⚠Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefo sales representatives or product engineers before ordering.

• This PDF catalog has only typical specifications because there is no space for detailed specifications

Chip Monolithic Ceramic Capacitors

Innovator in Electronics

Murata Manufacturing Co., Ltd.

Cat.No.C02E-13

CONTENTS

Part Numbering	2
Selection Guide	— 6
1 for General Purpose GRM15/18/21/31 Series	— 7
2 for General Purpose GRM32 Series	—— 15
3 Ultra-small GRM03 Series	— 17
4 Tight Tolerance GRM03/15 Series	—— 19
5 Thin Type	22
1 to 5 Specifications and Test Methods	24
GRM Series Data	33
6 Microchips GMA Series	35
6 Specifications and Test Methods	36
7 Capacitor Arrays GNM Series	38
7 Specifications and Test Methods	— 41
8 for Ultrasonic Sensors GRM Series	47
8 Specifications and Test Methods	48
9 Low ESL LLL/LLA/LLM Series	50
9 Specifications and Test Methods	— 53
10 High-Q GJM Series	57
11 Tight Tolerance High-Q GJM Series	60
10 . 11 Specifications and Test Methods	63
12 High Frequency GQM Series	66
12 Specifications and Test Methods	68
13 High Frequency Type ERB Series	— 71
13 Specifications and Test Methods	— 73
ERB Series Data	76
Package	— 78
[⊥] Caution	82
Notice	87
Reference Data	—— 92

• This PDF catalog is downloaded from the website of Murata Manufacturing co., Itd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.	C02E.pdf
This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.	07.2.6

14	Medium Voltage Low Dissipation Factor	99
15	Medium Voltage High Capacitance for General Use	103
16	Only for LCD Backlight Inverter Circuit	108
17	Only for Information Devices/Tip & Ring	111
18	Only for Camera Flash Circuit	115
19	AC250V (r.m.s.) Type (Which Meet Japanese Law)	119
20	Safety Standard Recognized Type GC (UL, IEC60384-14 Class X1/Y2)	123
21	Safety Standard Recognized Type GD (IEC60384-14 Class Y3)	124
22	Safety Standard Recognized Type GF (IEC60384-14 Class Y2, X1/Y2)	125
23	Safety Standard Recognized Type GB (IEC60384-14 Class X2)	126
GA	3 Series Specifications and Test Methods	127
GR	M/GR4/GR7/GA2/GA3 Series Data (Typical Example)	131
Pac	kage	134
۵	aution	137
Not	ice	145
ISO	9001 Certifications	148

• Please refer to "Specifications and Test Methods" at the end of each chapter of 14 - 19 .

Chip Monolithic	Ceramic Ca	pacitors		
Part Number)	GR M	18 8 B1	1H 102 K A0	
Product ID	•••			Optimization (Contraction)
Series				Code
Product ID	Code	9	Series	2
	М	Tin Pl	ated Layer	2
GR	4	Only for Informati	on Devices / Tip & Ring	3
	7	Only for Can	nera Flash Circuit	4
ER	В	High Fre	quency Type	5
		High Fr	equency for	6
GQ	Μ		low Soldering	7
GM	Α	Monolith	nic Microchip	8
GN	М	Capa	citor Array	9
	L	Low ESL W	/ide Width Type	Α
LL	Α	Eight-terminat	ion Low ESL Type	В
	М	Ten-terminati	on Low ESL Type	С
GJ	М		cy Low Loss Type ated Type	D
	2	for AC2	250V (r.m.s.)	F
GA	3	Safety Standar	d Recognized Type	м
Dimension (LXV	Λ <u>Λ</u>			N
Code	Dimensio	n (I XW)	EIA	R
02	0.4X0		01005	Q
03	0.6×0		0201	X
05	0.5×0		0202	With the array
08	0.8×0		0303	elements.
11		1.0mm	0504	
15	1.0X0).5mm	0402	
18	1.6X0).8mm	0603	
1D	1.4X1	.4mm		
1X	Depend	ls on individual	standards.	
21	2.0X1	.25mm	0805	
22	2.8×2	2.8mm	1111	
31	3.2×1	.6mm	1206	
32	3.2×2	2.5mm	1210	
3X	Depend	ls on individual	standards.	
42	4.5×2	2.0mm	1808	
43	4.5×3	3.2mm	1812	
			2211	
52	5.7×2	2.8000	2211	

Code	Dimension (T)
2	0.2mm
2	2-elements (Array Type)
3	0.3mm
4	4-elements (Array Type)
5	0.5mm
6	0.6mm
7	0.7mm
8	0.8mm
9	0.85mm
Α	1.0mm
В	1.25mm
С	1.6mm
D	2.0mm
E	2.5mm
F	3.2mm
м	1.15mm
N	1.35mm
R	1.8mm
S	2.8mm
Q	1.5mm
Х	Depends on individual standards.

With the array type GNM series, "Dimension(T)" indicates the number of elements.

Continued on the following page.

ANote • This PDF catalog is downloaded from the website of Murata Manufacturing co., Itd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our	C02E.pdf
sales representatives or product engineers before ordering. • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.	

Temperature Characteristic Codes									
Code Public STD C		Public STD Code		Public STD Code Referance Temperature Temperature		Temperature Range	Capacitance Change or Temperature Coefficient	Operating Temperature Rang	
1X	SL *1	JIS	20°C	20 to 85°C	+350 to -1000ppm/°C	-55 to 125°C			
2C	CH *1	JIS	20°C	20 to 125°C	0±60ppm/°C	-55 to 125°C			
2P	PH *1	JIS	20°C	20 to 85°C	-150±60ppm/°C	-25 to 85°C			
2R	RH *1	JIS	20°C	20 to 85°C	-220±60ppm/°C	-25 to 85°C			
2S	SH *1	JIS	20°C	20 to 85°C	-330±60ppm/°C	-25 to 85°C			
2T	TH *1	JIS	20°C	20 to 85°C	-470±60ppm/°C	-25 to 85°C			
3C	CJ *1	JIS	20°C	20 to 125°C	0±120ppm/°C	-55 to 125°C			
3P	PJ *1	JIS	20°C	20 to 85°C	-150±120ppm/°C	-25 to 85°C			
3R	RJ *1	JIS	20°C	20 to 85°C	-220±120ppm/°C	-25 to 85°C			
3S	SJ *1	JIS	20°C	20 to 85°C	-330±120ppm/°C	-25 to 85°C			
3T	TJ *1	JIS	20°C	20 to 85°C	-470±120ppm/°C	-25 to 85°C			
3U	UJ *1	JIS	20°C	20 to 85°C	-750±120ppm/°C	-25 to 85°C			
4C	CK *1	JIS	20°C	20 to 125°C	0±250ppm/°C	-55 to 125°C			
5C	C0G *1	EIA	25°C	25 to 125°C	0±30ppm/°C	-55 to 125°C			
5G	X8G *1	EIA	25°C	25 to 150°C	0±30ppm/°C	-55 to 150°C			
6C	C0H *1	EIA	25°C	25 to 125°C	0±60ppm/°C	-55 to 125°C			
6P	P2H *1	EIA	25°C	25 to 85°C	-150±60ppm/°C	-55 to 125°C			
6R	R2H *1	EIA	25°C	25 to 85°C	-220±60ppm/°C	-55 to 125°C			
6S	S2H *1	EIA	25°C	25 to 85°C	-330±60ppm/°C	-55 to 125°C			
6T	T2H *1	EIA	25°C	25 to 85°C	-470±60ppm/°C	-55 to 125°C			
7U	U2J *1	EIA	25°C	25 to 85°C	-750±120ppm/°C	-55 to 125°C			
B1	B *2	JIS	20°C	-25 to 85°C	±10%	-25 to 85°C			
B3	В	JIS	20°C	-25 to 85°C	±10%	-25 to 85°C			
C7	X7S	EIA	25°C	-55 to 125°C	±22%	-55 to 125°C			
C8	X6S	EIA	25°C	-55 to 105°C	±22%	-55 to 105°C			
F1	F *2	JIS	20°C	-25 to 85°C	+30, -80%	-25 to 85°C			
F5	Y5V	EIA	25°C	-30 to 85°C	+22, -82%	-30 to 85°C			
L8	X8L	EIA	25°C	-55 to 150°C	+15, -40%	-55 to 150°C			
R1	R *2	JIS	20°C	-55 to 125°C	±15%	-55 to 125°C			
R3	R	JIS	20°C	-55 to 125°C	±15%	-55 to 125°C			
R6	X5R	EIA	25°C	-55 to 85°C	±15%	-55 to 85°C			
R7	X7R	EIA	25°C	-55 to 125°C	±15%	-55 to 125°C			
R9	X8R	EIA	25°C	-55 to 150°C	±15%	-55 to 150°C			
05	71.54	*0	20%0	-25 to 20°C	-4700+1000/-2500ppm/°C				
9E	ZLM	*3	20°C	20 to 85°C	-4700+500/-1000ppm/°C	-25 to 85°C			
W0			2500	FE to 10500	±10% *4	EE to 10500			
WO	-	-	25°C	-55 to 125°C	+22, -33% *5	-55 to 125°C			

*1 Please refer to table for Capacitance Change under reference temperature. *2 Capacitance change is specified with 50% rated voltage applied.

*3,*4 Murata Temperature Characteristic Code.
*4 Apply DC350V bias.
*5 No DC bias.

Continued on the following page.

Continued from the preceding page.

•Capacitance Change from each temperature

JIS Code

	Capacitance Change from 20°C (%)						
Murata Code	–55°C		–25°C		–10°C		
	Max.	Min.	Max.	Min.	Max.	Min.	
1X	-	-	-	-	-	-	
2C	0.82	-0.45	0.49	-0.27	0.33	-0.18	
2P	-	-	1.32	0.41	0.88	0.27	
2R	-	-	1.70	0.72	1.13	0.48	
2S	-	-	2.30	1.22	1.54	0.81	
2T	-	-	3.07	1.85	2.05	1.23	
3C	1.37	-0.90	0.82	-0.54	0.55	-0.36	
3P	-	-	1.65	0.14	1.10	0.09	
3R	-	-	2.03	0.45	1.35	0.30	
3S	-	-	2.63	0.95	1.76	0.63	
3Т	-	-	3.40	1.58	2.27	1.05	
3U	-	-	4.94	2.84	3.29	1.89	
4C	2.56	-1.88	1.54	-1.13	1.02	-0.75	

EIA Code

	Capacitance Change from 25°C (%)					
Murata Code	–55°C		-30°C		–10°C	
	Max.	Min.	Max.	Min.	Max.	Min.
5C/5G	0.58	-0.24	0.40	-0.17	0.25	-0.11
6C	0.87	-0.48	0.59	-0.33	0.38	-0.21
6P	2.33	0.72	1.61	0.50	1.02	0.32
6R	3.02	1.28	2.08	0.88	1.32	0.56
6S	4.09	2.16	2.81	1.49	1.79	0.95
6Т	5.46	3.28	3.75	2.26	2.39	1.44
7U	8.78	5.04	6.04	3.47	3.84	2.21

6 Rated Voltage

Code	Rated Voltage
0G	DC4V
0J	DC6.3V
1A	DC10V
1C	DC16V
1E	DC25V
1H	DC50V
2A	DC100V
2D	DC200V
2E	DC250V
YD	DC300V
2H	DC500V
2J	DC630V
3A	DC1kV
3D	DC2kV
3F	DC3.15kV
BB	DC350V (for Camera Flash Circuit)
E2	AC250V
GB	X2; AC250V (Safety Standard Recognized Type GB)
GC	X1/Y2; AC250V (Safety Standard Recognized Type GC)
GD	Y3; AC250V (Safety Standard Recognized Type GD)
GF	Y2, X1/Y2; AC250V (Safety Standard Recognized Type GF)

Capacitance

Expressed by three-digit alphanumerics. The unit is pico-farad (pF). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two numbers. If there is a decimal point, it is expressed by the capital letter " \mathbf{R} ". In this case, all figures are significant digits.

Ex.)	Code	Capacitance
	R50	0.5pF
	1R0	1.0pF
	100	10pF
	103	10000pF

Continued on the following page.

1 Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.	C02E.pdf
• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.	07.2.6

Code	Capacitance Tolerance	TC	Series	Capaci	tance Step
w	±0.05pF	CΔ	GRM/GJM	≦9.9pF	0.1pF
В	±0.1pF	CΔ	GRM/GJM	≦9.9pF	0.1pF
		CΔ	GRM/GJM	≦9.9pF	0.1pF
С	±0.25pF	except C∆	GRM	≦5pF	* 1pF
		CΔ	ERB/GQM	≦5pF	* 1pF
		CΔ	GRM/GJM	5.1 to 9.9pF	0.1pF
D	±0.5pF	except C∆	GRM	5.1 to 9.9pF	* 1pF
		CΔ	ERB/GQM	5.1 to 9.9pF	* 1pF
G	±2%	CΔ	GJM	≧10pF	E12 Series
G	±2 %	CΔ	GQM	≧10pF	E24 Series
	±5%	CΔ–SL	GRM/GA3	≧10pF	E12 Series
J	±3 %	CΔ	ERB/GQM/GJM	≧10pF	E24 Series
к	±10%		GRM/GR7/GA3	E6	Series
n	±10%	B, R, X7R, X5R, ZLM	GR4	E12	Series
		Z5U	GRM	E3	Series
М	±20%	B, R, X7R, X7S	GRM/GMA/LLL/LLA/LLM	E6	Series
		X7R	GA2	E3	Series
Z	+80%, -20%	F, Y5V	GRM	E3	Series
R		Depe	ends on individual standards.		

* E24 series is also available.

Individual Specification Code

Expressed by three figures.

Packaging

Code	Dackaging
Code	Packaging
L	ø180mm Embossed Taping
D	ø180mm Paper Taping
к	ø330mm Embossed Taping
J	ø330mm Paper Taping
В	Bulk
С	Bulk Case
т	Bulk Tray

Selection Guide of Chip Monolithic Ceramic Capacitors

Chip Monolithic Ceramic Capacitors

for General Purpose GRM15/18/21/31 Series

Features

- 1. Terminations are made of metal highly resistant to migration.
- A wide selection of sizes is available, from the miniature LxW: 1.0x0.5mm to LxW: 3.2x1.6mm. GRM18, 21 and GRM31 types are suited to flow and reflow soldering.
 - GRM15 type is applied to only reflow soldering.
- 3. Smaller size and higher capacitance value
- 4. High reliability and no polarity
- 5. Excellent pulse responsibility and noise reduction due to the low impedance at high frequency.
- 6. Ta replacement

Applications

General electronic equipment

Part Number		Dir	nensions (n	וm)	
	L	W	Т	е	g min.
GRM155	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15 to 0.35	0.3
GRM185	1.6 ±0.1	0.8 ±0.1	0.5 +0/-0.1	0.2 to 0.5	0.5
GRM188*	1.0 ±0.1	0.8 ±0.1	0.8 ±0.1	0.2 10 0.5	0.5
GRM216			0.6 ±0.1		
GRM219	2.0 +0.1	1.25 ±0.1	0.85 ±0.1	0.2 to 0.7	0.7
GRM21A	2.0 ±0.1	1.25 ±0.1	1.0 +0/-0.2	0.2 10 0.7	0.7
GRM21B			1.25 ±0.1		
GRM316			0.6 ±0.1		
GRM319	3.2 ±0.15	1.6 ±0.15	0.85 ±0.1	0.3 to 0.8	1.5
GRM31M			1.15 ±0.1	0.3 10 0.8	1.5
GRM31C	3.2 ±0.2	1.6 ±0.2	1.6 ±0.2		

* Bulk Case : 1.6 \pm 0.07(L)×0.8 \pm 0.07(W)×0.8 \pm 0.07(T)

Temperature Compensating Type GRM15 Series (1.00x0.50mm) 50/25V

Part Number				GR	M15			
L x W [EIA]				1.0x0.5	5 [0402]			
тс	C0G (5C)	P2H (6P)	R2H (6R)	S2H (6S)	S (1	SL X)	T2H (6T)	U2J (7U)
Rated Volt.	50 (1H)	50 (1H)	50 (1H)	50 (1H)	50 (1H)	25 (1E)	50 (1H)	50 (1H)
Capacitance (Cap	acitance part n	numbering code)	and T (mm) Dim	ension (T Dimen	sion part numbe	ring code)		
3.0pF(3R0)	0.5 (5)	0.5 (5)	0.5 (5)	0.5 (5)			0.5(5)	0.5(5)
4.0pF(4R0)	0.5 (5)	0.5 (5)	0.5 (5)	0.5 (5)			0.5 (5)	0.5(5)
5.0pF(5R0)	0.5 (5)	0.5 (5)	0.5 (5)	0.5 (5)			0.5 (5)	0.5(5)
6.0pF(6R0)	0.5(5)	0.5(5)	0.5 (5)	0.5 (5)			0.5 (5)	0.5(5)
7.0pF(7R0)	0.5 (5)	0.5 (5)	0.5 (5)	0.5 (5)			0.5 (5)	0.5(5)
8.0pF(8R0)	0.5 (5)	0.5 (5)	0.5 (5)	0.5 (5)			0.5(5)	0.5(5)
9.0pF(9R0)	0.5 (5)	0.5 (5)	0.5 (5)	0.5 (5)			0.5(5)	0.5(5)
10pF(100)	0.5(5)	0.5 (5)	0.5 (5)	0.5(5)			0.5(5)	0.5(5)
12pF(120)	0.5(5)	0.5 (5)	0.5 (5)	0.5(5)	0.5 (5)	0.5 (5)	0.5(5)	0.5(5)
15pF(150)	0.5(5)	0.5 (5)	0.5 (5)	0.5(5)	0.5 (5)	0.5 (5)	0.5(5)	0.5(5)
18pF(180)	0.5 (5)	0.5 (5)	0.5 (5)	0.5 (5)	0.5 (5)	0.5 (5)	0.5(5)	0.5(5)
22pF(220)	0.5 (5)	0.5 (5)	0.5 (5)	0.5 (5)	0.5 (5)	0.5 (5)	0.5(5)	0.5 (5)
27pF(270)	0.5 (5)	0.5 (5)	0.5 (5)	0.5 (5)	0.5 (5)	0.5 (5)	0.5(5)	0.5(5)
33pF(330)	0.5 (5)		0.5 (5)	0.5 (5)	0.5 (5)	0.5 (5)	0.5 (5)	0.5(5)
39pF(390)	0.5 (5)			0.5 (5)	0.5 (5)	0.5 (5)	0.5(5)	0.5 (5)
47pF(470)	0.5(5)				0.5 (5)	0.5 (5)	0.5(5)	0.5(5)
56pF(560)	0.5(5)				0.5 (5)	0.5 (5)	0.5 (5)	0.5(5)
68pF(680)	0.5(5)				0.5 (5)	0.5 (5)	0.5 (5)	0.5(5)
82pF(820)	0.5(5)				0.5 (5)	0.5 (5)	0.5 (5)	0.5(5)
100pF(101)	0.5(5)				0.5 (5)	0.5 (5)	0.5 (5)	0.5(5)
120pF(121)	0.5(5)				0.5 (5)	0.5 (5)		0.5(5)
150pF(151)	0.5(5)				0.5 (5)	0.5 (5)		0.5(5)
180pF(181)	0.5(5)				0.5 (5)	0.5 (5)		0.5(5)
220pF(221)	0.5(5)					0.5 (5)		
270pF(271)	0.5(5)					0.5 (5)		

 \Box Continued from the preceding page.

