DatasheetArchive.....

Request For Quotation

Order the parts you need from our real-time inventory database. Simply complete a request for quotation form with your part information and a sales representative will respond to you with price and availability.

Request For Quotation

Your free datasheet starts on the next page.

More datasheets and data books are available from our homepage: http://www.datasheetarchive.com

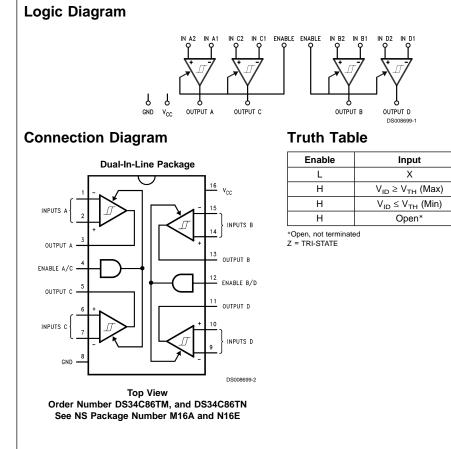
May 1998

DS34C86T Quad CMOS Differential Line Receive

National Semiconductor

DS34C86T Quad CMOS Differential Line Receiver

General Description


The DS34C86T is a quad differential line receiver designed to meet the RS-422, RS-423, and Federal Standards 1020 and 1030 for balanced and unbalanced digital data transmission, while retaining the low power characteristics of CMOS. The DS34C86T has an input sensitivity of 200 mV over the common mode input voltage range of \pm 7V. Hysteresis is provided to improve noise margin and discourage output instability for slowly changing input waveforms.

The DS34C86T features internal pull-up and pull-down resistors which prevent output oscillation on unused channels.

Separate enable pins allow independent control of receiver pairs. The TRI-STATE $^{\odot}$ outputs have 6 mA source and sink capability. The DS34C86T is pin compatible with the DS3486.

Features

- CMOS design for low power
- ±0.2V sensitivity over the input common mode voltage range
- Typical propagation delays: 19 ns
- Typical input hysteresis: 60 mV
- Inputs won't load line when V_{CC} = 0V
- Meets the requirements of EIA standard RS-422
- TRI-STATE outputs for system bus compatibility
- Available in surface mount
- Open input Failsafe feature, output high for open input

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

© 1998 National Semiconductor Corporation DS008699

www.national.com

Output

Ζ

н

1

н

Absolute Maximum Ratings (Notes 1, 2)

.

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V _{CC})	7V
Input Common Mode Range (V см)	±14V
Differential Input Voltage (V DIFF)	±14V
Enable Input Voltage (V IN)	7V
Storage Temperature Range (T sтg)	–65°C to +150°C
Lead Temperature (Soldering 4 sec)	260°C

Maximum Power Dissipation at 25°C (Note 5)
Plastic "N" Package	1645 mW
SOIC Package	1190 mW
Current Per Output	±25 mA
This device does not meet 2000V ESD rat	ing. (Note 4)

Operating Conditions

	Min	Max	Unit
Supply Voltage (V _{CC})	4.50	5.50	V
Operating Temperature Range (T _A)	-40	+85	°C
Enable Input Rise or Fall Times		500	ns

DC Electrical Characteristics (Note 3) V_{CC} = 5V ±10% (unless otherwise specified)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{TH}	Minimum Differential	V _{OUT} = V _{OH} or V _{OL}	-200	35	+200	mV
	Input Voltage	$-7V < V_{CM} < +7V$				
R _{IN}	Input Resistance	$V_{IN} = -7V, +7V$	5.0	6.8	10	kΩ
		(Other Input = GND)				
I _{IN}	Input Current	V _{IN} = +10V, Other Input = GND		+1.1	+1.5	mA
	(Under Test)	V _{IN} = -10V, Other Input = GND		-2.0	-2.5	mA
V _{он}	Minimum High Level	V_{CC} = Min., $V_{(DIFF)}$ = +1V	3.8	4.2		V
	Output Voltage	I _{OUT} = -6.0 mA				
V _{OL}	Maximum Low Level	$V_{CC} = Max., V_{(DIFF)} = -1V$		0.2	0.3	V
	Output Voltage	I _{OUT} = 6.0 mA				
V _{IH}	Minimum Enable High		2.0			V
	Input Level Voltage					
V _{IL}	Maximum Enable Low				0.8	V
	Input Level Voltage					
l _{oz}	Maximum TRI-STATE	$V_{OUT} = V_{CC} \text{ or GND},$				
	Output Leakage Current	TRI-STATE Control = V _{IL}		±0.5	±5.0	μA
l _i	Maximum Enable Input	V _{IN} = V _{CC} or GND			±1.0	μA
	Current					
I _{cc}	Quiescent Power	V_{CC} = Max., $V_{(DIFF)}$ = +1V		16	23	mA
	Supply Current					
V _{HYST}	Input Hysteresis	$V_{CM} = 0V$		60		mV

