	5
Quiescent Current Change	$20V \le V_{IN} \le 30V$			1
	$1\text{mA} \le I_{O} \le 40\text{mA}$			0.1
Output Noise Voltage			90	
Ripple Rejection	f = 120 Hz			
	$18.5V \leq V_{\rm IN} \leq 28.5V$	37	51	
Peak Output Current			140	
Average Output Voltage Tempco	I _O = 5mA		-1.3	
Minimum Value of Input Voltage			16.7	17.5
	Output Voltage Line Regulation Load Regulation Quiescent Current Quiescent Current Change Output Noise Voltage Ripple Rejection Peak Output Current	$\begin{tabular}{ c c c c } \hline Output Voltage & \hline & 17.5V \leq V_{\text{IN}} \leq 30V \\ 1\text{mA} \leq I_O \leq 40\text{mA} \\ (Note 3) & \hline & 1\text{mA} \leq I_O \leq 70\text{mA} \\ (Note 3) & \hline & 1\text{mA} \leq I_O \leq 70\text{mA} \\ (Note 3) & \hline & 17.5V \leq V_{\text{IN}} \leq 30V \\ \hline & 20V \leq V_{\text{IN}} \leq 30V \\ \hline & 1\text{mA} \leq I_O \leq 40\text{mA} \\ \hline & 1\text{mA} \leq I_O \leq 40\text{mA} \\ \hline & 1\text{mA} \leq I_O \leq 40\text{mA} \\ \hline & 0\text{utput Noise Voltage} & \hline & \\ \hline & \text{Ripple Rejection} & \hline & f = 120 \text{ Hz} \\ & 18.5V \leq V_{\text{IN}} \leq 28.5V \\ \hline & \text{Peak Output Current} & \hline & \\ \hline & \text{Average Output Voltage Tempco} & \hline & I_O = 5\text{mA} \\ \hline \end{tabular}$	$ \begin{array}{ c c c c c } \hline \text{Output Voltage} & 14.4 \\ \hline 17.5 V \leq V_{\text{IN}} \leq 30 V \\ 1 \text{mA} \leq I_O \leq 40 \text{mA} \\ (\text{Note 3}) & 14.25 \\ \hline 1 \text{mA} \leq I_O \leq 70 \text{mA} \\ (\text{Note 3}) & 14.25 \\ \hline 1 \text{mA} \leq I_O \leq 70 \text{mA} \\ (\text{Note 3}) & 14.25 \\ \hline 1 \text{mA} \leq I_O \leq 70 \text{mA} \\ \hline 20 V \leq V_{\text{IN}} \leq 30 V \\ \hline 20 V \leq V_{\text{IN}} \leq 30 V \\ \hline 20 V \leq V_{\text{IN}} \leq 30 V \\ \hline 1 \text{mA} \leq I_O \leq 100 \text{mA} \\ \hline 1 \text{mA} \leq I_O \leq 40 \text{mA} \\ \hline 1 \text{mA} \leq I_O \leq 40 \text{mA} \\ \hline 20 V \leq V_{\text{IN}} \leq 30 V \\ \hline 1 \text{mA} \leq I_O \leq 40 \text{mA} \\ \hline 1 \text{mA} \leq I_O \leq 40 \text{mA} \\ \hline 1 \text{mA} \leq I_O \leq 40 \text{mA} \\ \hline 0 \text{utput Noise Voltage} & \hline \\ \hline \text{Ripple Rejection} & f = 120 \text{ Hz} \\ 18.5 V \leq V_{\text{IN}} \leq 28.5 V \\ \hline 37 \\ \hline \text{Peak Output Current} & \hline \\ \text{Average Output Voltage Tempco} & I_O = 5 \text{mA} \\ \hline \end{array} $	Output Voltage 14.4 15.0 $17.5V \le V_{1N} \le 30V$ 14.4 15.0 $17.5V \le V_{1N} \le 30V$ $1mA \le I_0 \le 40mA$ 14.25 $(Note 3)$ $1mA \le I_0 \le 70mA$ 14.25 Line Regulation $17.5V \le V_{1N} \le 30V$ 37 $20V \le V_{1N} \le 30V$ 25 Load Regulation $1mA \le I_0 \le 100mA$ 35 $1mA \le I_0 \le 40mA$ 12 Quiescent Current 33 Quiescent Current Change $20V \le V_{1N} \le 30V$ 1 Output Noise Voltage 90 Ripple Rejection $f = 120 Hz$ 37 Peak Output Current 14.0 Average Output Voltage Tempco $I_0 = 5mA$ -1.3

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Electrical specifications do not apply when operating the device outside of its stated operating conditions.