Part Number				GR	M15			
L x W [EIA]				1.0x0.5	5 [0402]			
тс	C0G (5C)	P2H (6P)	R2H (6R)	S2H (6S)	(*	SL 1 X)	T2H (6T)	U2J (7U)
Rated Volt.	50 (1H)	50 (1H)	50 (1H)	50 (1H)	50 (1H)	25 (1E)	50 (1H)	50 (1H)
Capacitance (Cap	pacitance part n	numbering code)	and T (mm) Dim	ension (T Dimen	sion part numb	ering code)		1
330pF(331)	0.5 (5)					0.5(5)		
390pF(391)	0.5 (5)					0.5(5)		
470pF(471)	0.5 (5)							
560pF(561)	0.5(5)							
680pF(681)	0.5(5)							
820pF(821)	0.5(5)							
1000pF(102)	0.5(5)							

The part numbering code is shown in $% \left({\left({{{{\bf{n}}_{\rm{s}}}} \right)} \right)$ ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Temperature Compensating Type GRM18 Series (1.60x0.80mm) 100/50V

Part Number							GR	M18						
L x W [EIA]							1.6x0.8	8 [0603]						
тс)G C)		2H P)		2H R)		2H S)	(1	X)	T2 (6	2H T)		2J ' U)
Rated Volt.	100 (2A)	50 (1H)												
Capacitance (Ca	pacitance	e part nui	mbering c	ode) and	T (mm) D	imension	(T Dimen	sion part	numberin	g code)				
0.50pF(R50)	0.8(8)													
3.0pF(3R0)	0.8(8)				0.8(8)									
4.0pF(4R0)	0.8(8)				0.8(8)									
5.0pF(5R0)	0.8(8)				0.8(8)									
6.0pF(6R0)	0.8(8)				0.8(8)									
7.0pF(7R0)	0.8(8)				0.8(8)									
8.0pF(8R0)	0.8(8)				0.8(8)									
9.0pF(9R0)	0.8(8)				0.8(8)									
10pF(100)	0.8(8)				0.8(8)		0.8(8)							
12pF(120)	0.8(8)		0.8(8)		0.8(8)		0.8(8)		0.8(8)		0.8(8)		0.8(8)	
15pF(150)	0.8(8)		0.8(8)		0.8(8)		0.8(8)		0.8(8)		0.8(8)		0.8(8)	
18pF(180)	0.8(8)		0.8(8)		0.8(8)		0.8(8)		0.8(8)		0.8(8)		0.8(8)	
22pF(220)	0.8(8)		0.8(8)		0.8(8)		0.8(8)		0.8(8)		0.8(8)		0.8(8)	
27pF(270)	0.8(8)		0.8(8)		0.8(8)		0.8(8)		0.8(8)		0.8(8)		0.8(8)	
33pF(330)	0.8(8)		0.8(8)	0.8(8)	0.8(8)		0.8(8)		0.8(8)		0.8(8)		0.8(8)	
39pF(390)	0.8(8)		0.8(8)	0.8(8)	0.8(8)	0.8(8)	0.8(8)		0.8(8)		0.8(8)		0.8(8)	
47pF(470)	0.8(8)		0.8(8)	0.8(8)	0.8(8)	0.8(8)	0.8(8)	0.8(8)	0.8(8)				0.8(8)	
56pF(560)	0.8(8)		0.8(8)	0.8(8)	0.8(8)	0.8(8)	0.8(8)	0.8(8)	0.8(8)				0.8(8)	
68pF(680)	0.8(8)		0.8(8)	0.8(8)	0.8(8)	0.8(8)	0.8(8)	0.8(8)	0.8(8)				0.8(8)	
82pF(820)	0.8(8)		0.8(8)	0.8(8)	0.8(8)	0.8(8)	0.8(8)	0.8(8)	0.8(8)				0.8(8)	
100pF(101)	0.8(8)		0.8(8)	0.8(8)	0.8(8)	0.8(8)	0.8(8)	0.8(8)	0.8(8)				0.8(8)	
120pF(121)	0.8(8)		0.8(8)	0.8(8)	0.8(8)	0.8(8)	0.8(8)	0.8(8)	0.8(8)			0.8(8)	0.8(8)	
150pF(151)	0.8(8)			0.8(8)	0.8(8)	0.8(8)		0.8(8)	0.8(8)			0.8(8)	0.8(8)	
180pF(181)	0.8(8)				/	0.8(8)		0.8(8)	0.8(8)			0.8(8)	0.8(8)	<u> </u>
220pF(221)	0.8(8)					.,		0.8(8)	0.8(8)	0.8(8)		0.8(8)	0.8(8)	0.8(8
270pF(271)	0.8(8)							.,	0.8(8)	0.8(8)		0.8(8)	0.8(8)	0.8(
330pF(331)	0.8(8)								0.8(8)	0.8(8)		0.8(8)	0.8(8)	0.8(
390pF(391)	0.8(8)								0.8(8)	0.8(8)		0.8(8)	0.8(8)	0.8(8
470pF(471)	0.8(8)								,	0.8(8)		0.8(8)		0.8(8
560pF(561)	0.8(8)									0.8(8)				0.8(8
680pF(681)	0.8(8)									0.8(8)				0.8(8
820pF(821)	0.8(8)													

Continued from the preceding page.

Part Number							GR	M18						
L x W [EIA]							1.6x0.8	3 [0603]						
тс	C0 (5)G C)		2H 6 P)		2H R)	S: (6	2H S)		SL X)		2H T)	U (7	2J U)
Rated Volt.	100 (2A)	50 (1H)												
Capacitance (Ca	pacitance	e part nur	nbering c	ode) and	T (mm) D	imension	(T Dimen	sion part	numberin	ng code)				
1000pF(102)	0.8 (8)									0.8(8)				0.8(8)
1200pF(122)		0.8(8)								0.8(8)				0.8(8)
1500pF(152)		0.8(8)								0.8(8)				0.8(8)
1800pF(182)		0.8(8)	.,,							0.8(8)				0.8(8)
2200pF(222)		0.8(8)								0.8(8)				0.8(8)
2700pF(272)		0.8(8)								0.8(8)				0.8(8)
3300pF(332)										0.8(8)				0.8(8)
3900pF(392)										0.8(8)				0.8(8)
4700pF(472)										0.8(8)				0.8(8)
5600pF(562)										0.8(8)				0.8(8)
6800pF(682)										0.8(8)				0.8(8)
8200pF(822)										0.8(8)				0.8(8)
10000pF(103)										0.8(8)				0.8(8)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Temperature Compensating Type GRM21 Series (2.00x1.25mm) 100/50V

Part Number							GR	M21						
L x W [EIA]							2.0x1.2	5 [0805]						
тс	C((5		P2 (6	2H P)		2H R)		2H S)	S (1	X)	T2 (6			2J U)
Rated Volt.	100 (2A)	50 (1H)												
Capacitance (Ca	apacitance	e part nur	nbering c	ode) and	T (mm) D	imension	(T Dimen	sion part	numberin	g code)				
33pF(330)				0.6(6)										
39pF(390)				0.6(6)		0.6(6)								
47pF(470)				0.6(6)		0.6(6)		0.6(6)			1.25(B)			
56pF(560)				0.6(6)		0.6(6)		0.6(6)			1.25(B)			
68pF(680)				0.6(6)		0.6(6)		0.6(6)			1.25(B)			
82pF(820)				0.6(6)		0.6(6)		0.6(6)			1.25(B)			
100pF(101)				0.6(6)		0.6(6)		0.6(6)			1.25(B)			
120pF(121)				0.6(6)		0.6(6)		0.6(6)			1.25(B)	0.6(6)		
150pF(151)			0.85(9)	0.6(6)		0.6(6)	0.85(9)	0.6(6)			1.25(B)			
180pF(181)			0.85(9)	0.85(9)	0.85(9)	0.6(6)	0.85(9)	0.6(6)			1.25(B)			
220pF(221)			0.85(9)	0.85(9)	0.85(9)	0.85(9)	0.85(9)	0.6(6)		0.6(6)	1.25(B)			0.6(6)
270pF(271)			0.85(9)	0.85(9)	0.85(9)	0.85(9)	0.85(9)			0.6(6)				0.6(6)
330pF(331)			0.85(9)	0.85(9)	0.85(9)	0.85(9)	0.85(9)			0.6(6)				0.6(6
390pF(391)			1.25(B)	1.25(B)	0.85(9)	0.85(9)	0.85(9)			0.6(6)				0.6(6
470pF(471)			1.25(B)	1.25(B)	0.85(9)	0.85(9)	0.85(9)		0.85(9)	0.6(6)			0.85(9)	0.6(6
560pF(561)				1.25(B)	1.25(B)	0.85(9)	1.25(B)	0.85(9)	0.85(9)	0.6(6)		1.25(B)	0.85(9)	0.6(6
680pF(681)	0.6(6)					1.25(B)		1.25(B)	0.85(9)	0.6(6)		1.25(B)	0.85(9)	0.6(6
820pF(821)	0.6(6)							1.25(B)	1.25(B)	0.6(6)		1.25(B)	1.25(B)	0.6(6
1000pF(102)	0.85(9)								1.25(B)	0.6(6)		1.25(B)	1.25(B)	0.6(6
1200pF(122)	0.85(9)	0.6(6)							1.25(B)	0.6(6)		1.25(B)	1.25(B)	0.6(6
1500pF(152)	0.85(9)	0.6(6)							1.25(B)	0.85(9)		1.25(B)	1.25(B)	0.85(
1800pF(182)		0.6(6)							1.25(B)	0.85(9)		1.25(B)	1.25(B)	0.85(
2200pF(222)		0.6(6)								0.85(9)				0.85(
2700pF(272)		0.6(6)								1.25(B)				1.25(E
3300pF(332)		0.6(6)								1.25(B)				1.25(E
3900pF(392)		0.6(6)												

1

ANote • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
 • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
 O7.2.6

Continued from the preceding page.

Part Number							GR	M21						
L x W [EIA]							2.0x1.2	5 [0805]						
тс	C0 (50	G C)		2H P)		2H i R)		2H S)		SL X)		2H T)	U (7	2J U)
Rated Volt.	100 (2A)	50 (1H)												
Capacitance (Ca	pacitance	part nun	nbering c	ode) and	T (mm) D	imension	(T Dimen	sion part	numberir	ng code)				
4700pF(472)		0.6(6)												
5600pF(562)		0.85(9)												
6800pF(682)		0.85(9)												
8200pF(822)		0.85(9)												
10000pF(103)		0.85(9)								0.6(6)				0.6(6)
12000pF(123)		0.85(9)								0.6(6)				0.6(6)
15000pF(153)		0.85(9)								0.6(6)				0.6(6)
18000pF(183)		1.25(B)								0.6(6)				0.6(6)
22000pF(223)		1.25(B)								0.85(9)				0.85(9)
27000pF(273)										0.85(9)				0.85(9)
33000pF(333)										1.0(A)				1.0(A)
39000pF(393)										1.25(B)				1.25(B)
47000pF(473)										1.25(B)				1.25(B)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Temperature Compensating Type GRM31 Series (3.20x1.60mm) 100/50/25V

Part Number		-			-	-		GRM31							
L x W [EIA]							3.2	2x1.6 [12	06]						
тс		C0G (5C)		P2 (6	2H P)		2H R)		2H i S)	S (1)			2H 6 T)	U2 (7 1	<u>)</u>)
Rated Volt.	100 (2A)	50 (1H)	25 (1E)	100 (2A)	50 (1H)										
Capacitance (Ca	apacitanc	e part nu	umbering	g code) ai	nd T (mm) Dimens	sion (T Di	mension	part nun	nbering c	ode)				
47pF(470)												0.85(9)			
56pF(560)												0.85(9)			
68pF(680)												0.85(9)			
82pF(820)												0.85(9)			
100pF(101)												1.15(M)			
120pF(121)												1.15(M)			
150pF(151)												1.15(M)			
180pF(181)					0.6(6)							1.15(M)			
220pF(221)					0.6(6)		0.6(6)					1.15(M)			
270pF(271)					0.6(6)		0.6(6)		0.6(6)			1.15(M)			
330pF(331)					0.6(6)		0.6(6)		0.6(6)			1.15(M)			
390pF(391)				0.85(9)			0.6(6)		0.6(6)			1.15(M)			
470pF(471)				0.85(9)					0.6(6)			1.15(M)			
560pF(561)				0.85(9)		0.85(9)		0.85(9)	0.85(9)						
680pF(681)				0.85(9)		0.85(9)	0.85(9)	0.85(9)	0.85(9)						
820pF(821)				0.85(9)		0.85(9)	0.85(9)	0.85(9)	0.85(9)	0.85(9)			1.15(M)	0.85(9)	
1000pF(102)				1.15(M)		1.15(M)	1.15(M)	0.85(9)	0.85(9)	0.85(9)			1.15(M)	0.85(9)	
1200pF(122)				1.15(M)		1.15(M)	1.15(M)	1.15(M)	1.15(M)	0.85(9)			1.15(M)	0.85(9)	
1500pF(152)					1.15(M)		1.15(M)	1.15(M)	1.15(M)	0.85(9)			1.15(M)	0.85(9)	
1800pF(182)	0.85(9)								1.15(M)	0.85(9)			1.15(M)	0.85(9)	
2200pF(222)	0.85(9)									1.15(M)			1.15(M)	1.15(M)	
2700pF(272)	0.85(9)									1.15(M)			1.15(M)	1.15(M)	
3300pF(332)	0.85(9)									1.15(M)			1.15(M)	1.15(M)	
3900pF(392)	0.85(9)									1.15(M)			1.15(M)	1.15(M)	
4700pF(472)	0.85(9)									1.15(M)				1.15(M)	
5600pF(562)	0.85(9)														

Continued from the preceding page.

Part Number								GRM31													
L x W [EIA]							3.2	2x1.6 [12	206]												
тс		C0G (5C)			2H P)		2H R)		2H SS)		SL X)	T2 (6	2H T)	U (7	2J 'U)						
Rated Volt.	100 50 25 (2A) (1H) (1E)		(2A) (1H) (n. (2A) (1H) (1		(2A) (1H) (1E)			100 (2A)	50 (1H)										
Capacitance (Ca	pacitanc	acitance part numberin		code) ai	nd T (mm) Dimens	ion (T Di	mension	part nun	nbering o	:ode)		1								
18000pF(183)		0.85(9)																			
22000pF(223)		0.85(9)																			
27000pF(273)		0.85(9)																			
33000pF(333)		0.85(9)																			
39000pF(393)		1.15(M)																			
47000pF(473)		1.15(M)																			
56000pF(563)		1.6(C)									0.85(9)				0.85(9)						
68000pF(683)		1.6(C)									1.15(M)				1.15(M)						
82000pF(823)		1.6(C)									1.15(M)				1.15(M)						
0.10μF(104)			1.6(C)								1.15(M)				1.15(M)						

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

High Dielectric Constant Type X5R (R6) Characteristics

тс										X5R (R6)									
Part Number			GRM1	5				GRM18	3			GR	M21				GRM31	1	
L x W [EIA]		1.0	x0.5 [0	402]			1.6	x0.8 [0	603]		2	2.0x1.2	5 [080	5]		3.2	x1.6 [1]	206]	
Rated Volt.	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	4 (0G)
Capacitance (Ca	pacita	nce pa	rt numt	bering of	code) a	nd T (n	nm) Din	nensio	n (T Din	nensior	n part r	umber	ing coo	le)					
1000pF (102)	0.5 (5)	0.5 (5)																	
2200pF (222)	0.5 (5)	0.5 (5)																	
4700pF (472)	0.5 (5)	0.5 (5)																	
10000pF (103)						0.8 (8)													
22000pF (223)			0.5 (5)			0.8 (8)													-
33000pF (333)			0.5 (5)	0.5 (5)															-
47000pF (473)			0.5 (5)	0.5 (5)															
68000pF (683)			0.5 (5)	0.5 (5)															
0.10μF (104)			0.5 (5)	0.5 (5)			0.8 (8)												
0.15μF (154)				0.5* (5)	0.5* (5)														
0.22µF (224)				0.5* (5)	0.5* (5)		0.8 (8)	0.8 (8)											
0.33µF (334)				0.5* (5)	0.5* (5)														
0.47μF (474)				0.5* (5)	0.5* (5)		0.8* (8)	0.8* (8)											
0.68µF (684)				0.5* (5)	0.5* (5)														

Continued on the following page.

1

ANote • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
 • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
 O7.2.6

Continued from the preceding page.

тс										X5R (R6)									
Part Number			GRM15	5				GRM18	3			GR	M21				GRM31	1	
L x W [EIA]		1.0	x0.5 [04	402]			1.6	x0.8 [0	603]		2	.0x1.2	5 [080	5]		3.2	x1.6 [1]	206]	
Rated Volt.	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	4 (0G)
Capacitance (Ca	pacita	nce pa	rt numk	bering o	code) a	nd T (n	nm) Din	nensior	ר (T Din	nensior	n part n	umber	ing coo	le)					1
1.0μF (105)				0.5* (5)	0.5* (5)		0.8* (8)	0.8* (8)											
2.2μF (225)								0.8* (8)	0.8* (8)	0.8* (8)	1.25* (B)					1.15 (M)			
3.3μF (335)									0.8* (8)		1.25* (B)	1.25* (B)				1.6 (C)			
4.7μF (475)										0.8* (8)	1.25* (B)	1.25* (B)	1.25* (B)		1.6 (C)	1.6 (C)	1.6 (C)		
10μF (106)													1.25* (B)	1.25* (B)	1.6* (C)	1.6 (C)			
15μF (156)																		1.6* (C)	
22μF (226)														1.25* (B)				1.6* (C)	
47μF (476)																		1.6* (C)	
100μF (107)																		1.6* (C)	1.6* (C)

The part numbering code is shown in each ().

 $3.3\mu F$ and $4.7\mu F,\, 6.3V$ rated are GRM21 series of L: 2±0.15, W: 1.25±0.15, T: 1.25±0.15.

T: 1.15±0.1mm is also available for GRM31 1.0 μF for 16V.

L: 3.2±0.2, W: 1.6±0.2 for GRM31 16V 1.0µF type. Also L: 3.2±0.2, W: 1.6±0.2, T: 1.15±0.15 for GRM31 16V 1.5µF and 2.2µF type.

Dimensions are shown in mm and Rated Voltage in Vdc.

*: Please refer to GRM Series Specifications and Test Methods (2) (P.30).