AC Electrical Characteristics (Note 3)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PLH} ,	Propagation Delay	C _L = 50 pF				
t _{PHL}	Input to Output	$V_{DIFF} = 2.5V$		19	30	ns
		$V_{CM} = 0V$				
t _{RISE} ,	Output Rise and	C _L = 50 pF				
t _{FALL}	Fall Times	$V_{DIFF} = 2.5V$		4	9	ns
		$V_{CM} = 0V$				
t _{PLZ} ,	Propagation Delay	C _L = 50 pF				
t _{PHZ}	ENABLE to Output	$R_L = 1000\Omega$		13	18	ns
		V _{DIFF} = 2.5V				

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PZL} ,	Propagation Delay	C _L = 50 pF				
t _{PZH}	ENABLE to Output	$R_L = 1000\Omega$		13	21	ns
		$V_{DIFF} = 2.5V$				

All typicals are given for V_{CC} = 5V and T_A = 25°C.

Note 4: ESD Rating; HBM (1.5kΩ, 100 pF)

Inputs ≥ 2000V

All other pins \geq 1000V

EIAJ (0Ω, 200 pF) ≥ 350V

Note 5: Ratings apply to ambient temperature at 25°C. Above this temperature derate N Package 13.16 mW/°C, and M Package 9.52 mW/°C.

Comparison Table of Switching Characteristics into "LS-Type" Load (Note 6) $V_{CC} = 5V$, $T_A = 25$ °C (Figures 4, 5)

Symbol	Parameter	DS34C86		DS3486		Units
		Тур	Max	Тур	Max	
t _{PHL(D)}	Propagation Delay Time	17		19		ns
	Output High to Low					
t _{PLH(D)}	Propagation Delay Time	19		19		ns
	Output Low to High					
t _{PLZ}	Output Low to TRI-STATE	13		23		ns
t _{PHZ}	Output High to TRI-STATE	12		25		ns
t _{PZH}	Output TRI-STATE to High	13		18		ns
t _{PZL}	Output TRI-STATE to Low	13		20		ns

Note 6: This Table is provided for comparison purposes only. The values in this table for the DS34C86 reflect the performance of the device but are not tested or guaranteed.