Note 2: Human body model, 1.5 k Ω in series with 100pF.

Note 3: Power dissipation \leq 0.75W.

Note 4: Recommended minimum load capacitance of 0.01µF to limit high frequency noise.

Required to Maintain Line Regulation

Note 5: Typical thermal resistance values for the packages are:

 \boldsymbol{Z} Package: θ_{JC} = 60 °C/W, = θ_{JA} = 230 °C/W

M Package: $\theta_{JA} = 180 \text{°C/W}$

micro SMD Package: $\theta_{JA} = 230.9^{\circ}C/W$

∆V0UT = 100mV

25

30

00774416

100k

00774418

15 20

1k

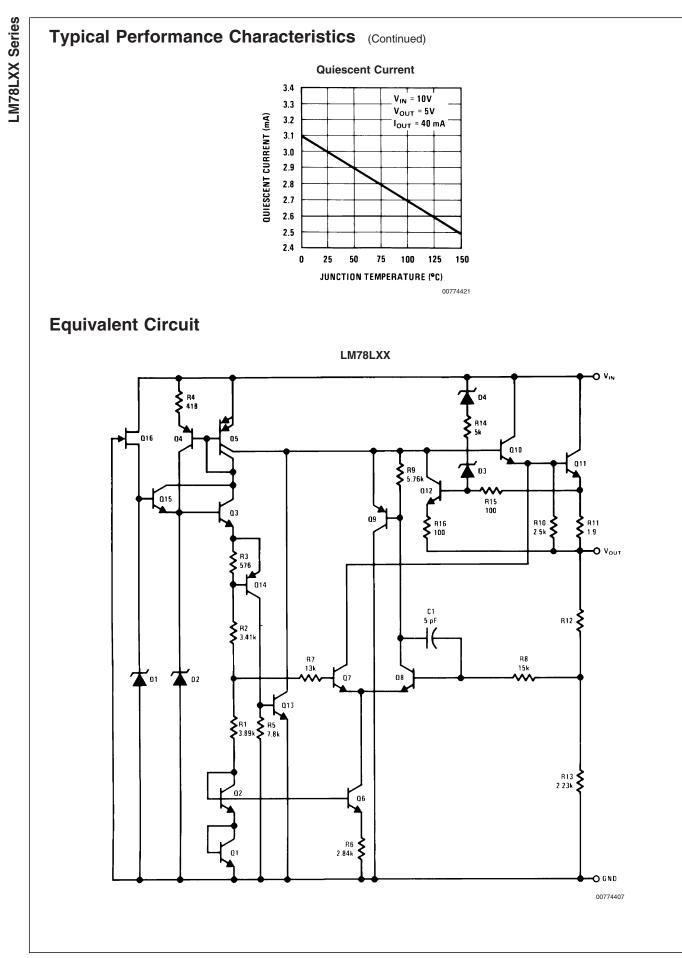
10k

V_{OUT} = 5V

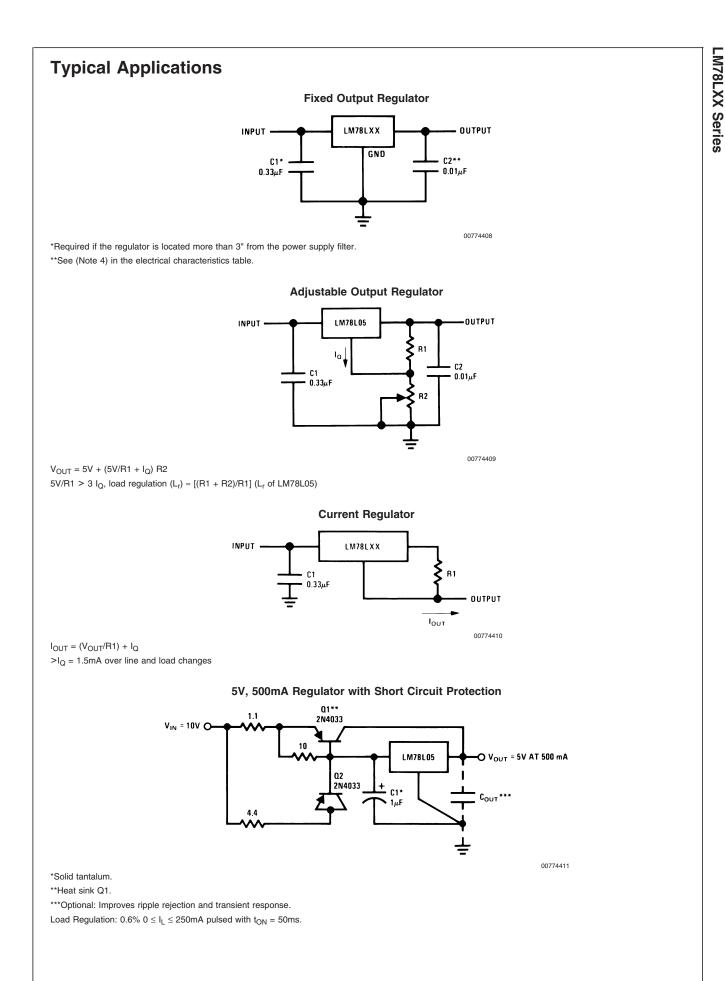
T J = 25°C

20

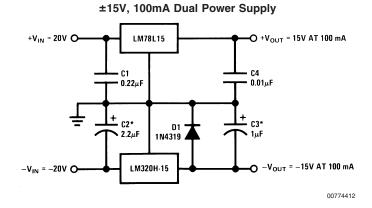
15


I_{OUT} = 40 mA

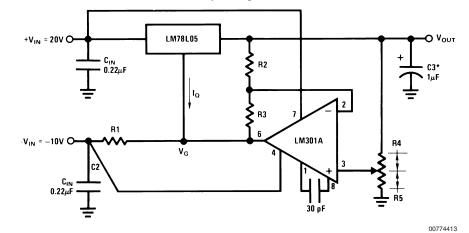
25


30

00774420


Typical Performance Characteristics Maximum Average Power Dissipation (Z Package) **Peak Output Current** 10 400 5.0 POWER DISSIPATION (W) **OUTPUT CURRENT (mA)** 300 Tj = 0°C 