High Dielectric Constant Type X6S (C8) Characteristics

тс						X6S (C8)					
Part Number	GR	M15	GR	M18		GR	M21			GRM31	
L x W [EIA]	1.0x0.5	5 [0402]	1.6x0.8	8 [0603]		2.0x1.2	5 [0805]		3	.2x1.6 [120	6]
Rated Volt.	6.3 (0J)	4 (0G)	6.3 (0J)	4 (0G)	25 (1E)	16 (1C)	6.3 (0J)	4 (0G)	10 (1A)	6.3 (0J)	4 (0G)
Capacitance (Ca	pacitance p	art numberi	ing code) an	d T (mm) Di	mension (T	Dimension p	art numberi	ing code)	1		
0.15μF(154)	0.5*(5)										
0.22μF(224)	0.5*(5)										
0.33µF(334)	0.5*(5)										
0.47µF(474)	0.5*(5)										
0.68μF(684)		0.5*(5)	0.8(8)								
1.0μF(105)		0.5*(5)									
2.2μF(225)			0.8*(8)								
4.7μF(475)				0.8*(8)	1.25*(B)	1.25*(B)					
10μF(106)							1.25*(B)		1.15*(M)		
22μF(226)								1.25*(B)		1.6*(C)	1.6*(C)
47μF(476)											1.6*(C)

The part numbering code is shown in $% \left({\left({{{{\bf{n}}_{\rm{s}}}} \right)} \right)$ ().

Dimensions are shown in mm and Rated Voltage in Vdc.

*: Please refer to GRM Series Specifications and Test Methods (2) (P.30).

High Dielectric Constant Type X7R (R7) Characteristics

тс											X. (R	7R 1 7)										
Part Number		(GRM1	5				GR	M18					GR	M21				(GRM3	1	
L x W [EIA]		1.0x	0.5 [0	402]			1	.6x0.8	3 [060]	3]			2.	0x1.2	5 [080	5]			3.2x	1.6 [1	206]	
Rated Volt.	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)
Capacitance (Ca	apacita		oart nu	mberi	ng co	1	d T (m	ım) Diı	mensi	on (T I	Dimen	sion p	art nu	mberi	ng coo	de)	1	1				
220pF (221)		0.5 (5)				0.8 (8)																
330pF (331)		0.5 (5)				0.8 (8)																
470pF (471)		0.5 (5)				0.8 (8)																
680pF (681)		0.5 (5)				0.8 (8)																
1000pF (102)		0.5 (5)				0.8 (8)																
1500pF (152)		0.5 (5)				0.8 (8)																
2200pF (222)		0.5 (5)				0.8 (8)																
3300pF (332)		0.5 (5)				0.8 (8)																
4700pF (472)	0.5 (5)	0.5 (5)										0.85 (9)										
6800pF (682)		0.5 (5)	0.5 (5)									0.85 (9)										
10000pF (103)		0.5 (5)	0.5 (5)									1.25 (B)										
15000pF (153)		(-)	0.5 (5)	0.5 (5)			0.8 (8)					1.25 (B)										
22000pF (223)			0.5 (5)	0.5 (5)			0.8 (8)					1.25 (B)										
33000pF (333)			0.5 (5)	0.5 (5)	0.5 (5)		0.8 (8)					1.25 (B)										
47000pF (473)			0.5 (5)	0.5 (5)	0.5 (5)		0.8 (8)					1.25 (B)										
68000pF (683)				0.5 (5)	0.5 (5)		0.8 (8)	0.8 (8)										1.15 (M)				
0.10μF (104)				0.5 (5)	0.5 (5)		0.8 (8)	0.8 (8)														
0.15μF (154)								0.8 (8)	0.8 (8)				1.25 (B)						1.15 (M)			
0.22µF (224)								0.8 (8)	0.8 (8)	0.8 (8)		1.0 (A)	1.25 (B)						0.85 (9)			
0.33μF (334)									0.8 (8)	0.8 (8)		1.0 (A)	0.85 (9)	1.25 (B)								
0.47μF (474)								0.8* (8)	0.8 (8)	0.8 (8)	0.8 (8)		1.25 (B)	0.85 (9)					1.15 (M)			
0.68µF (684)										0.8 (8)				0.85 (9)	0.85 (9)							
1.0μF (105)									0.8* (8)	0.8* (8)	0.8* (8)			1.25 (B)	1.25 (B)			1.6 (C)	1.15 (M)	1.15 (M)		
1.5μF (155)														1.25 (B)	1.25 (B)				1.6 (C)	1.15 (M)	1.15 (M)	

Continued on the following page.

1

Continued from the preceding page.

тс											X7 (R											
Part Number		G	GRM1	5				GR	M18					GR	M21				(GRM3	1	
L x W [EIA]		1.0x	0.5 [0	402]			1	.6x0.8	3 [060]	3]			2.	0x1.2	5 [080	5]			3.2x	1.6 [1	206]	
Rated Volt.	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)
Capacitance (Ca	pacita	nce p	art nu	mberi	ng co	de) an	d T (m	im) Dii	mensi	on (T I	Dimen	sion p	art nu	mberi	ng coo	de)						
2.2μF (225)										0.8* (8)				1.25* (B)	1.25* (B)				1.6 (C)		1.15 (M)	
3.3μF (335)															1.25* (B)					1.6 (C)	1.6 (C)	
4.7μF (475)															1.25* (B)	1.25* (B)				1.6 (C)	1.6 (C)	1.6 (C)
10μF (106)																1.25* (B)	1.25* (B)				1.6* (C)	

The part numbering code is shown in each ().

The tolerance will be changed to L: 3.2 \pm 0.2, W: 1.6 \pm 0.2 for GRM31 16V 1.0 μ F type. Also L: 3.2 \pm 0.2, W: 1.6 \pm 0.2, T: 1.15 \pm 0.15 for GRM31 16V 1.5 μ F and 2.2 μ F type.

Dimensions are shown in mm and Rated Voltage in Vdc.

 $^{\ast}:$ Please refer to GRM Series Specifications and Test Methods (2) (P.30).

High Dielectric Constant Type X7S (C7) Characteristics

тс		X7S (C7)	
Part Number	GRM18	GRM21	GRM31
L x W [EIA]	1.6x0.8 [0603]	2.0x1.25 [0805]	3.2x1.6 [1206]
Rated Volt.	6.3 (0J)	10 (1A)	4 (0G)
Capacitance (Ca	pacitance part numbering code) and T (mm) Dimension (T Dimension part numbering c	code)
2.2μF(225)	0.8*(8)		
3.3μF(335)		1.25*(B)	
22μF(226)			1.6*(C)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

*: Please refer to GRM Series Specifications and Test Methods (2) (P.30).

High Dielectric Constant Type Y5V (F5) Characteristics

тс						Y5V (F5)					
Part Number			GRM15			GR	M18	GR	M21	GRI	M31
L x W [EIA]		1	.0x0.5 [040	2]		1.6x0.8	8 [0603]	2.0x1.2	5 [0805]	3.2x1.6 [1206]	
Rated Volt.	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	50 (1H)	25 (1E)	50 (1H)	25 (1E)	50 (1H)	6.3 (0J)
Capacitance (Ca	pacitance p	art numberi	ing code) an	d T (mm) Di	mension (T l	Dimension p	art number	ing code)			
1000pF(102)	0.5(5)										
2200pF(222)	0.5(5)										
4700pF(472)	0.5(5)										
10000pF(103)	0.5(5)					0.8(8)					
22000pF(223)		0.5(5)				0.8(8)					
47000pF(473)		0.5(5)	0.5(5)			0.8(8)					
0.10μF(104)		0.5(5)	0.5(5)			0.8(8)		0.85(9)	0.6(6)		
0.22µF(224)			0.5(5)			0.8(8)	0.8(8)		0.85(9)		
0.47µF(474)			0.5(5)	0.5(5)			0.8(8)	0.85(9)	0.6(6)	1.15(M)	
1.0μF(105)				0.5*(5)	0.5*(5)						
100μF(107)											1.6*(C

The part numbering code is shown in each ().

14

T: 1.25 \pm 0.1mm is also available for GRM21 25V or 16V 1.0 μ F type.

Dimensions are shown in mm and Rated Voltage in Vdc.

*: Please refer to GRM Series Specifications and Test Methods (2) (P.30).

Chip Monolithic Ceramic Capacitors

for General Purpose GRM32 Series

Features

- 1. Terminations are made of metal highly resistant to migration.
- 2. Smaller size and higher capacitance value
- 3. High reliability and no polarity
- 4. Excellent pulse responsibility and noise reduction due to the low impedance at high frequency.
- 5. Ta replacement

Applications

General electronic equipment

Dant Number		D	imensions (r	nm)	
Part Number	L	W	Т	е	g min.
GRM329			0.85 ±0.1		
GRM32A			1.0 +0/-0.2		
GRM32M			1.15 ±0.1		
GRM32N	3.2 +0.3	2.5 +0.2	1.35 ±0.15	0.3 min.	1.0
GRM32C	3.2 ±0.3	2.5 ±0.2	1.6 ±0.2	0.3 11111.	1.0
GRM32R			1.8 ±0.2		
GRM32D			2.0 ±0.2		
GRM32E			2.5 ±0.2		

Temperature Compensating Type GRM32 Series

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM3291X2A222JZ01	SL (JIS)	100	2200 ±5%	3.2	2.5	0.85
GRM3291X2A272JZ01	SL (JIS)	100	2700 ±5%	3.2	2.5	0.85
GRM3291X2A332JZ01	SL (JIS)	100	3300 ±5%	3.2	2.5	0.85
GRM32N1X2A562JZ01	SL (JIS)	100	5600 ±5%	3.2	2.5	1.35
GRM32N1X2A682JZ01	SL (JIS)	100	6800 ±5%	3.2	2.5	1.35

High Dielectric Constant Type GRM32 Series (3.20x2.50mm)

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (μF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM32ER61E226ME15	X5R (EIA)	25	22 ±20%*	3.2	2.5	2.5
GRM32ER61C226ME20	X5R (EIA)	16	22 ±20%*	3.2	2.5	2.5
GRM32ER61C476ME15	X5R (EIA)	16	47 ±20%*	3.2	2.5	2.5
GRM32ER61A226ME20	X5R (EIA)	10	22 ±20%*	3.2	2.5	2.5
GRM32ER61A476ME20	X5R (EIA)	10	47 ±20%*	3.2	2.5	2.5
GRM32DR60J226KA01	X5R (EIA)	6.3	22 ±10%*	3.2	2.5	2.0
GRM32DR60J336ME19	X5R (EIA)	6.3	33 ±20%*	3.2	2.5	2.0
GRM32ER60J476ME20	X5R (EIA)	6.3	47 ±20%*	3.2	2.5	2.5
GRM32ER60J107ME20	X5R (EIA)	6.3	100 ±20%*	3.2	2.5	2.5
GRM32DC81E106KA12	X6S(EIA)	25	10 ±10%	3.2	2.5	2.0
GRM32EC80J476ME64	X6S(EIA)	6.3	47 ±20%*	3.2	2.5	2.5
GRM32EC80G107ME20	X6S(EIA)	4	100 ±20%*	3.2	2.5	2.5
GRM32CR72A684KA01	X7R (EIA)	100	0.68 ±10%	3.2	2.5	1.6
GRM32CR72A105KA35	X7R (EIA)	100	1.0 ±10%	3.2	2.5	1.6
GRM32DR72A155KA35	X7R (EIA)	100	1.5 ±10%	3.2	2.5	2.0
GRM32ER72A225KA35	X7R (EIA)	100	2.2 ±10%*	3.2	2.5	2.5
GRM32ER71H105KA01	X7R (EIA)	50	1.0 ±10%	3.2	2.5	2.5
GRM32DR71H335KA88	X7R (EIA)	50	3.3 ±10%	3.2	2.5	2.0
GRM32ER71H475KA88	X7R (EIA)	50	4.7 ±10%	3.2	2.5	2.5
GRM32DR71E335KA01	X7R (EIA)	25	3.3 ±10%	3.2	2.5	2.0
GRM32DR71E475KA61	X7R (EIA)	25	4.7 ±10%	3.2	2.5	2.0
GRM32DR71E106KA12	X7R (EIA)	25	10 ±10%	3.2	2.5	2.0

Continued from the preceding page.

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (μF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM32ER71C226ME18	X7R (EIA)	16	22 ±20%*	3.2	2.5	2.5
GRM32ER71A226ME20	X7R (EIA)	10	22 ±20%*	3.2	2.5	2.5
GRM32EF50J107ZE20	Y5V (EIA)	6.3	100 +80/-20%*	3.2	2.5	2.5

*: Please refer to GRM Series Specifications and Test Methods (2) (P.30).

Chip Monolithic Ceramic Capacitors

muRata

Ultra-small GRM03 Series

Features

- 1. Small chip size (LxWxT: 0.6x0.3x0.3mm)
- 2. Terminations are made of metal highly resistant to migration.
- 3. GRM03 series is suited to only reflow soldering.
- 4. Stringent dimensional tolerances allow highly reliable, high speed automatic chip placement on PCBs.
- 5. GRM03 series is suited to miniature microwave module, portable equipment and high frequency circuits.

Applications

- 1. Miniature microwave module
- 2. Portable equipment
- 3. High frequency circuit

Part Number	Dimensions (mm)										
Part Number	L	W	Т	е	g min.						
GRM033	0.6 ±0.03	0.3 ±0.03	0.3 ±0.03	0.1 to 0.2	0.2						

Part Number						GR	M03					
L x W						0.6x0.3	3 [0201]					
тс	C0G (5C)	R2H (6R)	S2H (6S)	T2H (6T)	U (7	2J U)		5R R6)	X6S (C8)		X7R (R7)	
Rated Volt.	25 (1E)	25 (1E)	25 (1E)	25 (1E)	50 (1H)	25 (1E)	10 (1A)	6.3 (0J)	4 (0G)	25 (1E)	16 (1C)	10 (1A)
Capacitance (Ca	pacitance	part numb	ering code)	and T (mm	n) Dimensio	n (T Dimen	sion part n	umbering	code)			
1.0pF(1R0)	0.3(3)	0.3(3)	0.3(3)	0.3(3)								
2.0pF(2R0)	0.3(3)	0.3(3)	0.3(3)	0.3(3)								
3.0pF(3R0)	0.3 (3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)							
4.0pF(4R0)	0.3 (3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)							
5.0pF(5R0)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)							
6.0pF(6R0)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)							
7.0pF(7R0)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)							
8.0pF(8R0)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)							
9.0pF(9R0)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)							
10pF(100)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)							
12pF(120)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)							
15pF(150)	0.3(3)	0.3(3)	0.3(3)	0.3(3)	0.3(3)							
18pF(180)	0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)						
22pF(220)	0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)						
27pF(270)	0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)						
33pF(330)	0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)						
39pF(390)	0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)						
47pF(470)	0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)						
56pF(560)	0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)						
68pF(680)	0.3(3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)						
82pF(820)	0.3 (3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)						
100pF(101)	0.3 (3)	0.3(3)	0.3(3)	0.3(3)		0.3(3)				0.3(3)		
150pF(151)										0.3(3)		
220pF(221)										0.3 (3)		
330pF(331)										0.3 (3)		
470pF(471)										0.3 (3)		
680pF(681)										0.3(3)		

Continued from the preceding page.

Part Number		GRM03										
L x W	0.6x0.3 [0201]											
тс	COG R2H S2H T2H U2 (5C) (6R) (6S) (6T) (7		2J U)	X5R (R6)		X6S (C8)	X7R (R7)					
Rated Volt.	25 (1E)	25 (1E)	25 (1E)	25 (1E)	50 (1H)	25 (1E)	10 (1A)	6.3 (0J)	4 (0G)	25 (1E)	16 (1C)	10 (1A)
Capacitance (Ca	pacitance	part numbe	ering code)	and T (mm) Dimensio	n (T Dimen	sion part n	umbering c	ode)			
1000pF(102)										0.3(3)		
1500pF(152)							0.3(3)			0.3(3)		0.3(3)
2200pF(222)							0.3(3)				0.3(3)	0.3(3)
3300pF(332)							0.3(3)				0.3(3)	0.3(3)
4700pF(472)							0.3(3)					0.3(3)
6800pF(682)							0.3(3)					0.3(3)
10000pF(103)							0.3(3)					0.3(3)
15000pF(153)								0.3*(3)				
22000pF(223)								0.3*(3)				
33000pF(333)								0.3*(3)				
47000pF(473)								0.3*(3)				
68000pF(683)								0.3*(3)				
0.10μF(104)								0.3*(3)	0.3(3)			

The part numbering code is shown in ().

18

Dimensions are shown in mm and Rated Voltage in Vdc.

*: Please refer to GRM Series Specifications and Test Methods (2) (P.30).

Chip Monolithic Ceramic Capacitors

muRata

Tight Tolerance GRM03/15 Series

Features

- 1. Terminations are made of metal highly resistant to migration.
- A wide selection of sizes is available, from the miniature LxWxT: 0.6x0.3x0.3mm or LxWxT: 1.0x0.5x0.5mm.
- 3. GRM03 type is a complete line of chip ceramic capacitors in 25V ratings, GRM15 type is a complete line of chip ceramic capacitors in 50V ratings.
- 4. These capacitors have temperature characteristics ranging C0G.
- 5. GRM03 and GRM15 type are applied to only reflow soldering.
- 6. Stringent dimensional tolerances allow highly reliable, high speed automatic chip placement on PCBs.
- 7. GRM series is available in paper tape and reel packaging for automatic placement.