Test and Switching Waveforms

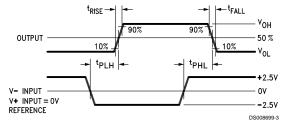
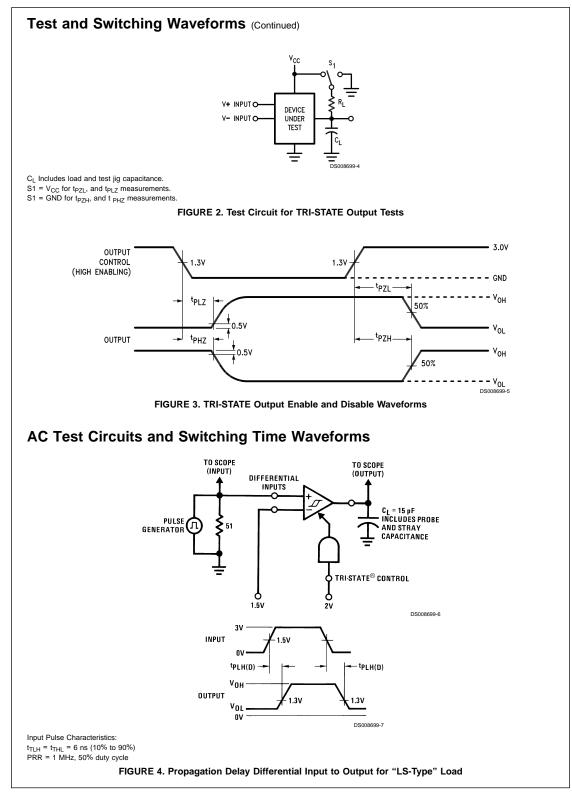
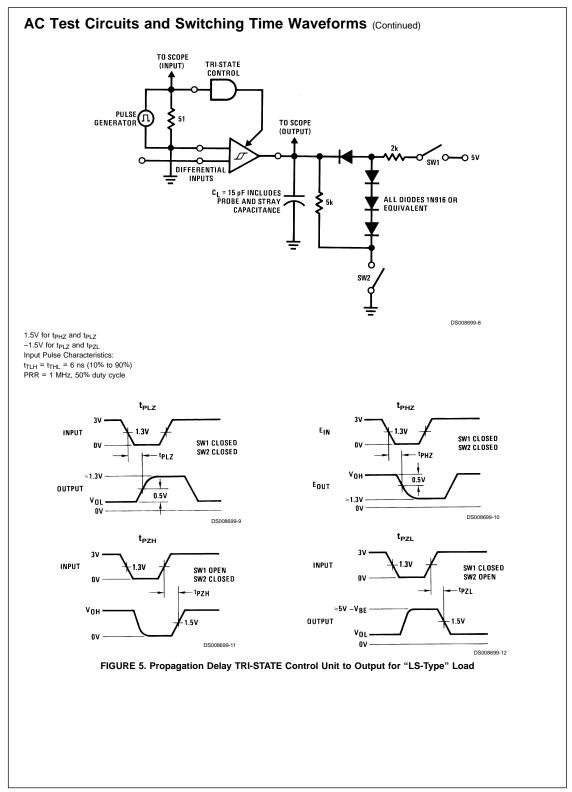
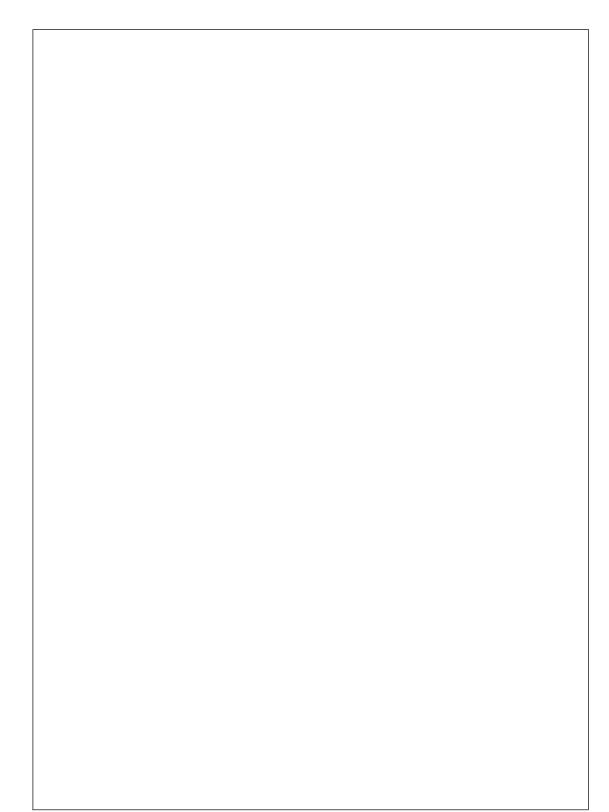
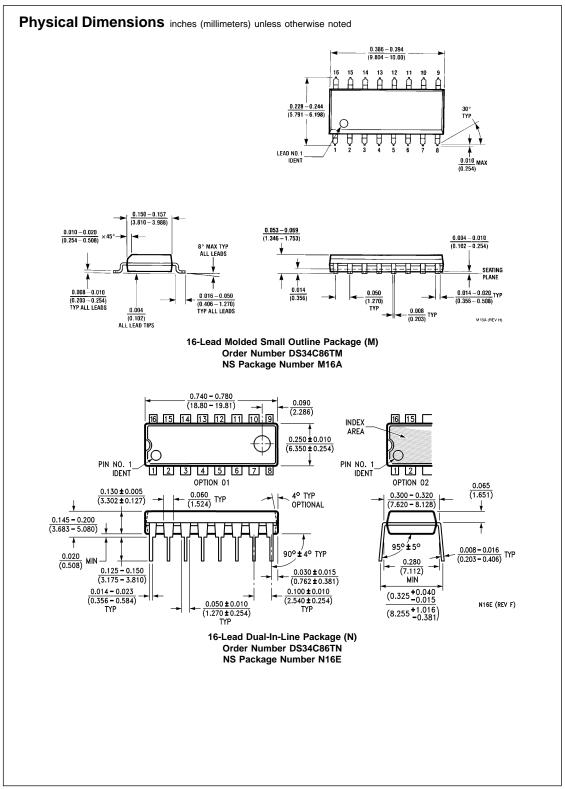






FIGURE 1. Propagation Delays

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

N	National Semiconductor Corporation	National Semiconductor Europe	National Semiconductor Asia Pacific Customer	National Semiconducto Japan Ltd.
U*	Americas	Fax: +49 (0) 1 80-530 85 86	Response Group	Tel: 81-3-5620-6175
	Tel: 1-800-272-9959	Email: europe.support@nsc.com	Tel: 65-2544466	Fax: 81-3-5620-6179
	Fax: 1-800-737-7018	Deutsch Tel: +49 (0) 1 80-530 85 85	Fax: 65-2504466	
	Email: support@nsc.com	English Tel: +49 (0) 1 80-532 78 32	Email: sea.support@nsc.com	
		Français Tel: +49 (0) 1 80-532 93 58		
www.na	ational.com	Italiano Tel: +49 (0) 1 80-534 16 80		

National does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.