0.125" LEAD LENGTH FROM PC BOARD T_i = 25°C WITH 72°C/W HEAT SINK 200 1.0 0.4" LEAD LENGTH 0.5 Tj = 150°C FROM PC BOARD 100 FREE AIR 0.125" LEAD LENGTH FROM PC BOARD FREE AIR 0.1 15 30 45 60 0 5 10 0 75 AMBIENT TEMPERATURE (°C) INPUT-OUTPUT DIFFERENTIAL (V) 00774414 **Dropout Voltage Ripple Rejection** 2.5 100 INPUT-OUTPUT DIFFERENTIAL (V) 2.0 I_{OUT} = 70 mA 80 RIPPLE REJECTION (dB) = 40 mA lout 1.5 60 = 1.0 mA lout 1.0 40 V_{IN} = 10V V_{OUT} = 5V 0.5 DROPOUT CONDITIONS 20 l_{out} = 40 mA Δ V_{OUT} = 2% of V_{OUT} T_A = 25°C H 0 0 25 50 75 100 125 10 100 JUNCTION TEMPERATURE (°C) FREQUENCY (Hz) 00774417 **Output Impedance Quiescent Current** 10 4.0 V_{IN} = 10V 3.8 V_{OUT} = 5V 5.0 QUIESCENT CURRENT (mA) 3.6 OUTPUT IMPEDANCE (\O) I_{OUT} = 40 mA T_A = 25°C 3.4 C_{OUT} = 0 3.2 $C_{OUT} = 1 \mu F TANTALUM$ 1.0 3.0 2.8 0.5 2.6 2.4 2.2 2.0 0.1 10 10 100 1k 10k 100k 5 1M INPUT VOLTAGE (V) FREQUENCY (Hz) 00774419