Applications

General electronic equipment

Temperature Compensating Type GRM03/15 Series

Part Number		GRM03	GRM15
L x W [EIA]		0.6x0.3 [0201]	1.0x0.5 [0402]
тс		C0G (5C)	C0G (5C)
Rated Volt.		25 (1E)	50 (1H)
Capacitance, Ca	pacitanc	e Tolerance and T Dimension	
0.30pF(R30)	W, B	0.3(3)	0.5 (5)
0.40pF(R40)	W, B	0.3(3)	0.5 (5)
0.50pF(R50)	W, B	0.3(3)	0.5 (5)
0.60pF(R60)	W, B	0.3(3)	0.5 (5)
0.70pF(R70)	W, B	0.3(3)	0.5 (5)
0.80pF(R80)	W, B	0.3(3)	0.5(5)
0.90pF(R90)	W, B	0.3(3)	0.5 (5)
1.0pF(1R0)	W, B	0.3(3)	0.5(5)
1.1pF(1R1)	W, B	0.3(3)	0.5(5)
1.2pF(1R2)	W, B	0.3(3)	0.5 (5)
1.3pF(1R3)	W, B	0.3(3)	0.5(5)
1.4pF(1R4)	W, B	0.3(3)	0.5 (5)
1.5pF(1R5)	W, B	0.3(3)	0.5 (5)
1.6pF(1R6)	W, B	0.3(3)	0.5 (5)
1.7pF(1R7)	W, B	0.3(3)	0.5(5)
1.8pF(1R8)	W, B	0.3(3)	0.5 (5)
1.9pF(1R9)	W, B	0.3(3)	0.5 (5)
2.0pF(2R0)	W, B	0.3(3)	0.5(5)
2.1pF(2R1)	W, B	0.3(3)	0.5(5)
2.2pF(2R2)	W, B	0.3(3)	0.5(5)
2.3pF(2R3)	W, B	0.3(3)	0.5(5)

_	Port Number	Dimensions (mm)							
r	Part Number	L	W	Т	е	g min.			
Ģ	SRM033	0.6 ±0.03	0.3 ±0.03	0.3 ±0.03	0.1 to 0.2	0.2			
Ģ	GRM155	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15 to 0.35	0.3			

COZE.pui
07.2.6

Part Number		GRM03	GRM15
L x W [EIA]		0.6x0.3 [0201]	1.0x0.5 [040
TC Rated Volt.		C0G (5C)	C0G (5C)
		25 (1E)	50 (1H)
Capacitance, Ca	apacitanc	e Tolerance and T Dimension	
2.4pF(2R4)	W, B	0.3 (3)	0.5 (5)
2.5pF(2R5)	W, B	0.3 (3)	0.5 (5)
2.6pF(2R6)	W, B	0.3 (3)	0.5 (5)
2.7pF(2R7)	W, B	0.3 (3)	0.5 (5)
2.8pF(2R8)	W, B	0.3 (3)	0.5 (5)
2.9pF(2R9)	W, B	0.3 (3)	0.5 (5)
3.0pF(3R0)	W, B	0.3 (3)	0.5 (5)
3.1pF(3R1)	W, B	0.3 (3)	0.5(5)
3.2pF(3R2)	W, B	0.3 (3)	0.5 (5)
3.3pF(3R3)	W, B	0.3 (3)	0.5 (5)
3.4pF(3R4)	W, B	0.3 (3)	0.5 (5)
3.5pF(3R5)	W, B	0.3 (3)	0.5 (5)
3.6pF(3R6)	W, B	0.3 (3)	0.5 (5)
3.7pF(3R7)	W, B	0.3 (3)	0.5 (5)
3.8pF(3R8)	W, B	0.3 (3)	0.5 (5)
3.9pF(3R9)	W, B	0.3 (3)	0.5 (5)
4.0pF(4R0)	W, B	0.3 (3)	0.5 (5)
4.1pF(4R1)	W, B	0.3 (3)	0.5 (5)
4.2pF(4R2)	W, B	0.3 (3)	0.5 (5)
4.3pF(4R3)	W, B	0.3 (3)	0.5 (5)
4.4pF(4R4)	W, B	0.3 (3)	0.5 (5)
4.5pF(4R5)	W, B	0.3 (3)	0.5 (5)
4.6pF(4R6)	W, B	0.3 (3)	0.5 (5)
4.7pF(4R7)	W, B	0.3 (3)	0.5 (5)
4.8pF(4R8)	W, B	0.3 (3)	0.5 (5)
4.9pF(4R9)	W, B	0.3 (3)	0.5 (5)
5.0pF(5R0)	W, B	0.3 (3)	0.5 (5)
5.1pF(5R1)	W, B, C	0.3 (3)	0.5 (5)
5.2pF(5R2)	W, B, C	0.3 (3)	0.5 (5)
5.3pF(5R3)	W, B, C	0.3 (3)	0.5 (5)
5.4pF(5R4)	W, B, C	0.3 (3)	0.5 (5)
5.5pF(5R5)	W, B, C	0.3 (3)	0.5 (5)
5.6pF(5R6)	W, B, C	0.3 (3)	0.5 (5)
5.7pF(5R7)	W, B, C	0.3 (3)	0.5 (5)
5.8pF(5R8)	W, B, C	0.3 (3)	0.5 (5)
5.9pF(5R9)	W, B, C	0.3 (3)	0.5 (5)
6.0pF(6R0)		0.3(3)	0.5(5)
6.1pF(6R1)	W, B, C	0.3 (3)	0.5 (5)
6.2pF(6R2)	W, B, C	0.3(3)	0.5(5)
6.3pF(6R3)		0.3(3)	0.5 (5)
6.4pF(6R4)		0.3(3)	0.5(5)
6.5pF(6R5)		0.3(3)	0.5(5)
6.6pF(6R6)		0.3(3)	0.5(5)
6.7pF(6R7)	W, B, C	0.3(3)	0.5(5)
6.8pF(6R8)		0.3(3)	0.5(5)
6.9pF(6R9)	W, B, C	0.3(3)	0.5(5)
7.0pF(7R0)	W, B, C	0.3(3)	0.5(5)
7.1pF(7R1)		0.3(3)	0.5(5)
7.2pF/ 7P 2		0.2(2)	0 E(E)

4

0.5**(5)**

0.5(5)

0.5(5)

0.5(**5**)

0.3(3)

0.3(3)

0.3(3)

0.3(3)

7.2pF(7R2) W, B, C

7.3pF(7R3) W, B, C

7.4pF(7R4) W, B, C

7.5pF(7R5) W, B, C

	Continued from the preceding page.	
--	------------------------------------	--

Part Number		GRM03	GRM15
L x W [EIA]		0.6x0.3 [0201]	1.0x0.5 [0402]
тс		C0G (5C)	C0G (5C)
Rated Volt.		25 (1E)	50 (1H)
Capacitance, Ca	apacitance Tolerance	e and T Dimension	
7.6pF(7R6)	W, B, C	0.3(3)	0.5(5)
7.7pF(7R7)	W, B, C	0.3(3)	0.5(5)
7.8pF(7R8)	W, B, C	0.3(3)	0.5(5)
7.9pF(7R9)	W, B, C	0.3(3)	0.5(5)
	W, B, C	0.3(3)	0.5(5)
8.1pF(8R1)	W, B, C	0.3(3)	0.5(5)
8.2pF(8R2)	W, B, C	0.3(3)	0.5(5)
8.3pF(8R3)	W, B, C	0.3(3)	0.5(5)
8.4pF(8R4)	W, B, C	0.3 (3)	0.5(5)
8.5pF(8R5)	W, B, C	0.3 (3)	0.5(5)
8.6pF(8R6)	W, B, C	0.3 (3)	0.5(5)
	W, B, C	0.3 (3)	0.5(5)
8.8pF(8R8)		0.3 (3)	0.5(5)
8.9pF(8R9)		0.3 (3)	0.5(5)
9.0pF(9R0)	W, B, C	0.3 (3)	0.5(5)
9.1pF(9R1)		0.3(3)	0.5(5)
9.2pF(9R2)	W, B, C	0.3(3)	0.5(5)
9.3pF(9R3)		0.3(3)	0.5(5)
9.4pF(9R4)		0.3(3)	0.5(5)
9.5pF(9R5)	W, B, C	0.3(3)	0.5(5)
9.6pF(9R6)		0.3(3)	0.5(5)
9.7pF(9R7)		0.3(3)	0.5(5)
	W, B, C	0.3(3)	0.5(5)
9.9pF(9R9)	W, B, C	0.3 (3)	0.5 (5)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

4

Chip Monolithic Ceramic Capacitors

muRata

Thin Type

■ Features

5

- 1. This series is suited to flow and reflow soldering. Capacitor terminations are made of metal highly resistant to migration.
- 2. Large capacitance values enable excellent bypass effects to be realized.
- GRM18, 21 and GRM31 types are suited to flow and reflow soldering.
 GRM15 and GRM32 types are applied to only reflow

soldering.

4. Its thin package makes this series ideally suited for the production of small electronic products and for mounting underneath ICs.

Applications

Thin equipment such as IC cards

Temperature Compensating Type

Part Number	Dimensions (mm)							
Fait Number	L	W	Т	е	g min.			
GRM15X	1.0 ±0.05	0.5 ± 0.05	0.25 ±0.05	0.1 to 0.3	0.4			
GRM153		0.5 ± 0.05	0.3 ±0.03	0.1 10 0.3	0.4			
GRM216			0.6 ±0.1					
GRM219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1	0.2 to 0.7	0.7			
GRM21A			1.0 +0/-0.2					
GRM316	3.2 ±0.15	1.6 +0.15	0.6 ±0.1	0.3 to 0.8	1.5			
GRM319	3.2 ±0.15	1.6 ±0.15	0.85 ±0.1	0.3 10 0.8	1.5			
GRM329	3.2 +0.3	2.5 +0.2	0.85 ±0.1	0.3 min.	1.0			
GRM32A	3.∠ ±0.3	2.5 ±0.2	1.0 +0/-0.2	0.5 min.	1.0			

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	EIA
GRM1535C1H1R0CDD5	COG (EIA)	50	1.0 ±0.25pF	1.0	0.5	0.3	0402
GRM1535C1H2R0CDD5	COG (EIA)	50	2.0 ±0.25pF	1.0	0.5	0.3	0402
GRM1535C1H3R0CDD5	COG (EIA)	50	3.0 ±0.25pF	1.0	0.5	0.3	0402
GRM1535C1H4R0CDD5	COG (EIA)	50	4.0 ±0.25pF	1.0	0.5	0.3	0402
GRM1535C1H5R0CDD5	COG (EIA)	50	5.0 ±0.25pF	1.0	0.5	0.3	0402
GRM1535C1H6R0DDD5	COG (EIA)	50	6.0 ±0.5pF	1.0	0.5	0.3	0402
GRM1535C1H7R0DDD5	COG (EIA)	50	7.0 ±0.5pF	1.0	0.5	0.3	0402
GRM1535C1H8R0DDD5	COG (EIA)	50	8.0 ±0.5pF	1.0	0.5	0.3	0402
GRM1535C1H9R0DDD5	COG (EIA)	50	9.0 ±0.5pF	1.0	0.5	0.3	0402
GRM1535C1H100JDD5	COG (EIA)	50	10 ±5%	1.0	0.5	0.3	0402
GRM1535C1H120JDD5	COG (EIA)	50	12 ±5%	1.0	0.5	0.3	0402
GRM1535C1H150JDD5	COG (EIA)	50	15 ±5%	1.0	0.5	0.3	0402
GRM1535C1H180JDD5	COG (EIA)	50	18 ±5%	1.0	0.5	0.3	0402
GRM1535C1H220JDD5	COG (EIA)	50	22 ±5%	1.0	0.5	0.3	0402
GRM1535C1H270JDD5	COG (EIA)	50	27 ±5%	1.0	0.5	0.3	0402
GRM1535C1H330JDD5	COG (EIA)	50	33 ±5%	1.0	0.5	0.3	0402
GRM1535C1H390JDD5	COG (EIA)	50	39 ±5%	1.0	0.5	0.3	0402
GRM1535C1H470JDD5	COG (EIA)	50	47 ±5%	1.0	0.5	0.3	0402
GRM1535C1H560JDD5	COG (EIA)	50	56 ±5%	1.0	0.5	0.3	0402
GRM1535C1H680JDD5	COG (EIA)	50	68 ±5%	1.0	0.5	0.3	0402
GRM1535C1H820JDD5	COG (EIA)	50	82 ±5%	1.0	0.5	0.3	0402
GRM1535C1H101JDD5	COG (EIA)	50	100 ±5%	1.0	0.5	0.3	0402

High Dielectric Constant Type

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)	EIA
GRM15XR71H221KA86	X7R (EIA)	50	220pF ±10%	1.0	0.5	0.25	0402
GRM15XR71H331KA86	X7R (EIA)	50	330pF ±10%	1.0	0.5	0.25	0402
GRM15XR71H471KA86	X7R (EIA)	50	470pF ±10%	1.0	0.5	0.25	0402
GRM15XR71H681KA86	X7R (EIA)	50	680pF ±10%	1.0	0.5	0.25	0402
GRM15XR71H102KA86	X7R (EIA)	50	1000pF ±10%	1.0	0.5	0.25	0402
GRM15XR71H152KA86	X7R (EIA)	50	1500pF ±10%	1.0	0.5	0.25	0402
GRM15XR71E222KA86	X7R (EIA)	25	2200pF ±10%	1.0	0.5	0.25	0402
GRM219R71E105KA88	X7R (EIA)	25	1.0μF ±10%	2.0	1.25	0.85	0805
GRM15XR71C332KA86	X7R (EIA)	16	3300pF ±10%	1.0	0.5	0.25	0402
GRM15XR71C472KA86	X7R (EIA)	16	4700pF ±10%	1.0	0.5	0.25	0402
GRM15XR71C682KA86	X7R (EIA)	16	6800pF ±10%	1.0	0.5	0.25	0402
GRM15XR71C103KA86	X7R (EIA)	16	10000pF ±10%	1.0	0.5	0.25	0402
GRM216C81C105KA12	X6S(EIA)	16	1.0μF ±10%	2.0	1.25	0.6*	0805
GRM316C81C225KA12	X6S(EIA)	16	2.2μF ±10%	3.2	1.6	0.6*	1206
GRM219C81C225KA12	X6S(EIA)	16	2.2μF ±10%	2.0	1.25	0.85*	0805
GRM319C81C475KA12	X6S(EIA)	16	4.7μF ±10%	3.2	1.6	0.85*	1206
GRM219C81A475KE34	X6S(EIA)	10	4.7μF ±10%	2.0	1.25	0.85*	0805
GRM219C80J475KE19	X6S(EIA)	6.3	4.7μF ±10%	2.0	1.25	0.85*	0805
GRM319C80J106KE19	X6S(EIA)	6.3	10μF ±10%	3.2	1.6	0.85*	1206
GRM219C80G106KE19	X6S(EIA)	4	10μF ±10%	2.0	1.25	0.85*	0805
GRM216R61E105KA12	X5R (EIA)	25	1.0μF ±10%	2.0	1.25	0.6*	0805
GRM316R61E225KA12	X5R (EIA)	25	2.2μF ±10%	3.2	1.6	0.6*	1206
GRM219R61E225KA12	X5R (EIA)	25	2.2μF ±10%	2.0	1.25	0.85*	0805
GRM319R61E475KA12	X5R (EIA)	25	4.7μF ±10%	3.2	1.6	0.85*	1206
GRM216R61C105KA88	X5R (EIA)	16	1.0μF ±10%	2.0	1.25	0.6*	0805
GRM316R61C225KA88	X5R (EIA)	16	2.2µF ±10%	3.2	1.6	0.6*	1206
GRM219R61C225KA88	X5R (EIA)	16	2.2µF ±10%	2.0	1.25	0.85*	0805
GRM219R61C475KE15	X5R (EIA)	16	4.7μF ±10%	2.0	1.25	0.85*	0805
GRM319R61C475KA88	X5R (EIA)	16	4.7μF ±10%	3.2	1.6	0.85*	1206
GRM319R61C106KE15	X5R (EIA)	16	10μF ±10%	3.2	1.6	0.85*	1206
GRM216R61A225KE24	X5R (EIA)	10	2.2μF ±10%	2.0	1.25	0.6*	0805
GRM219R61A225KA01	X5R (EIA)	10	2.2μF ±10%	2.0	1.25	0.85*	0805
GRM316R61A335KE19	X5R (EIA)	10	3.3μF ±10%	3.2	1.6	0.6*	1206
GRM219R61A335KE19	X5R (EIA)	10	3.3μF ±10%	2.0	1.25	0.85*	0805
GRM316R61A475KE19	X5R (EIA)	10	4.7μF ±10%	3.2	1.6	0.6*	1206
GRM219R61A475KE34	X5R (EIA)	10	4.7μF ±10%	2.0	1.25	0.85*	0805
GRM319R61A106KE19	X5R (EIA)	10	10μF ±10%	3.2	1.6	0.85*	1206
GRM219R60J475KE19	X5R (EIA)	6.3	4.7μF ±10%	2.0	1.25	0.85*	0805
GRM319R60J106KE19	X5R (EIA)	6.3	10μF ±10%	3.2	1.6	0.85*	1206

muRata

*: Please refer to GRM Series Specifications and Test Methods (2) (P.30).

GRM Series Specifications and Test Methods (1)

Below GRM Series Specifications and Test Methods (1) are applied to Non "*" PNs in capacitance table. In case "*" is added in capacitance table, please refer to GRM Series Specifications and Test Methods (2) (P.30).

			cations	erer to GRM Series Specifications and Test Methods (2) (P.30).			
No.	Item	Temperature Compensating Type	High Dielectric Type	Test Method			
1	Operating Temperature Range	−55 to +125℃	B1, B3, F1, R6: -25 to +85°C R1, R7: -55 to +125°C C8: -55 to +105°C E4: +10 to +85°C F5: -30 to +85°C	Reference temperature: 25°C (2Δ, 3Δ, 4Δ, B1, B3, F1, R1: 20°C)			
2	Rated Voltage	See the previous pages.		The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p,p} or V ^{0,p} , whichever is larger, should be maintained within the rated voltage range.			
3	Appearance	No defects or abnormalities		Visual inspection			
4	Dimensions	Within the specified dimensions		Using calipers (GRM02 size is based on Microscope)			
5	Dielectric Strength	No defects or abnormalities		No failure should be observed when 300%* of the rated voltage (temperature compensating type) or 250% of the rated voltage (high dielectric constant type) is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA. *200% for 500V			
6	Insulation Resistance	C≦0.047μF: More than 10,000M C>0.047μF: 500Ω ⋅ F	/Ω C: Nominal Capacitance	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 20/25°C and 75%RH max. and within 2 minutes of charging, provided the charge/ discharge current is less than 50mA.			
7	Capacitance	Within the specified tolerance					
8	Q/ Dissipation Factor (D.F.)	30pF and over: Q≥1000 30pF and below: Q≥400+20C C: Nominal Capacitance (pF)	$\begin{array}{l} [\text{R6, R7, C8]} \\ \text{W.V.: 100V} \\ &: 0.025 \text{ max. } (\text{C}{<}0.068\mu\text{F}) \\ &: 0.05 \text{ max. } (\text{C}{\geq}0.068\mu\text{F}) \\ \text{W.V.: 50/25V} \\ &: 0.025 \text{ max. } (\text{C}{<}10\mu\text{F}) \\ &: 0.035 \text{ max. } (\text{C}{<}10\mu\text{F}) \\ \text{W.V.: 16/10V: } 0.035 \text{ max.} \\ \text{W.V.: 6.3/4V} \\ &: 0.05 \text{ max. } (\text{C}{<}3.3\mu\text{F}) \\ &: 0.1 \text{ max. } (\text{C}{\geq}3.3\mu\text{F}) \\ \text{[E4]} \\ \text{W.V.: 25Vmin: } 0.025 \text{ max.} \\ [\text{F1, F5]} \\ \text{W.V.: 25V min.} \\ &: 0.05 \text{ max. } (\text{C}{<}0.1\mu\text{F}) \\ &: 0.09 \text{ max. } (\text{C}{\geq}0.1\mu\text{F}) \\ \text{W.V.: 16/10V: } 0.125 \text{ max.} \\ \text{W.V.: 6.3V: 0.15 max.} \\ \end{array}$	The capacitance/Q/D.F. should be measured at 20/25°C at the frequency and voltage shown in the table. $\begin{array}{c cccc} & \Delta C & to 7U, 1X \\ \hline & to 7U, 1X \\ (1000pF and below) \\ \hline & F5, B1, B3, F1 \\ \hline \\ \hline & Frequency \\ \hline & 1\pm 0.1 \text{MHz} \\ \hline & 1\pm 0.2 \text{Vrms} \\ \hline & 0.5 \pm \\ \hline & 0.5 \text{Vrms} \\ \hline \end{array}$			

GRM Series Specifications and Test Methods (1)