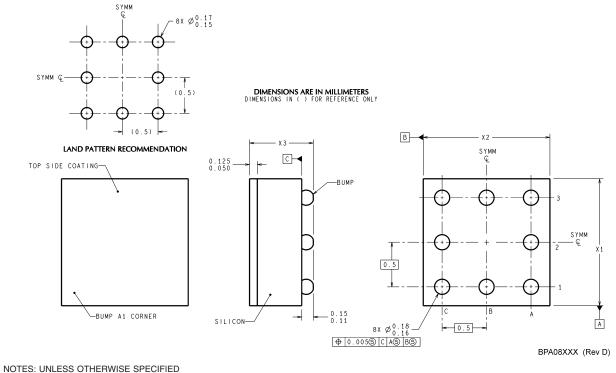
www.national.com



Typical Applications (Continued)

*Solid tantalum.

Variable Output Regulator 0.5V-18V



*Solid tantalum.

$$\begin{split} V_{OUT} &= V_G + 5V, \, R1 = (-V_{IN}/I_{Q \ LM78L05}) \\ V_{OUT} &= 5V \ (R2/R4) \ for \ (R2 + R3) = (R4 + R5) \\ A \ 0.5V \ output \ will \ correspond to \ (R2/R4) = 0.1 \ (R3/R4) = 0.9 \end{split}$$