			Specifi	cations						
No.	Ite	em	Temperature Compensating Type	High Dielectric Type			Test Method			
		No bias	Within the specified tolerance (Table A-1)	$\begin{array}{c} \text{B1, B3: Within } \pm 10\% \\ (-25 \text{ to } +85^{\circ}\text{C}) \\ \text{R1, R7: Within } \pm 15\% \\ (-55 \text{ to } +125^{\circ}\text{C}) \\ \text{R6: Within } \pm 15\% \\ (-55 \text{ to } +85^{\circ}\text{C}) \\ \text{E4: Within } \pm 22/-56\% \\ (+10 \text{ to } +85^{\circ}\text{C}) \\ \text{F1: Within } +30/-80\% \\ (-25 \text{ to } +85^{\circ}\text{C}) \\ \text{F5: Within } \pm 22/-82\% \\ (-30 \text{ to } +85^{\circ}\text{C}) \\ \text{C8: Within } \pm 22\% \\ (-55 \text{ to } +105^{\circ}\text{C}) \end{array}$	each specified tem (1)Temperature CC The temperature CC capacitance meass When cycling the tt 5 (5C: +25 to +125 +25 to +85°C/+20 the specified tolera capacitance chang The capacitance di between the maxin		The capacitance change should be measured after 5 each specified temp. stage. (1)Temperature Compensating Type The temperature Coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 5 (5C: $+25$ to $+125^{\circ}/\Delta C$: $+20$ to $+125^{\circ}$: other temp. $+25$ to $+85^{\circ}/+20$ to $+85^{\circ}$) the capacitance should b the specified tolerance for the temperature coefficient capacitance change as Table A-1. The capacitance drift is calculated by dividing the diffe between the maximum and minimum measured value step 1, 3 and 5 by the cap. value in step 3.		using the rence. y from step 1 through to ther temp. coeffs.: nce should be within e coefficient and ding the differences asured values in the b.	
			/			ep		emperat	nperature ±2	
		50% of the Rated		B1: Within +10/–30% R1: Within +15/–40%	2	2	-55±3 (for -30±3 (r ∆C to 7 (for F5),	2U/1X/R6/R7/C8) 10±3 (for E4) other TC)	
		Voltage		F1: Within +30/–95%	3	3			nperature ±2	
		lonugo			4	1			, 105±3 (for C8) other TC)	
	Capacitance					5			perature ±2	
	Characteristics	Capacitance Drift	Within ±0.2% or ±0.05pF (Whichever is larger.) ∗Do not apply to 1X/25V	*Initial measurement for high dielectric constant type Perform a heat treatment at 150+0/-10°C for one hour and then set for 24±2 hours at room temperature. Perform the initial measurement.	Assurement for high onstant type tor 24±2 hours in initial		rature range d ranges.* oltage, the car re min. with a temp. stage. operature (°C) ce Temperat t (for R1, R7, b (for B1, B3, or F5)/10 \pm 3 (for R1, R7, b (for B1, B3, or F5)/10 \pm 3 (for R1, R4, c (for B1, B3, F1, F5, E4) ce Temperat 5 \pm 3 (for R1), t (for B1, F) ce Temperat 5 \pm 3 (for R1), t (for B1, F) ce Temperat 5 \pm 3 (for R1), t (for R1, R1)	s shown apacitan applying ure ±2 . R6) . F1) (for E4) ure ±2 7)/ R6 ure ±2 / 1) ure ±2 / 1) ure ±2 /	ared with the 20°C in the table should ce change should be voltage in Applying Voltage (V) No bias 50% of the rated voltage	
			No removal of the terminations	or other defect should occur	8 Solder the		:3 (for B1, F	,	epoxy board) shown in	
10	O Adhesive Strength of Termination			+ + + + + + + + + + + + + + + + + + +	Fig. 1a usir parallel with The solder reflow meth soldering is	ng an eute h the test j ing should hod and sh s uniform a 02), 2N (G pe 2 3 5 5 3 1 1 2 2 3 3 1 1 2 2 3	ctic solder. T ig for 10±1 s be done eith ould be con	Then app sec. Ther with a ducted w efects su	by 10N* force in an iron or using the vith care so that the ich as heat shock. , GRM18) (in mm) c 6 0.23 0.3 0.5 0.5 0.1.2 0.1.65 0.2.0 0.2.9 0.3.7	

GRM Series Specifications and Test Methods (1)

Below GRM Series Specifications and Test Methods (1) are applied to Non "*" PNs in capacitance table.

			Specif	ications				
No.	lte	em	Temperature Compensating Type	High Dielectric Type		Test Me	ethod	
		Appearance	No defects or abnormalities					
		Capacitance	Within the specified tolerance					
11	Vibration Resistance	Q/D.F.	30pF and over: Q≥1000 30pF and below: Q≥400+20C C: Nominal Capacitance (pF)	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Solder the capacitor on the test jig (glass epoxy boas same manner and under the same conditions as (1). The capacitor should be subjected to a simple harm having a total amplitude of 1.5mm, the frequency be uniformly between the approximate limits of 10 and frequency range, from 10 to 55Hz and return to 10- be traversed in approximately 1 minute. This motion applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours).			s (10). harmonic motion cy being varied and 55Hz. The 10Hz, should otion should be
	Deflection	No crack or marked defect should occur.		i0 Pressurizing speed : 1.0mm/sec.	Solder the capacit in Fig. 2a using an direction shown in done by the reflow so that the solderin shock.	eutectic solde Fig. 3a for 5± method and s	r. Then apply a 1 sec. The sold hould be cond nd free of defe 04.5	a force in the dering should be ucted with care cts such as heat
12				$\neg \uparrow \uparrow \uparrow$	-		t: 1.6mm (GRM02	
12				Flexure : ≦1	Type GRM02	0.2	b 0.56	с 0.23
12			Capacitance	meter	GRM02	0.2	0.56	0.23
12			45	45	GRM15	0.4	1.5	0.5
12			4 5 4		-			1.2
12			• • •		GRM18	1.0	3.0	1.2
2			* *		GRM18 GRM21	1.0	4.0	
2			Fig. 3a					1.65 2.0
12			* *		GRM21	1.2	4.0	1.65
2			* *		GRM21 GRM31	1.2 2.2	4.0 5.0	1.65 2.0
2			* *		GRM21 GRM31 GRM32	1.2 2.2 2.2	4.0 5.0 5.0	1.65 2.0 2.9
12			* *		GRM21 GRM31 GRM32 GRM43	1.2 2.2 2.2 3.5	4.0 5.0 5.0 7.0	1.65 2.0 2.9 3.7

GRM Series Specifications and Test Methods (1)

			Specif	ications					
).	ltem	Compensating Type High Dielectric Type				Test	t Method	I	
	_		The measured and observed cl specifications in the following ta	haracteristics should satisfy the able.					
	ļ	Appearance	No defects or abnormalities						
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	B1, B3, R1, R6, R7, C8 : Within ±7.5% F1, F5, E4: Within ±20%					
Resista to Solder Heat	ring	Q/D.F.	30pF and over: Q≥1000 30pF and below: Q≥400+20C C: Nominal Capacitance (pF)	$ \begin{array}{l} [B1, B3, R6, R7, C8] \\ W.V.: 100V \\ : 0.025 max. (C<0.068 \mu F) \\ : 0.05 max. (C\geq 0.068 \mu F) \\ W.V.: 50/25V \\ : 0.025 max. (C<10 \mu F) \\ : 0.035 max. (C\geq 10 \mu F) \\ W.V.: 16/10V: 0.035 max. \\ W.V.: 6.3/4V \\ : 0.05 max. (C\geq 3.3 \mu F) \\ : 0.1 max. (C\geq 3.3 \mu F) \\ : 0.1 max. (C\geq 3.3 \mu F) \\ [E4] \\ W.V.: 25V min. \\ : 0.05 max. (C<0.1 \mu F) \\ : 0.09 max. (C\geq 0.1 \mu F) \\ W.V.: 16/10V: 0.125 max. \\ W.V.: 6.3V: 0.15 max. \\ \end{array} $	Immerse the c solder solution temperature for •Initial measur Perform a hea then set at roo Perform the in	apacitor at 120 t apacitor in an e a at 270±5°C for or 24±2 hours, t rement for high tt treatment at 1 om temperature itial measurement or GRM32/43/58 Temper 100 to 1 170 to 2	eutectic s 10 ± 0.5 then mea dielectric 50+0/- for 24 ± 2 ent. 5 ature 20°	older or Sn-3.0 seconds. Set a asure. c constant type 10°C for one ho	ur and e n.
				VV.V 0.3V. 0.13 IIIdX.					
		IR	More than 10 000MO or 5000						
	1	I.R. Dielectric Strength	More than 10,000M Ω or 500 Ω No defects		-				
	1	Dielectric	No defects	• F (Whichever is smaller)	-				
	 	Dielectric	No defects The measured and observed cl	• F (Whichever is smaller)	-				
		Dielectric Strength	No defects The measured and observed cl specifications in the following ta	• F (Whichever is smaller)	manner and u	tor to the suppo nder the same of re cycles accord	condition	s as (10).	atments
		Dielectric Strength Appearance Capacitance	No defects The measured and observed cl specifications in the following ta No defects or abnormalities Within ±2.5% or ±0.25pF	 F (Whichever is smaller) F (Whichever is smaller) haracteristics should satisfy the able. B1, B3, R1, R6, R7, C8 Within ±7.5% F1, F5, E4: Within ±20% [R6, R7, C8] 	manner and un Perform the five shown in the fee	nder the same over cycles accord ollowing table.	condition ding to th	s as (10). ne four heat trea	
		Dielectric Strength Appearance Capacitance	No defects The measured and observed cl specifications in the following ta No defects or abnormalities Within ±2.5% or ±0.25pF	 F (Whichever is smaller) F (Whichever is smaller) haracteristics should satisfy the able. B1, B3, R1, R6, R7, C8 Within ±7.5% F1, F5, E4: Within ±20% [R6, R7, C8] W.V.: 100V 	manner and un Perform the fiv shown in the for Set for 24±2 h	nder the same over cycles accord ollowing table. nours at room te	condition ding to th	s as (10). he four heat trea ire, then measu	ıre.
		Dielectric Strength Appearance Capacitance	No defects The measured and observed cl specifications in the following ta No defects or abnormalities Within ±2.5% or ±0.25pF	 F (Whichever is smaller) F (Whichever is smaller) haracteristics should satisfy the able. B1, B3, R1, R6, R7, C8 Within ±7.5% F1, F5, E4: Within ±20% [R6, R7, C8] W.V.: 100V	manner and un Perform the five shown in the fee	nder the same over cycles accord ollowing table.	condition ding to th	s as (10). ne four heat trea	
Temper		Dielectric Strength Appearance Capacitance	No defects The measured and observed cl specifications in the following ta No defects or abnormalities Within ±2.5% or ±0.25pF (Whichever is larger) 30pF and over: Q≧1000	 F (Whichever is smaller) F (Whichever is smaller) haracteristics should satisfy the able. B1, B3, R1, R6, R7, C8 Within ±7.5% F1, F5, E4: Within ±20% [R6, R7, C8] W.V.: 100V 	manner and uu Perform the fiv shown in the for Set for 24±2 h	nder the same ve cycles accord ollowing table. hours at room te 1 Min. Operating	condition ding to the emperatu 2 Room	s as (10). re four heat trea re, then measu 3 Max. Operating	ire. 4 Room
Temper. Cycle	rature	Dielectric Strength Appearance Capacitance	No defects The measured and observed cl specifications in the following ta No defects or abnormalities Within ±2.5% or ±0.25pF (Whichever is larger)	 F (Whichever is smaller) F (Whichever is smaller) haracteristics should satisfy the able. B1, B3, R1, R6, R7, C8 Within ±7.5% F1, F5, E4: Within ±20% [R6, R7, C8] W.V.: 100V 0.05 max. (C<0.068µF) 0.075 max. (C≥0.068µF) 0.05 max. (C≥0.068µF) W.V.: 6.3/4V 0.075 max. (C<3.3µF) 0.125 max. (C≥3.3µF) I.125 max. (C≥3.3µF) [E4] W.V.: 25Vmin: 0.05 max. [F1, F5] W.V.: 25V min. 0.05 max. (C<0.1µF) 0.09 max. (C≥0.1µF) W.V.: 16/10V: 0.125 max. 	manner and up Perform the fiv shown in the fiv Set for 24±2 h Temp. (°C) Time (min.) •Initial measur Perform a hea then set at roo	nder the same of ve cycles accord ollowing table, nours at room te <u>1</u> Min. Operating Temp. +0/-3	condition ding to the emperature Room Temp. 2 to 3 dielectric 50+0/	s as (10). the four heat treasure, then measure 3 Max. Operating Temp. +3/−0 30±3 c constant type 10°C for one hoo	re. 4 Room Temp. 2 to 3
	rature	Dielectric Strength Appearance Capacitance Change Q/D.F.	No defects The measured and observed cl specifications in the following ta No defects or abnormalities Within ±2.5% or ±0.25pF (Whichever is larger) 30pF and over: Q≥1000 30pF and below: Q≥400+20C C: Nominal Capacitance (pF)	 F (Whichever is smaller) F (Whichever is smaller) haracteristics should satisfy the able. B1, B3, R1, R6, R7, C8 Within ±7.5% F1, F5, E4: Within ±20% [R6, R7, C8] W.V.: 100V 0.05 max. (C<0.068µF) 0.075 max. (C≥0.068µF) 0.075 max. (C≥0.068µF) 0.05 max. (C<3.3µF) 0.125 max. (C<3.3µF) 0.125 max. (C≥3.3µF) [E4] W.V.: 25Vmin: 0.05 max. [F1, F5] W.V.: 25V min. 0.09 max. (C<0.1µF) 0.09 max. (C≥0.1µF) W.V.: 16/10V: 0.125 max. W.V.: 6.3V: 0.15 max. 	manner and up Perform the fiv shown in the fiv Set for 24±2 h Temp. (°C) Time (min.) •Initial measur Perform a hea then set at roo	nder the same of ve cycles accord ollowing table. nours at room te 1 Min. Operating Temp. +0/-3 30±3 rement for high the treatment at 1 om temperature the temperature treatment at 1 to the temperature the temperature te	condition ding to the emperature Room Temp. 2 to 3 dielectric 50+0/	s as (10). the four heat treasure, then measure 3 Max. Operating Temp. +3/−0 30±3 c constant type 10°C for one hoo	re. 4 Room Temp. 2 to 3
	rature	Dielectric Strength Appearance Capacitance Change	No defects The measured and observed cl specifications in the following ta No defects or abnormalities Within ±2.5% or ±0.25pF (Whichever is larger) 30pF and over: Q≥1000 30pF and below: Q≥400+20C	 F (Whichever is smaller) F (Whichever is smaller) haracteristics should satisfy the able. B1, B3, R1, R6, R7, C8 Within ±7.5% F1, F5, E4: Within ±20% [R6, R7, C8] W.V.: 100V : 0.05 max. (C<0.068µF) : 0.075 max. (C≥0.068µF) : 0.075 max. (C≥0.068µF) : 0.05 max. W.V.: 6.3/4V : 0.075 max. (C<3.3µF) : 0.125 max. (C<3.3µF) : 0.125 max. (C≥3.3µF) [E4] W.V.: 25Vmin: 0.05 max. [F1, F5] W.V.: 25V min. : 0.09 max. (C<0.1µF) : 0.09 max. (C≥0.1µF) W.V.: 16/10V: 0.125 max. W.V.: 6.3V: 0.15 max. 	manner and up Perform the fiv shown in the fiv Set for 24±2 h Temp. (°C) Time (min.) •Initial measur Perform a hea then set at roo	nder the same of ve cycles accord ollowing table. nours at room te 1 Min. Operating Temp. +0/-3 30±3 rement for high the treatment at 1 om temperature the temperature treatment at 1 to the temperature the temperature te	condition ding to the emperature Room Temp. 2 to 3 dielectric 50+0/	s as (10). the four heat treasure, then measure 3 Max. Operating Temp. +3/−0 30±3 c constant type 10°C for one hoo	re. 4 Room Temp. 2 to 3

GRM Series Specifications and Test Methods (1)

			Specifi	cations	
0.	Iter	n	Temperature Compensating Type	High Dielectric Type	Test Method
	_		The measured and observed ch specifications in the following ta	-	
		Appearance	No defects or abnormalities	1	
		Capacitance Change	Within ±5% or ±0.5pF (Whichever is larger)	B1, B3, R1, R6, R7, C8 : Within ±12.5% F1, F5, E4: Within ±30%	
Humic 6 (Stead State)	idy	Q/D.F.	30pF and over: Q≥350 10pF and over 30pF and below: Q≥275+2.5C 10pF and below: Q≥200+10C C: Nominal Capacitance (pF)	$\begin{array}{l} [R6,R7,C8] \\ W.V.: 100V \\ &: 0.05 \mbox{max.} (C{<}0.068\muF) \\ &: 0.075 \mbox{max.} (C{\geq}0.068\muF) \\ W.V.: 50/25/16/10V \\ &: 0.05 \mbox{max.} \\ W.V.: 6.3/4V \\ &: 0.075 \mbox{max.} (C{<}3.3\muF) \\ &: 0.125 \mbox{max.} (C{\geq}3.3\muF) \\ [E4] \\ W.V.: 25Vmin: \ 0.05 \mbox{max.} \\ [F1,F5] \\ W.V.: 25Vmin. \\ &: 0.075 \mbox{max.} (C{<}0.1\muF) \\ &: 0.125 \mbox{max.} (C{\geq}0.1\muF) \\ &: 0.125 \mbox{max.} (C{\geq}0.1\muF) \\ &: 0.125 \mbox{max.} (C{\geq}0.1\muF) \\ W.V.: 16/10V: 0.15 \mbox{max.} \\ \\ W.V.: 6.3V: 0.2 \mbox{max.} \\ \end{array}$	Set the capacitor at 40±2°C and in 90 to 95% humidity for 500±12 hours. Remove and set for 24±2 hours at room temperature, then measure.
		I.R.	More than 1,000M Ω or 50 $\Omega \cdot F$	(Whichever is smaller)	
			The measured and observed characteristics should satisfy the specifications in the following table.		
		Appearance	No defects or abnormalities		
		Capacitance Change	Within ±7.5% or ±0.75pF (Whichever is larger)	B1, B3, R1, R6, R7, C8 : Within ±12.5% F1, F5, E4: Within ±30% [W.V.: 10V max.] F1, F5: Within +30/-40%	
7 Humic Load		Q/D.F.	30pF and over: Q≥200 30pF and below: Q≥100+10C/3 C: Nominal Capacitance (pF)	$\begin{array}{l} [B1, B3, R6, R7, C8] \\ W.V.: 100V \\ : 0.05 max. (C<0.068 \mu F) \\ : 0.075 max. (C \geq 0.068 \mu F) \\ W.V.: 50/25/16/10V \\ : 0.05 max. \\ W.V.: 6.3/4V \\ : 0.075 max. (C < 3.3 \mu F) \\ : 0.125 max. (C \geq 3.3 \mu F) \\ [E4] \\ W.V.: 25Vmin: 0.05 max. \\ [F1, F5] \\ W.V.: 25V min. \\ : 0.075 max. (C < 0.1 \mu F) \\ : 0.125 max. (C \geq 0.1 \mu F) \\ : 0.125 max. (C \geq 0.1 \mu F) \\ W.V.: 16/10V: 0.15 max. \\ W.V.: 6.3V: 0.2 max. \\ \end{array}$	Apply the rated voltage at 40±2°C and 90 to 95% humidity for 500±12 hours. Remove and set for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA. •Initial measurement for F1, F5/10V max. Apply the rated DC voltage for 1 hour at 40±2°C. Remove and set for 24±2 hours at room temperature. Perform initial measurement.

GRM Series Specifications and Test Methods (1)

	Continued fr	om the prec			t Methods (1) are applied to Non "*" PNs in capacitance table. efer to GRM Series Specifications and Test Methods (2) (P.30).
			Specifi	ications	
No.	lte	em	Temperature Compensating Type	High Dielectric Type	Test Method
			The measured and observed ch specifications in the following ta	,	
		Appearance	No defects or abnormalities		
		Capacitance Change	Within ±3% or ±0.3pF (Whichever is larger)	B1, B3, R1, R6, R7, C8 : Within ±12.5% F1, F5, E4: Within ±30% [Except 10V max. and. C≥1.0μF] F1, F5: Within +30/−40% [10V max. and C≥1.0μF]	Apply 200%* of the rated voltage at the maximum operating temperature ±3℃ for 1000±12 hours.
18	High Temperature Load	Q/D.F.	30pF and over: Q≥350 10pF and over 30pF and below: Q≥275+2.5C 10pF and below: Q≥200+10C C: Nominal Capacitance (pF)	$ \begin{array}{l} [B1, B3, R6, R7, C8] \\ W.V.: 100V \\ : 0.05 max. (C<0.068 \mu F) \\ : 0.075 max. (C\geq0.068 \mu F) \\ W.V.: 50/25/16/10V \\ : 0.05 max. \\ W.V.: 6.3/4V \\ : 0.075 max. (C<3.3 \mu F) \\ : 0.125 max. (C\geq3.3 \mu F) \\ [E4] \\ W.V.: 25Vmin: 0.05 max. \\ [F1, F5] \\ W.V.: 25V min. \\ : 0.075 max. (C<0.1 \mu F) \\ : 0.125 max. (C\geq0.1 \mu F) \\ : 0.125 max. (C\geq0.1 \mu F) \\ W.V.: 16/10V: 0.15 max. \\ W.V.: 6.3V: 0.2 max. \\ \end{array} $	 Set for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA. Initial measurement for high dielectric constant type. Apply 200% of the rated DC voltage at the maximum operating temperature ±3°C for one hour. Remove and set for 24±2 hours at room temperature. Perform initial measurement. *150% for 500V
		I.R.	More than 1,000M Ω or 50 Ω \cdot F	(Whichever is smaller)]

Table A-1

(1)

	Capacitance Change from 25°C (%)							
Char.	Nominal Values (ppm/℃)*1	-55		-30		-10		
		Max.	Min.	Max.	Min.	Max.	Min.	
5C	0± 30	0.58	-0.24	0.40	-0.17	0.25	-0.11	
6C	0± 60	0.87	-0.48	0.59	-0.33	0.38	-0.21	
6P	-150± 60	2.33	0.72	1.61	0.50	1.02	0.32	
6R	-220 ± 60	3.02	1.28	2.08	0.88	1.32	0.56	
6S	-330± 60	4.09	2.16	2.81	1.49	1.79	0.95	
6T	-470± 60	5.46	3.28	3.75	2.26	2.39	1.44	
7U	-750±120	8.78	5.04	6.04	3.47	3.84	2.21	
1X	+350 to -1000	-	-	_	-	-	-	

*1: Nominal values denote the temperature coefficient within a range of 25°C to 125°C (for ΔC)/85°C (for other TC).

(2)

		Capacitance Change from 20°C (%)							
Char.	Nominal Values (ppm/℃)*2	-55		_	-25		-10		
		Max.	Min.	Max.	Min.	Max.	Min.		
2C	0± 60	0.82	-0.45	0.49	-0.27	0.33	-0.18		
3C	0±120	1.37	-0.90	0.82	-0.54	0.55	-0.36		
4C	0±250	2.56	-1.88	1.54	-1.13	1.02	-0.75		
2P	-150± 60	_	_	1.32	0.41	0.88	0.27		
3P	-150±120	-	-	1.65	0.14	1.10	0.09		
4P	-150±250	_	-	2.36	-0.45	1.57	-0.30		
2R	-220 ± 60	-	-	1.70	0.72	1.13	0.48		
3R	-220±120	_	_	2.03	0.45	1.35	0.30		
4R	-220±250	-	-	2.74	-0.14	1.83	-0.09		
2S	-330 ± 60	_	_	2.30	1.22	1.54	0.81		
3S	-330±120	_	-	2.63	0.95	1.76	0.63		
4S	-330±250	-	-	3.35	0.36	2.23	0.24		
2T	-470± 60	-	-	3.07	1.85	2.05	1.23		
3T	-470±120	-	-	3.40	1.58	2.27	1.05		
4T	-470±250	-	-	4.12	0.99	2.74	0.66		
3U	-750±120	-	-	4.94	2.84	3.29	1.89		
4U	-750±250	-	-	5.65	2.25	3.77	1.50		

*2: Nominal values denote the temperature coefficient within a range of 20°C to 125°C (for ΔC)/85°C (for other TC).

GRM Series Specifications and Test Methods (2)

Below GRM Series Specifications and Test Methods (2) are applied to "*" PNs in capacitance table. In case "*" is not added in capacitance table, please refer to GRM Series Specifications and Test Methods (1) (P.24).

No.	Ite	em	Specifications		Test Method		
1	Operating Temperat Range		B1, B3, F1: -25 to +85°C R6: -55 to +85°C R7, C7: -55 to +125°C F5: -30 to +85°C C8: -55 to +105°C,		Reference temperature: 25℃ (B1, B3, F1: 20℃)		
2	Rated Vo	ltage	See the previous pages.	The rated voltage is defined as the maximum voltage whi may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p.p} or whichever is larger, should be maintained within the rated voltage range.			
3	Appearar	nce	No defects or abnormalities	Visual insp	ection		
4	Dimensio	ns	Within the specified dimensions	Using calip	pers		
5	Dielectric	Strength	No defects or abnormalities	is applied I	should be observed when 250% between the terminations for 1 he charge/discharge current is I	to 5 seconds,	
6	Insulatior Resistanc		More than $50\Omega \cdot F$	The insulation resistance should be measured with a DC volta not exceeding the rated voltage at reference temperature and 75%RH max. and within 1 minutes of charging, provided the charge/discharge current is less than 50mA.			
7	Capacita	nce	Within the specified tolerance		The capacitance/D.F. should be measured at reference		
8	Dissipatio (D.F.)	on Factor	B1, B3, R6* ² , R7, C7, C8: 0.1 max. F1, F5: 0.2 max.	C≦10µF (10V min.)*1 1±0.1kHz 1.0±0.2Vr C≦10µF (6.3V max.) 1±0.1kHz 0.5±0.1Vr		Voltage 1.0±0.2Vrms 0.5±0.1Vrms 0.5±0.1Vrms	
		No bias	$\begin{array}{rl} B1, B3: \mbox{ Within } \pm 10\% \ (-25 \ to + 85\%) \\ F1 & : \mbox{ Within } \pm 30/-80\% \ (-25 \ to + 85\%) \\ R6 & : \mbox{ Within } \pm 15\% \ (-55 \ to + 85\%) \\ R7 & : \mbox{ Within } \pm 15\% \ (-55 \ to + 125\%) \\ F5 & : \mbox{ Within } \pm 22/-82\% \ (-30 \ to + 85\%) \\ C7 & : \mbox{ Within } \pm 22\% \ (-55 \ to + 125\%) \\ C8 & : \mbox{ Within } \pm 22\% \ (-55 \ to + 105\%) \\ \end{array}$	each speci The range reference t shown in the In case of measured	itance change should be meas fied temp. stage. s of capacitance change compa emperature value over the tem he table should be within the sp applying voltage, the capacitan after 1 more min. with applying on of each temp. stage.	ared with the perature ranges pecified ranges.* ce change should be	
				oquiibratic	in or odoin tomp: otago.		
					31/R6 0J/1A 336/476 only: 1.0±		
				Step 1	Temperature (°C) Reference temperature ±2	Applying Voltage (V)	
9	Capacitance Temperature			2	-55±3 (for R6, C7, C8)/ -25±3 (for B1, B3, F1) -30±3 (for F5)		
	Characteristics			3	Reference temperature ±2	No bias	
		50% of the Rated Voltage	B1: Within +10/-30% F1: Within +30/-95%	4	85±3 (for B1, B3, F1, R6, F5) 125±3 (for C7)/ 105±3 (for C8)		
				5	20±2		
				6	–25±3 (for B1, F1)	50% of the rated	
				7	20±2	voltage	
				8	85±3 (for B1, F1)		
				Perform a then set fo	asurement for high dielectric co heat treatment at $150 + 0/-10^{\circ}$ r 24±2 hours at room temperat e initial measurement.	C for one hour and	

*2: GRM31CR60J107: 0.15 max.

Continued on the following page. \checkmark

			GRM Series S	pecificatior	ns and T	est Met	thods (2)	
	Continued fr	om the prec	Below GRM Series Specifications	and Test Methods (2) are applied to	o "*" PNs in ca	pacitance table.	
No.	Ite	em	Specifications	Test Method				
10	Adhesive Strength of Termination		No removal of the terminations or other defects should occur.	$\begin{tabular}{ c c c c c } \hline Solder the capacitor on the test jig (glass epoxy board) shi in Fig. 1a using an eutectic solder. Then apply 10N* force parallel with the test jig for 10\pm1 sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that soldering is uniform and free of defects such as heat shoct $$5N: GRM15/GRM18, 2N: GRM03$$$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$				
		Appearance	No defects or abnormalities	Solder the capacit	or on the test ji	g (glass epoxy	/ board) in the	
11	Vibration	Capacitance	Within the specified tolerance B1, B3, R6* ² , R7, C7, C8: 0.1 max. F1, F5: 0.2 max.	 Solder the capacitor on the test jig (glass epoxy board) in the same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmonic moti having a total amplitude of 1.5mm, the frequency being varie uniformly between the approximate limits of 10 and 55Hz. Th frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours). 			narmonic motion cy being varied and 55Hz. The 10Hz, should otion should be	
12	P. Deflection		No cracking or marking defects should occur.	Solder the capacitor on the test jig (glass in Fig. 2a using an eutectic solder. Then direction shown in Fig. 3a for 5±1 sec. The done by the reflow method and should be so that the soldering is uniform and free shock. Image: the solder is the solder in Fig. 2a Image: the solder is the solder i		r. Then apply a 1 sec. The sold hould be condi- nd free of defe	a force in the dering should be ucted with care	
13	Solderability of Termination		75% of the terminations is to be soldered evenly and continuously.	GRM43 GRM55 Immerse the capa rosin (JIS-K-5902) Preheat at 80 to 12 After preheating, in 2±0.5 seconds at for 2±0.5 seconds	(25% rosin in 20℃ for 10 to 3 mmerse in an e 230±5℃ or Sn	8.0 on of ethanol (. weight proport 30 seconds. eutectic solder	5.6 (in mm) JIS-K-8101) and ion) . solution for	

*2: GRM31CR60J107: 0.15 max.

GRM Series Specifications and Test Methods (2)

No.	Ite	em	Specifications		Tes	t Metho	d		
		Appearance Capacitance	No defects or abnormalities B1, B3, R6, R7, C7, C8: Within ±7.5%	Immerse the	Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the capacitor in an eutectic solder or Sn-3.0Ag-0.5C solder solution at 270±5°C for 10±0.5 seconds. Set at room				
	Resistance	Change	F1, F5: Within ±20% B1, B3, R6* ² , R7, C7, C8: 0.1 max.		or 24±2 hours,				
		D.F.	F1, F5: 0.2 max.	•Initial measu	Initial measurement for high dielectric constant type				
14	to Soldering Heat	I.R.	More than 50Ω · F	Perform a heat then set at room	at treatment at om temperature nitial measurem	150+0/— e for 24±2	10℃ for one ho		
		Dielectric	No defects	*Preheating for	or GRM32/43/5	5			
		Strength		Step	•	erature		ime	
				2		ວ 120℃ ວ 200℃		min. min.	
-		Appearance	No defects or abnormalities	Fix the capac	itor to the supp	ortina iia	in the same m	anner an	
		Capacitance Change	B1, B3, R6, R7, C7, C8: Within ±7.5% F1, F5: Within ±20%	under the sam Perform the fi	ne conditions a ve cycles acco following table.	is (10). rding to t			
		D.F.	B1, B3, R6* ² , R7, C7, C8: 0.1 max. F1, F5: 0.2 max.		hours at room		ure, then meas	sure.	
	Temperature	I.R.	More than 50Ω · F	Step	1	2	3	4	
15	Sudden Change	den		Temp. (°C)	Min. Operating Temp. +0/-3	Room Temp.	Max. Operating Temp. +3/-0	Room Temp.	
			No defects	Perform a heat then set at room	30±3 rement for high at treatment at om temperature iitial measurem	150+0/— e for 24±:	10℃ for one ho		
		Appearance	No defects or abnormalities	Apply the rate	d voltage at 40	±2℃ and	l 90 to 95% hu	midity for	
	High	Capacitance Change	B1, B3, R6, R7, C7, C8: Within ±12.5% F1, F5: Within ±30%		 500±12 hours. The charge/discharge current is less than 50 Initial measurement Perform a heat treatment at 150+0/-10°C for one hour and then let sit for 24±2 hours at room temperature. Perform the 			than 50m	
16	Temperature High	D.F.	B1, B3, R6, R7, C7, C8: 0.2 max. F1, F5: 0.4 max.	Perform a heat then let sit for					
	Humidity (Steady)	I.R.	More than $12.5\Omega \cdot F$	•Measuremer Perform a hea	 initial measurement. Measurement after test Perform a heat treatment at 150+0/-10°C for one h then let sit for 24±2 hours at room temperature, the 				
		Appearance	No defects or abnormalities		f the rated volta				
		Capacitance Change	B1, B3, R6, R7, C7, C8: Within ±12.5% F1, F5: Within ±30%	room tempera	erating tempera iture, then mea scharge currer	sure.		±2 hours	
		D.F.	B1, B3, R6, R7, C7, C8: 0.2 max. F1, F5: 0.4 max.	•Initial measu	rement				
17	Durability	I.R.	More than $25\Omega \cdot F$	then let sit for initial measure •Measuremen	nt after test at treatment at	room ter 150+0/-	nperature. Perf 10°C for one ho	form the	

*2: GRM31CR60J107: 0.15 max.

GRM Series Data

Capacitance - Temperature Characteristics

■ Capacitance - DC Voltage Characteristics

■ Capacitance Change - Aging

■ Capacitance - AC Voltage Characteristics

■ Impedance - Frequency Characteristics

GRM Series Data

Continued from the preceding page.

■ Allowable Voltage - Frequency

■ Allowable Apparent Power - Frequency

■ Allowable Current - Frequency

Chip Monolithic Ceramic Capacitors

muRata

Microchips GMA Series

Features

- 1. Better microwave characteristics
- 2. Suitable for by-passing
- 3. High density mounting

Applications

- 1. Optical device for telecommunication
- 2. IC, IC packaging built-in
- 3. Measuring equipment

Part Number		Dimensions (mm)	l.
Part Number	L	W	Т
GMA05X	0.5 ±0.05	0.5 ±0.05	0.35 ±0.05
GMA085	0.8 ±0.05	0.8 ±0.05	0.5 ±0.1

Part Number	TC Code (Standard)	Rated Voltage (Vdc)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)
GMA05XR72A101MD01	X7R (EIA)	100	100pF ±20%	0.5	0.5	0.35
GMA05XR72A151MD01	X7R (EIA)	100	150pF ±20%	0.5	0.5	0.35
GMA05XR72A221MD01	X7R (EIA)	100	220pF ±20%	0.5	0.5	0.35
GMA05XR72A331MD01	X7R (EIA)	100	330pF ±20%	0.5	0.5	0.35
GMA085R72A331MD01	X7R (EIA)	100	330pF ±20%	0.8	0.8	0.5
GMA085R72A471MD01	X7R (EIA)	100	470pF ±20%	0.8	0.8	0.5
GMA085R72A681MD01	X7R (EIA)	100	680pF ±20%	0.8	0.8	0.5
GMA085R72A102MD01	X7R (EIA)	100	1000pF ±20%	0.8	0.8	0.5
GMA05XR71H161MD01	X7R (EIA)	50	160pF ±20%	0.5	0.5	0.35
GMA05XR71H331MD01	X7R (EIA)	50	330pF ±20%	0.5	0.5	0.35
GMA05XR71H471MD01	X7R (EIA)	50	470pF ±20%	0.5	0.5	0.35
GMA05XR71C431MD01	X7R (EIA)	16	430pF ±20%	0.5	0.5	0.35
GMA05XR71C471MD01	X7R (EIA)	16	470pF ±20%	0.5	0.5	0.35
GMA05XR71C681MD01	X7R (EIA)	16	680pF ±20%	0.5	0.5	0.35
GMA05XR71C102MD01	X7R (EIA)	16	1000pF ±20%	0.5	0.5	0.35
GMA085R71C102MD01	X7R (EIA)	16	1000pF ±20%	0.8	0.8	0.5
GMA05XR71C152MD01	X7R (EIA)	16	1500pF ±20%	0.5	0.5	0.35
GMA085R71C152MD01	X7R (EIA)	16	1500pF ±20%	0.8	0.8	0.5
GMA05XR71C222MD01	X7R (EIA)	16	2200pF ±20%	0.5	0.5	0.35
GMA085R71C222MD01	X7R (EIA)	16	2200pF ±20%	0.8	0.8	0.5
GMA085R71C332MD01	X7R (EIA)	16	3300pF ±20%	0.8	0.8	0.5
GMA085R71C472MD01	X7R (EIA)	16	4700pF ±20%	0.8	0.8	0.5
GMA085R71C682MD01	X7R (EIA)	16	6800pF ±20%	0.8	0.8	0.5
GMA085R71C103MD01	X7R (EIA)	16	10000pF ±20%	0.8	0.8	0.5

Specifications and Test Methods

No.	lte	em	Specifications	Test Method	
1	Operating Temperat Range	,	R7: −55 to +125℃	Reference Temperature: 25°C	
2	Rated Voltage		See the previous pages.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, $V^{P,P}$ or $V^{O,P}$, whichever is larger, should be maintained within the rated voltage range.	
3	Appearar	nce	No defects or abnormalities	Using calipers	
4	Dimensio	ns	Within the specified dimersions	Visual inspection	
5	Dielectric	: Strength	No defects or abnormalities	No failure should be observed when a voltage of 250% of the rated voltage is applied between the both terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.	
6	Insulation	Resistance	10,000MΩ min.	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at normal temperature and humidity and within 2 minutes of charging.	
7	Capacita	nce	Within the specified tolerance	The capacitance/D.F. should be measured at reference	
	Dissingt	n Easter		temperature at the frequency and voltage shown in the table.	
8	Dissipatio (D.F.)	Factor	R7: 0.035 max.	Frequency 1±0.1kHz	
				Voltage 1±0.2Vrms	
					 The capacitance change should be measured after 5min. at each specified temp. stage. The ranges of capacitance change compared with the Reference Temperature value over the temperature ranges shown in the table should be within the specified ranges.* In case of applying voltage, the capacitance change should be measured after 1 more min. with applying voltage in equilibration of each temp. stage.
	Canaalitamaa			Step Temperature (°C) Applying Voltage (V	
9	Temperature Characteristics		R7: Within +/-15% (-55 to +125°C)	1 Reference Temperature±2 2 -55±3 (for R7) -30±3 (for F5) No bios	
				3 Reference Temperature±2	
					125±3 (for R7)
				4 85±3 (for F5)	
				*Initial measurement for high dielectric constant type Perform a heat treatment at $150 + 0/-10^{\circ}$ C for one hour and then let sit for 24 ± 2 hours at room temperature. Perform the initial measurement.	
10	Mechanical Strength	Bond Strength	Pull force: 0.03N min.	MIL-STD-883 Method 2011 Condition D Mount the capacitor on a gold metallized alumina substrate with Au-Sn (80/20) and bond a $25\mu m$ (0.0008 inch) gold wire to the capacitor terminal using an ultrasonic ball bond. Then, pull wire.	
	Suengui	Die Shear Strength	Die Shear force: 2N min.	MIL-STD-883 Method 2019 Mount the capacitor on a gold metallized alumina substrate with Au-Sn (80/20). Apply the force parallel to the substrate.	
		Appearance	No defects or abnormalities	Ramp frequency from 10 to 55Hz then return to 10Hz all within	
11	Vibration Resistance	Capacitance	Within the specified tolerance	1 minute. Amplitude: 1.5 mm (0.06 inch) max. total excursion. Apply this motion for a period of 2 hours in each of 3 mutually	
	Resistance	D.F.	R7: 0.035 max.	perpendicular directions (total 6 hours).	
		Appearance	No defects or abnormalities	The capacitor should be set for 24±2 hours at room	
		Capacitance Change	R7: Within ±7.5%	temperature after one hour heat of treatment at 150+0/-10°C, then measure for the initial measurement. Fix the capacitor to the supporting jig in the same manner and under the same	
	Temperat	D.F.	R7: 0.035 max.	conditions as (11) and conduct the five cycles according to the	
12	Temperature Cycle	I.R.	10,000MΩ min.	temperatures and time shown in the following table. Set it for 48±4 hours at room temperature, then measure.	
	0,00			Step 1 2 3 4	
		Dielectric	No defects	Temp (°C) Min. Operating Room Max. Operating Room	
		Strength		1000000000000000000000000000000000000	
				Time (min.) 30±3 2 to 3 30±3 2 to 3	

Specifications and Test Methods

Continued from the preceding page.