LM78LXX Series

Physical Dimensions inches (millimeters) unless otherwise noted

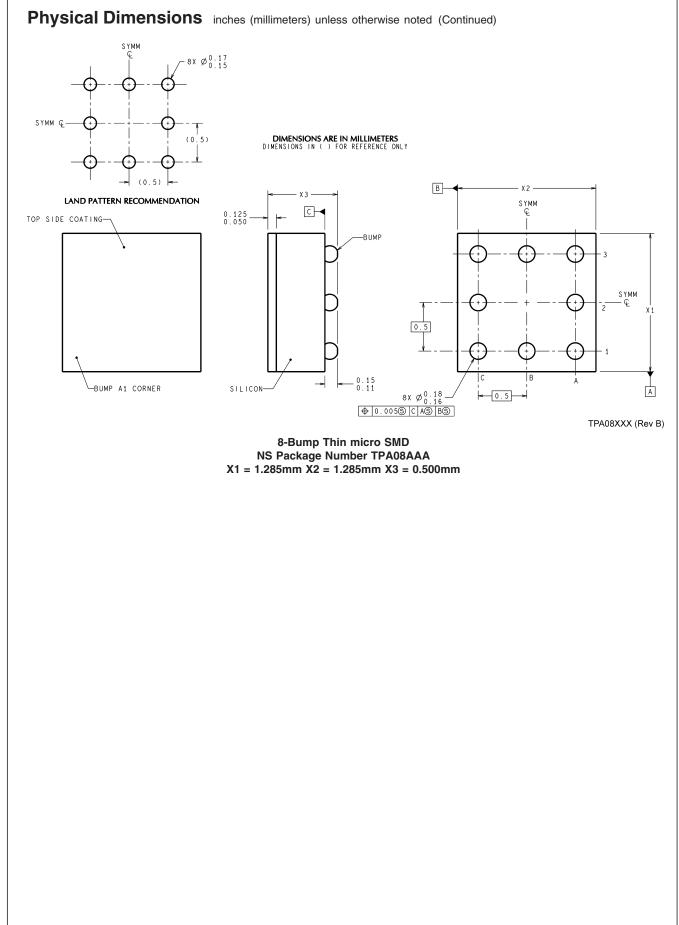
NOTES: UNLESS OTHERWISE

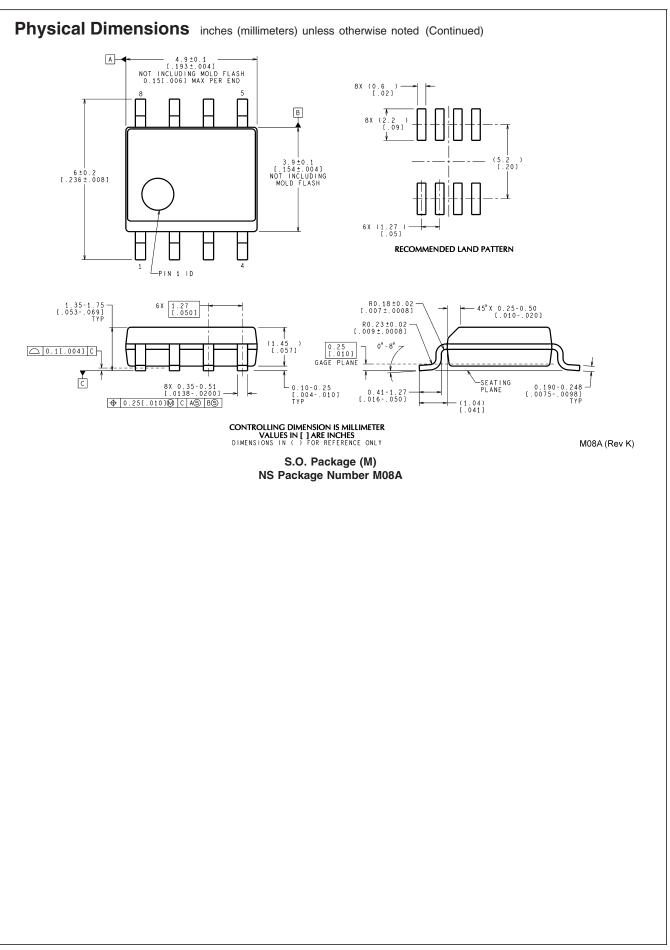
1. EPOXY COATING

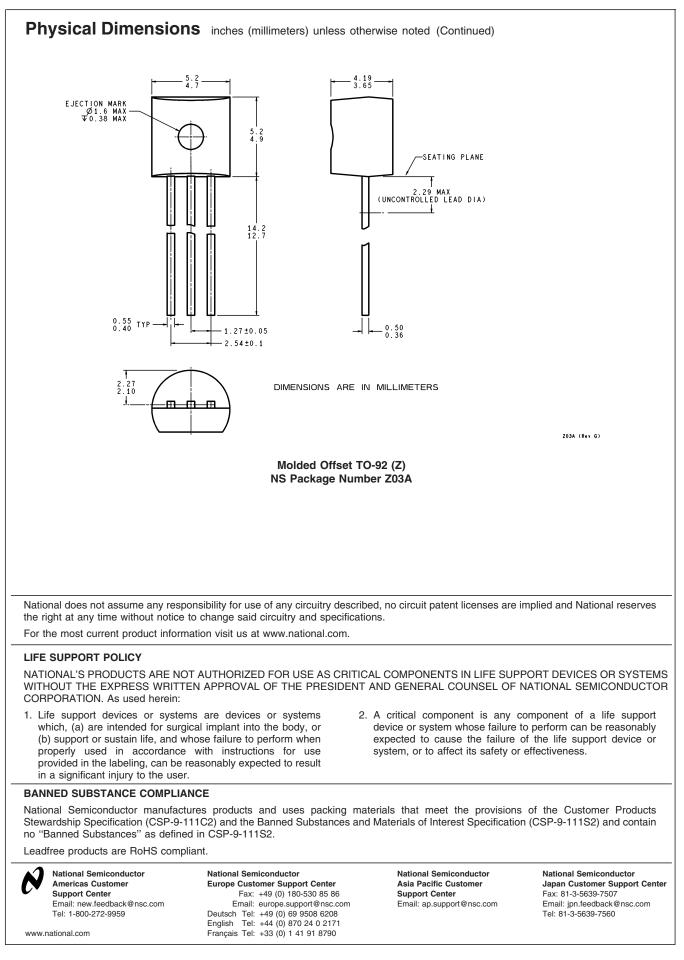
2. 63Sn/37Pb EUTECTIC BUMP

3. RECOMMEND NON-SOLDER MASK DEFINED LANDING PAD.

4. PIN A1 IS ESTABLISHED BY LOWER LEFT CORNER WITH RESPECT TO TEXT ORIENTATION. REMAINING PINS ARE NUMBERED COUNTERCLOCKWISE.


5. XXX IN DRAWING NUMBER REPRESENTS PACKAGE SIZE VARIATION WHERE X_1 IS PACKAGE WIDTH, X_2 IS PACKAGE LENGTH AND X_3 IS PACKAGE HEIGHT.


6. REFERENCE JEDEC REGISTRATION MO-211, VARIATION BC.


8-Bump micro SMD

NS Package Number BPA08AAB X1 = 1.285mm X2 = 1.285mm X3 = 0.850mm