No.	Ite	em	Specifications	Test Method
		Appearance	No defects or abnormalities	
13	Humidity	Capacitance Change	R7: Within ±12.5%	Set the capacitor for 500±12 hours at 40±20°C, in 90 to 95% humidity.
	(Steady State)	D.F.	R7: 0.05 max.	Take it out and set it for 24±2 hours at room temperature, then measure.
		I.R.	1,000MΩ min.	
		Appearance	No defects or abnormalities	
14	4 Humidity	Capacitance Change	R7: Within ±12.5%	Apply the rated voltage for 500±12 hours at 40±2°C, in 90 to 95% humidity and set it for 24±2 hours at room
	Load	D.F.	R7: 0.05 max.	temperature, then measure. The charge/discharge current is less than 50mA.
		I.R.	500MΩ min.	
		Appearance	No defects or abnormalities	A voltage treatment should be given to the capacitor, in which a
	High	Capacitance Change	R7: Within ±12.5%	DC voltage of 200% the rated voltage is applied for one hour at the maximum operating temperature ±3°C then it should be set for 24±2 hours at room temperature and the initial measurement
15		D.F.	R7: 0.05 max.	should be conducted.
	Load	I.R.	1,000MΩ min.	Then apply the above mentioned voltage continuously for 1000±12 hours at the same temperature, remove it from the bath, and set it for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA.

Mounting for testing: The capacitors should be mounted on the substrate as shown below using die bonding and wire bonding when tests No.11 to 15 are performed.

Alumina substrate

Gold land

Chip Monolithic Ceramic Capacitors

muRata

Capacitor Arrays GNM Series

Features

- 1. High density mounting due to mounting space saving
- 2. Mounting cost saving

Applications

General electronic equipment

GNM1M2/212	
	W

- L		-	L .	- W
Part Number		Dimensi	ons (mm)	
Part Number	L	W	Т	Р
GNM1M2	1.37 ±0.15	1.0 ±0.15	0.6 ±0.1	0.64 +0.05
GINIWITIWIZ		1.0 ±0.15	0.8 +0/-0.15	0.04 ±0.05
GNM212	2.0 +0.15	1.25 +0.15	0.85 ±0.1	1.0 ±0.1
GNM214	2.0 ±0.15	1.25 ±0.15	0.6 ±0.1	0.5 ±0.05
GNM314	3.2 +0.15	1.6 +0.15	0.8 ±0.1	0.8 ±0.1
GININIS 14	3.2 ±0.15	1.0 ±0.15	1.0 ±0.1	0.0 ±0.1
	1			

Temperature Compensating Type

Part Number		GNM1M	GNM21	GNI	M31	
L x W		1.37x1.0	2.0x1.25	3.2x1.6		
тс		C0G (5C)	C0G (5C)	C0G (5C)		
Rated Volt.		50 (1H)	50 (1H)	100 (2A)	50 (1H)	
Capacitance, Ca	pacitanc	e Tolerance and T Dimension				
10pF(100)	к	0.6(2)	0.6(4)	0.8(4)	0.8(4)	
15pF(150)	к	0.6(2)	0.6(4)	0.8(4)	0.8(4)	
22pF(220)	к	0.6(2)	0.6(4)	0.8(4)	0.8(4)	
27pF(270)	к	0.6(2)	0.6(4)	0.8(4)	0.8 (4)	
33pF(330)	к	0.6(2)	0.6(4)	0.8(4)	0.8(4)	
39pF(390)	к	0.6(2)	0.6(4)	0.8(4)	0.8(4)	
47pF(470)	к	0.6(2)	0.6(4)	0.8(4)	0.8(4)	
68pF(680)	к	0.6(2)	0.6(4)	0.8(4)	0.8(4)	
100pF(101)	к	0.6(2)	0.6(4)	0.8(4)	0.8 (4)	
150pF(151)	к	0.6(2)	0.6(4)	0.8(4)	0.8 (4)	
220pF(221)	к	0.6(2)	0.6(4)		0.8 (4)	
270pF(271)	к				0.8 (4)	
330pF(331)	К				0.8(4)	

The part numbering code is shown in each (). The (4) code in T (mm) means number of elements (four). Dimensions are shown in mm and Rated Voltage in Vdc.

High Dielectric Constant Type GNM1M Series

Part Number		GNM1M							
LxW					1.37x1.0				
TC Rated Volt.		X5R (R6)		X7R (R7)					
		16 (1C)	10 (1A)	6.3 (0J)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	
Capacitance, Ca	pacitanc	e Tolerance and	T Dimension			1			
1000pF(102)	м				0.6(2)				
2200pF(222)	К, М					0.6(2)			
4700pF(472)	К, М					0.6(2)			
10000pF(103)	м					0.6(2)			
22000pF(223)	К, М	0.6(2)	0.6(2)				0.6(2)	0.6(2)	

Continued from the preceding page.

Part Number	art Number							
L x W					1.37x1.0			
TC		X5R (R6)		X7R (R7)				
Rated Volt.		16 (1C)	10 (1A)	6.3 (0J)	50 (1H)	25 (1E)	16 (1C)	10 (1A)
Capacitance, Ca	pacitanc	e Tolerance and	T Dimension					
47000pF(473)	К, М	0.6(2)	0.6(2)				0.6(2)	0.6(2)
0.10μF(104)	м		0.6(2)					
1.0μF(105)	М	0.8(2)	0.8(2)	0.8(2)				

The part numbering code is shown in each (). The (2) code in T (mm) means number of elements (two).

Dimensions are shown in mm and Rated Voltage in Vdc.

Please refer to Specifications and Test Methods (2) about $1.0\mu\text{F}$ products.

High Dielectric Constant Type GNM21 Series

Part Number				GNM21		
LxW				2.0x1.25		
тс			X5R (R6)		X7R (R7)	
Rated Volt.		16 (1C)	10 (1A)	50 (1H)	25 (1E)	16 (1C)
Capacitance, Ca	pacitanc	e Tolerance and T Dime	nsion			
1000pF(102)	м			0.6(4)		
2200pF(222)	К, М				0.6(4)	
4700pF(472)	К, М				0.6(4)	
10000pF(103)	м				0.6(4)	
22000pF(223)	К, М					0.85(4)
47000pF(473)	К, М					0.85(4)
0.10μF(104)	м					0.85(4)
0.47µF(474)	м	0.85(2)				
1.0μF(105)	м	0.85(2)	0.85 (4)			
2.2µF(225)	К, М		0.85(2)			

The part numbering code is shown in each (). The (2) code in T (mm) means number of elements (two). Dimensions are shown in mm and Rated Voltage in Vdc.

Please refer to Specifications and Test Methods (2) about X5R, 10V products.

High Dielectric Constant Type GNM31 Series

Part Number		GNM31						
L x W		3.2x1.6						
тс			X7R (R7)		X5R (R6)			
Rated Volt.		100 (2A)			10 (1A)			
Capacitance, Ca	pacitanc	e Tolerance and T Dimension						
220pF(221)	К, М	0.8(4)						
330pF(331)	К, М	0.8(4)						
470pF(471)	К, М	0.8(4)	0.8(4)					
680pF(681)	К, М	0.8(4)	0.8(4)					
1000pF(102)	К, М	0.8(4)	0.8(4)					
1500pF(152)	К, М	0.8(4)	0.8(4)					
2200pF(222)	К, М	0.8(4)	0.8(4)					
3300pF(332)	К, М	0.8(4)	0.8(4)					
4700pF(472)	К, М	0.8(4)	0.8(4)					
6800pF(682)	К, М		0.8(4)					
10000pF(103)	К, М		0.8(4)					

muRata

Solution of the preceding page.

Part Number		GNM31					
L x W			3.2	2x1.6			
TC Rated Volt.			X7R (R7)				
		100 (2A)	50 (1H)	16 (1C)	10 (1A)		
Capacitance, Ca	pacitanc	e Tolerance and T Dimension			L		
15000pF(153)	К, М		0.8(4)				
22000pF(223)	К, М			0.8(4)			
33000pF(333)	К, М			0.8(4)			
47000pF(473)	К, М			1.0(4)			
68000pF(683)	К, М			1.0(4)			
0.10μF(104)	К, М			1.0(4)			
1.0μF(105)	М				0.85(4)		

The part numbering code is shown in each (). The (4) code in T (mm) means number of elements (four). Dimensions are shown in mm and Rated Voltage in Vdc.

N				Specifications	T. M. M. M.
No.	lt∈	em	Temperature Compensating Type	High Dielectric Type	- Test Method
1	Operating Temperat Range		5C:55 to +125°C	R7:55 to +125°C R6:30 to +85°C	
2	Rated Vo	ltage	See the previous page	ges.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, $V^{p,p}$ or $V^{o,p}$, whichever is larger, should be maintained within the rated voltage range.
3	Appearar	nce	No defects or abnorr	malities	Visual inspection
4	Dimensio	ons	Within the specified	dimensions	Using calipers
5	Dielectric	: Strength	No defects or abnorr	nalities	No failure should be observed when 300% of the rated voltage (5C) or 250% of the rated voltage (R7) is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.
6	Insulatior Resistanc		More than 10,000MΩ (Whichever is smalle		The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 25°C and 75%RH max. and within 2 minutes of charging.
7	Capacita	nce	Within the specified	tolerance	The capacitance/Q/D.F. should be measured at 25°C at the
8	Q/	on Factor	30pF min.: Q≧1000 30pF max.: Q≧400+20C	Char. 25V min. 16V 10V 6.3V D2 0.025 0.035 0.035 0.05	frequency and voltage shown in the table.
0	(D.F.)	on Factor	C: Nominal	R7, R6 max. max. max. max.	Frequency 1±0.1MHz 1±0.1kHz Voltage 0.5 to 5Vrms 1.0±0.2Vrms
			Capacitance (pF)		Voltage 0.5 to 5Vrms 1.0±0.2Vrms
	Capacitance	Capacitance Change Temperature Coefficent	Within the specified tolerance (Table A) Within the specified tolerance (Table A)	Char.Temp. RangeReference Temp.Cap. ChangeR7-55°C to +125°C25°CWithin ±15%R6-55°C to +85°C25°C415%	 each specified temperature stage. (1) Temperature Compensating Type The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step1 through 5, the capacitance should be within the specified tolerance for the temperature coefficient and capacitance change as Table A. The capacitance drift is calculated by dividing the differences between the maximum and minimum measured values in the steps 1, 3 and 5 by the cap. value in step 3.
9	Temperature Characteristics	Capacitance Drift	Within ±0.2% or ±0.05pF (Whichever is		Step Temperature (°C) 1 25±2 2 -55±3 (for 5C/R7), -30±3 (for F5) 3 25±2 4 125±3 (for 5C/R7), 85±3 (for F5) 5 20±2
			larger.)		(2) High Dielectric Constant Type The ranges of capacitance change compared with the above 25°C value over the temperature ranges shown in the table should be within the specified ranges.
10	Adhesive of Termin	Strength nation	GNM(Trimations or other defect should occur. GNM C Copper foil	Solder the capacitor to the test jig (glass epoxy board) shown in Fig.1 using a eutectic solder. Then apply 5N force in parallel with the test jig for 10 ± 1 sec.The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.Type a b c d GNM1M2 0.5 1.6 0.32 0.32 GNM212 0.6 1.8 0.5 0.5
					GNM214 0.6 2.0 0.25 0.25
			1		GNM314 0.8 2.5 0.4 0.4

\square Continued from the preceding page.

	Item			Specifications	Test Mathematic			
No.	Ite	em	Temperature Compensating Type	High Dielectric Type	- Test Method			
		Appearance	No defects or abnorr	nalities	Solder the capacitor to the test jig (glass epoxy board) in the			
		Capacitance	Within the specified t	olerance	same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmonic motion			
11	Vibration Resistance	Q/D.F.	30pF min.: Q≥1000 30pF max.: Q≥400+20C C: Nominal Capacitance (pF)	Char. 25V min. 16V 10V 6.3V R7, R6 0.025 0.035 0.035 0.05 max. max. max. max. max.	having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendic- ular directions (total of 6 hours).			
			No cracking or marki	ng defects should occur.	Solder the capacitor on the test jig (glass epoxy board) shown			
			•GNM□□4	•GNM□□2	in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3 for 5±1 sec. The soldering should be done by the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.			
12	Deflectior	n		t=0.8mm	20 50 Pressurizing speed : 1.0mm/sec. Pressurize Flexure : ≤1			
			GNM212 2 GNM214 2	a b c d .0±0.05 0.5±0.05 0.32±0.05 0.32±0.05 0.32±0.05 .0±0.05 0.6±0.05 0.5±0.05 0.5±0.05 0.5±0.05 .0±0.05 0.7±0.05 0.3±0.05 0.2±0.05 0.5±0.05 .5±0.05 0.8±0.05 0.4±0.05 0.4±0.05 (in mm) Fig. 2	Capacitance meter 45 Fig. 3			
13	3 Solderability of Termination		75% of the termination continuously.	ons are to be soldered evenly and	Immerse the capacitor in a solution of ethanol (JIS-K-8101) a rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat : 80 to 120°C for 10 to 30 seconds. After preheating, immerse eutectic solder solution for 2±0.5 seconds at 230±5°C or Sn-3.0Ag-0.5Cu solder solution for 2±0.5 seconds at 245±5°			
	Resistanc Soldering		The measured and o specifications in the	bserved characteristics should satisfy the following table.				
		Appearance	No marking defects					
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	R7, R6: Within ±7.5%	Preheat the capacitor at 120 to 150° C for 1 minute. Immerse the capacitor in a eutectic solder or Sn-3.0Ag-0.5Cu solder solution at $270\pm5^{\circ}$ C for 10 ± 0.5 seconds. Let sit at room temperature for 24±2 hours, then measure.			
14		Q/D.F.	30pF min.: Q≧1000 30pF max.: Q≧400+20C	Char. 25V min. 16V 10V 6.3V R7, R6 0.025 0.035 0.035 0.05	 Initial measurement for high dielectric constant type Perform a heat treatment at 150+0/-10°C for one hour and then let sit for 24±2 hours at room temperature. 			
			C: Nominal Capacitance (pF)	max. max. max. max. max.	Perform the initial measurement.			
		I.R.	More than 10,000M	Ω or 500 $\Omega \cdot F$ (Whichever is smaller)				
		Dielectric Strength	No failure					

Continued from the preceding page.

NLG				Specific	cations					т		-1		
۱o.	lt€	em	Temperature Compensating Type		Hi	gh Diel	ectric T	ype	- Test Method					
	Tempera Cycle	ture	The measured and o specifications in the			stics sho	ould sati	sfy the	Fix the capacitor to the supporting jig in the same manner and under the same conditions as (10). Perform the five cycles					
		Appearance	No marking defects											
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	R7, R6: W	/ithin ± 7	.5%			 according to the four heat treatments listed in the followir table. Let sit for 24±2 hours (temperature compensating or 48±4 hours (high dielectric constant type) at room temperature, then measure. 				nting type)	
_			30pF min.: Q≧1000					Step	1 Min.	2	3 Max.	4		
5		Q/D.F.	30pF max.: Q≧400+20C	Char. 25	-	16V 0.035	10V 0.035	6.3V 0.05	Temp. (°C)	Operating Temp. +0/–3	Room Temp.	Operating Temp. +3/–0	Room Temp.	
			C:Nominal Capacitance (pF)			max.	max.	max.				30±3		
		I.R.	More than 10,000M	2 or 500Ω ·	F (Whic	hever is	smaller	.)	Perform a heat treatment at 150+0/-10°C for one hour and then let sit for 24±2 hours at room temperature.				our and	
		Dielectric Strength	No failure					<u>.</u>		initial measure		emperature.		
	Humidity State	dity Steady The measured and observed characteristics should satisfy the												
		Appearance	No marking defects											
		Capacitance Change	Within ±5% or ±0.5pF (Whichever is larger)	R7, R6: W	/ithin ±1	2.5%								
6		Q/D.F.	30pF and over: Q≥350 10pF and over, 30pF and below: Q≥275+5C/2 Char. 25V min. 16V 10V/6.3V Q≥275+5C/2 R7, R6 0.05 0.05 0.05 10pF and below: Q≥200+10C max. max. max. Q≥200+10C C: Nominal Capacitance (pF) F F F						Sit the capacitor at 40±2°C and 90 to 95% humidity for 500± hours. Remove and let sit for 24±2 hours at room temperature, then measure.					
		I.R.	More than 1,000M Ω	or 50Ω · F (Whiche	ver is sr	naller)		-					
		Dielectric Strength	No failure											
	Humidity	Load	The measured and o specifications in the			stics sho	ould sati	sfy the						
		Appearance	No marking defects											
		Capacitance Change	Within ±7.5% or ±0.75pF (Whichever is larger)	R7, R6: W	/ithin ±1	2.5%			Apply the rated voltage at $40\pm2^{\circ}$ C and 90 to 95% humidit			umidity for		
17			30pF and over: Q≧200 30pF and below:	Char. 2	25V min.	16V	10\	//6.3V	measure.			room temperat	ure, then	
		Q/D.F.	Q≧100+10C/3 C: Nominal	R7, R6	0.05 max.	0.05 max.		.05 nax.	The onarge/u	oonarge ouner				
			C: Nominal Capacitance (pF)											
		I.R.	More than 500M Ω or	25Ω · F (W	/hicheve	er is sma	aller)							
		Dielectric Strength	No failure											

Continued from the preceding page.

				Specifications		TestMarkerd
No.	lte	m	Temperature Compensating Type	High Dielect	tric Type	Test Method
	High Tem Load	perature	The measured and o specifications in the	bserved characteristics	should satisfy the	
	Appearance		No marking defects			
		Capacitance Change	Within ±3% or ±0.3pF (Whichever is larger)	R7, R6: Within ±12.5%	6	Apply 200% of the rated voltage for 1000 ± 12 hours at the maximum operating temperature $\pm3^{\circ}$ C. Let sit for 24 ± 2 hours at room temperature, then measure. The charge/discharge current is less than 50mA.
18		Q/D.F.	30pF and over: Q≥350 10pF and over, 30pF and below: Q≥275+5C/2 10pF and below: Q≥200+10C C: Nominal Capacitance (pF)	R7. R6 0.04 0.	6V 10V/6.3V 05 0.05 ax. max.	 Initial measurement for high dielectric constant type. Apply 200% of the rated DC voltage for one hour at the maximum operating temperature ±3°C. Remove and let sit for 24±2 hours at room temperature. Perform initial measurement.
		I.R.	More than 1,000M Ω	or 50 $\Omega \cdot F$ (Whichever is	s smaller)	

Table A

	Newsland Melecon	Capacitance Change from 25°C (%)							
Char.	Nominal Values (ppm/℃) Note 1	_55℃		−30°C		_10℃			
		Max.	Min.	Max.	Min.	Max.	Min.		
5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11		

Note 1: Nominal values denote the temperature coefficient within a range of 25 to 125°C.

No.	lte	em			Spe	ecifications			Tes	st Method		
1	Operating Temperatu		R6:55	5°C to	9 +85°C							
2	Rated Vo	ltage	See the	previ	ous pages.			The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, ^{vp.p} or V ^{O.P} , whichever is larger, should be maintained within the rated voltage range.				
3	Appearar	nce	No defe	cts or	abnormalities			Visual inspection	n			
4	Dimensio	ons	Within t	he spe	ecified dimensi	on		Using calipers				
5	Dielectric	: Strength	No defe	ects or	abnormalities			No failure should is applied betwee provided the cha	en the termi	nations for 7	1 to 5 seco	nds,
6	Insulation	Resistance	50Ω · F	min.				The insulation re voltage not exce max. and within	eding the ra	ted voltage		
7	Capacita	nce	Within t	he spe	ecified tolerand	e		The capacitance frequency and ve				at the
8	Dissipation Factor (D.F.) 0.1 max.				Capacitan R6		equency ±0.1kHz		Itage).1Vrms			
9	Temperat	Temperature Char. Temp. Range T		Reference Temp. 25°C	Cap. Change Within ±15%	Step 1 2 3 4 5 The ranges of c: value over the te within the specifi Initial measurer Perform a heat then set for 24± Perform the initial Solder the capace	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
10		Adhesive Strength of Termination		Fig. 1					Fig. 1 using a eutectic solder. Then apply 5N force in parallel with the test jig for 10±1 sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. Type a b c d GNM1M2 0.5 1.6 0.32 0.32 GNM212 0.6 1.8 0.5 0.5			the reflow ne soldering d 0.32
		Annearanco	No defe	orts or	- abnormalities			Solder the capac	itor to the to	est iin (alaes		ard) in
		Appearance										,
11	Capacitance Vibration D.F.		Within the specified tolerance 0.1 max.			 the same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours). 				eing varied d 55Hz. o 10Hz, is motion		

Continued from the preceding page.

No.	Ite	m	Specifications	Test Method						
12	Deflection		No cracking or marking defects should occur. $20 \ 50 \ Pressurizing \ speed : 1.0mm/sec. \ Pressurize \ Flexure : \leq 1$ $Capacitance \ meter \ 45 \ 45 \ Fig. 3$	Solder the capacitor to the test jig (glass epoxy board) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done by the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. $ \begin{array}{c c} \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline & & \\ \hline \hline & & \hline$						
				Fig. 2						
13	Solderabi Terminati	5	75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2±0.5 seconds at 230±5°C or Sn-3.0Ag-0.5Cu solder solution for 2±0.5 seconds at 245±5°C.						
		Appearance	No marking defects	Preheat the capacitor at 120 to 150°C for 1 minute. Immerse						
	5	Capacitance Change	R6: Within ±7.5%	the capacitor in a eutectic solder or Sn-3.0Ag-0.5Cu solder solution at 270 \pm 5°C for 10 \pm 0.5 seconds.						
14		D.F.	0.1 max.	Let sit at room temperature for 24±2 hours, then measure.						
	Heat	I.R.	50Ω · F min.	Perform a heat treatment at 150 +0/-10°C for one hour and						
		Dielectric Strength	No failure	then let sit for 24±2 hours at room temperature. Perform the initial measurement.						
		Appearance	No marking defects	Fix the capacitor to the supporting jig in the same manner and						
		Capacitance Change	R6: Within ±12.5%	 under the same conditions as (10). Perform the five cycles according to the four heat treatments listed in the following table. 						
		D.F.	0.1 max.	Let sit for 24 ± 2 hours at room temperature, then measure.						
15	Temperature	I.R.	50Ω · F min.	Step 1 2 3 4 Tomp (%) Min. Operating Room Max. Operating Room						
15	Cycle	Dielectric	No feiture	Temp. Temp. <th< td=""></th<>						
		Strength	No failure	 Initial measurement Perform a heat treatment at 150 +0/-10 °C for one hour and then let sit for 24±2 hours at room temperature. Perform the initial measurement. 						
		Appearance	No marking defects	Apply the rated voltage at $40\pm2^{\circ}$ C and 90 to 95% humidity for						
	High Temperature	Capacitance Change	R6: Within ±12.5%	 500±12 hours. The charge/discharge current is less than 50mA Initial measurement Perform a heat treatment at 150 +0/-10°C for one hour 						
16	High	D.F.	0.2 max.	and then let sit for 24 ± 2 hours at room temperature.						
	Humidity (Steady)	I.R.	12.5Ω · F min.	 Perform the initial measurement. Measurement after test 						
		Dielectric Strength	No failure	 Measurement after test Perform a heat treatment at 150 +0/-10°C for one hour and then let sit for 24±2 hours at room temperature, then measure. 						
		Appearance	No marking defects	Apply 125% of the rated voltage for 1000±12 hours at the						
		Capacitance Change	R6: Within ±12.5%	 maximum operating temperature ±3°C. Let sit for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA. 						
		D.F.	0.2 max.	Initial measurement						
17	Durability	I.R.	$25\Omega \cdot F$ min.	Perform a heat treatment at 150 +0/-10°C for one hour and then let sit for 24±2 hours at room temperature.						
		Dielectric Strength	No failure	 and then let sit for 24±2 hours at room temperature. Perform the initial measurement. Measurement after test Perform a heat treatment at 150 +0/-10°C for one hour and then let sit for 24±2 hours at room temperature, then measure. 						

Chip Monolithic Ceramic Capacitors

for Ultrasonic Sensors GRM Series

Features

- 1. Proper to compensate for ultrasonic sensor
- 2. Small chip size and high cap. value

Applications

Ultrasonic sensor (Back sonar, Corner sonar, etc.)

Part Number	Dimensions (mm)							
Fait Number	L	W	Т	е	g min.			
GRM219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1	0.2 to 0.7	0.7			

Part Number	TC Code	Rated Voltage (Vdc)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)
GRM2199E2A102KD42	ZLM (Murata)	100	1000 ±10%	2.0	1.25	0.85
GRM2199E2A152KD42	ZLM (Murata)	100	1500 ±10%	2.0	1.25	0.85

Specifications and Test Methods

No.	Item	Specifications	Test Method		
1	Operating Temperature	−25 to +85°C	Reference Temperature: 20°C		
2	Rated Voltage	See the previous pages.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{P,P} or V ^{O,P} , whichever is larger, should be maintained within the rated volt- age range.		
3	Appearance	No defects or abnormalities	Visual inspection		
4	Dimensions	Within the specified dimensions	Using calipers		
5	Dielectric Streng	th No defects or abnormalities	No failure should be observed when 300% of the rated voltage is applied between the terminations for 1 to 5 seconds, provid- ed the charge/discharge current is less than 50mA.		
6	Insulation Resistan (I.R.)	^{ice} More than 10,000MΩ	The insulation resistance should be measured with a DC volt- age not exceeding the rated voltage at 20°C and 75%RH max. and within 2 minutes of charging.		
7	Capacitance	Within the specified tolerance	The economic new /D E should be measured at 20% with		
8	Dissipation Facto (D.F.)	0.01 max.	 The capacitance/D.F. should be measured at 20°C with 1±0.1kHz in frequency and 1±0.2Vrms in voltage. 		
0	Capacitance	Within −4,700 ^{+1,000} / _{-2,500} ppm/°C (at −25 to +20°C)	The temperature coefficient is determined using the capacitance measured in step 1 as a reference. When cycling the temperature sequentially from step 1 through 5, the capacitance should be within the specified tolerance for the temperature coefficient. The capacitance change should be measured after 5 min. at each specified temperature stage.		
9	Temperature Characteristics	Within $-4,700^{\pm500}_{-1,000}$ ppm/°C (at +20 to +85°C)	Step Temperature (°C)		
			120±2		
			2 -25±3		
			<u>3 20±2</u> 4 85±3		
			4 85±3 5 20±2		
10	Adhesive Streng of Termination	h No removal of the terminations or other defect should occur.	Solder the capacitor to the test jig (glass epoxy board) shown in Fig.1 using a eutectic solder. Then apply 10N force in the direction of the arrow. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.		
	A	No defecto or obnormalitico	Fig. 1		
	Appeara Capacitar		Solder the capacitor to the test jig (glass epoxy board) in the same manner and under the same conditions as (10).		
11	Vibration Resistance D.F.	Within the specified tolerance 0.01 max.	 same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmonic motio having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours). 		

Specifications and Test Methods

Continued from the preceding page.

	Continued fr	om me prec	eunig page.									
No.	Ite	em		Specific	ations		Test Method					
			No cracking or man	rking defects s			Solder the capacitor to the test jig (glass epoxy boards) showr in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done by the reflow method and shoul be conducted with care so that the soldering is uniform and free of defects such as heat shock.					
12	Deflection	n	¢4.5 ¢4.5 ¢ ¢ a 100 t : 1.6mm		<u>r</u>	R230	20 50 Pressur Pressuri	: 1.0mm/sec.	51			
			Туре	a	b	C A CE			citance meter			
			GRM21	1.2	4.0	1.65 (in mm)		45	45	- (in	mm)	
			Fig. 2				I	Fig.3				
13	Solderabi Terminati	•	75% of the termina continuously.	itions are to be	soldered eve	enly and	Immerse the capacitor in a solution of ethanol (JIS-K-810 rosin (JIS-K-5902) (25% rosin in weight proportion). Preh- 80 to 120°C for 10 to 30 seconds. After preheating, immer eutectic solder solution for 2±0.5 seconds at 230±5°C or Sn-3.0Ag-0.5Cu solder solution for 2±0.5 seconds at 245				on). Preheat at g, immerse in 0±5℃ or	
		Appearance	No defects or abno	ormalities			_					
	Resistance	Capacitance Change	Within ±7.5%					•			e. Immerse the	
14	to Soldering	D.F.	0.01 max.	0.01 max.						0	solder solution emperature for	
	Heat	I.R.	More than 10,000M	ſΩ			24±2 hours, th					
		Dielectric Strength	No failure									
		Appearance	No defects or abno	Fix the capacit	or to the s	upporting jig	in the same	e manner and				
		Capacitance Change	Within ±7.5%				Perform the five	under the same conditions as (11). Perform the five cycles according to the four heat treatments listed in the following table. Let sit for 24±2 hours at room tem-				
15	Temperature Cycle	D.F.	0.01 max.				perature, then	-				
		I.R.	More than 10,000M	lΩ			Step	1	2	3	4	
		Dielectric Strength	No failure				Temp. (°C) Time (min.)	-25^{+0}_{-3} 30±3	Room Temp. 2 to 3	85 ⁺³ 30±3	Room Temp. 2 to 3	
		Appearance	No defects or abno	ormalities								
	Humidity,	Capacitance Change	Within ±12.5%				Sit the capacit	or at 40±2	°C and 90 to 9	95% humic	lity for 500±12	
16	Steady	D.F.	0.02 max.				hours.	et sit for 24	1+2 hours at i	oom temp	erature then	
	State	I.R.	More than 1,000Ms	Ω			measure.					
		Dielectric Strength	No failure									
		Appearance	No defects or abno	ormalities								
17	Humidity	Capacitance Change	Within ±12.5%					. Remove	and let sit for	24±2 hou	rs at room tem-	
	Load	D.F.	0.02 max.				 perature, then than 50mA. 	measure.	me charge/d	ischarge c	urrent is less	
		I.R.	More than $500M\Omega$									
_		Appearance	No defects or abno	ormalities								
		Canaditanaa					Apply 200% of	the rated	voltage for 1,	000±12 ho	ours at 85±3℃.	
18	High Temperature	Capacitance Change	Within ±12.5%				Let sit for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA.					
18	High Temperature Load		Within ±12.5%						•			

49

Chip Monolithic Ceramic Capacitors

muRata

Low ESL LLL/LLA/LLM Series

Features (Reversed Geometry Low ESL Type)

- 1. Low ESL, good for noise reduction for high frequency
- 2. Small, high cap

Applications

- 1. High speed microprocessor
- 2. High frequency digital equipment

LLL216 1.25 ±0.1 2.0 ±0.1 0.6 ±0.1 LLL219 0.85 ±0.1 0.85 ±0.1 LLL315 0.5 +0/-0.1				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Dart Numbor		Dimensions (mm)
LLL185 0.8 ±0.1 1.6 ±0.1 0.6 max. LLL215	Fait Number	L	W	Т
LLL215 0.5 ±0.1 LLL216 1.25 ±0.1 2.0 ±0.1 0.6 ±0.1 LLL219 0.85 ±0.1 0.85 ±0.1 0.85 ±0.1 LLL315 0.5 ±0/-0.1 0.5 ±0/-0.1 0.85 ±0.1	LLL153	0.5 ±0.05	1.0 ±0.05	0.3 ±0.05
LLL216 1.25 ±0.1 2.0 ±0.1 0.6 ±0.1 LLL219 0.85 ±0.1 0.85 ±0.1 LLL315 0.5 +0/-0.1	LLL185	0.8 ±0.1	1.6 ±0.1	0.6 max.
LLL219 0.85 ±0.1 LLL315 0.5 +0/-0.1	LLL215	1.25 ±0.1		0.5 +0/-0.15
LLL315 0.5 +0/-0.1	LLL216		2.0 ±0.1	0.6 ±0.1
	LLL219			0.85 ±0.1
	LLL315			0.5 +0/-0.15
LLL317 1.6 ±0.15 3.2 ±0.15 0.7 ±0.1	LLL317	141015	2.2 10.15	0.7 ±0.1
LLL31M 1.8 ±0.15 3.2 ±0.15 1.15 ±0.1	LLL31M	1.0 ±0.15	3.2 ±0.15	1.15 ±0.1
LLL31B 1.25 +0.15/-0	LLL31B			1.25 +0.15/-0.05

Reversed Geometry Low ESL Type

Part Number	LLL15			LL	L18				-	LLI	_21					LL	L31		
L x W	0.5x1.0			0.8	x1.6					1.25	x2.0					1.6	x3.2		
тс	X6S (C8)			X7R (R7)			X7S (C7)			X7R (R7)			X7S (C7)			X7R (R7)			X7S (C7)
Rated Volt.	6.3 (0J)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	4 (0G)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	4 (0G)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	4 (0G)
Capacitance (Ca	apacita	nce par	rt numł	pering (code) a	nd T (n	nm) Din	nensior	n (T Din	nensior	n part n	umber	ing cod	le)					
2200pF (222)		0.5 (5)																	
4700pF (472)		0.5 (5)						0.6 (6)											
10000pF (103)			0.5 (5)					0.6 (6)						0.7 (7)					
22000pF (223)			0.5 (5)					0.6 (6)						0.7 (7)					
47000pF (473)				0.5 (5)					0.6 (6)					0.7 (7)					
0.10μF (104)	0.3 (3)				0.5 (5)				0.6 (6)					1.15 (M)	0.7 (7)				
0.22μF (224)						0.5 (5)				0.85 (9)	0.6 (6)				1.15 (M)	0.7 (7)			
0.47μF (474)							0.5 (5)				0.85 (9)				1.15 (M)	0.7 (7)			
1.0μF (105)							0.5 (5)					0.85 (9)				1.15 (M)	0.7 (7)		
2.2μF (225)							0.5 (5)						0.85 (9)				1.15 (M)	0.7 (7)	
4.7μF (475)																		1.15 (M)	
10μF (106)																			1.25 (B)

The part numbering code is shown in $% \left({\left. {{{\bf{n}}_{\rm{s}}}} \right)_{\rm{s}}} \right)$ ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Please refer to Specifications and Test Method (2) about LLL15 Series and LLL18 Series 1.0μ F/2.2 μ F type.

Reversed Geometry Low ESL Type Low Profile

Part Number		LLI	L18				LL	L21				LL	L31		
L x W		0.8x1.6				1.25x2.0						1.6x3.2			
тс		X7R (R7)		X7S (C7)			X7R (R7)			X7S (C7)			7R 2 7)		
Rated Volt.	25 (1E)	16 (1C)	10 (1A)	4 (0G)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	4 (0G)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	
Capacitance (Ca	pacitance	e part nur	nbering c	ode) and	T (mm) D	imension	(T Dimen	sion part	numberin	g code)					
1000pF(102)					0.5(5)										
2200pF(222)					0.5(5)										
4700pF(472)					0.5(5)										
10000pF(103)	0.5(5)				0.5(5)						0.5(5)				
22000pF(223)		0.5(5)				0.5(5)					0.5(5)				
47000pF(473)		0.5(5)					0.5(5)					0.5(5)			
0.10μF(104)			0.5(5)				0.5(5)					0.5(5)			
0.22μF(224)				0.5(5)				0.5(5)					0.5(5)		
0.47µF(474)									0.5(5)					0.5(5)	
1.0μF(105)										0.5(5)					

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

- 1. Low ESL(100pH), suitable to decoupling capacitor for 1GHz clock speed IC.
- 2. Small, large cap
- Applications
- 1. High speed microprocessor
- 2. High frequency digital equipment

			-							
Part Number		Dimensions (mm)								
Part Number	L	W	Т	Р						
LLA185	1.6 ±0.1	0.8 ±0.1	0.5 +0.05/-0.1	0.4 ±0.1						
LLA215	2.0 ±0.1	1.25 ±0.1	0.5 +0.05/-0.1	0.5 ±0.05						
LLA219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1	0.5 ±0.05						
LLA315	3.2 ±0.15	1.6 ±0.15	0.5 +0.05/-0.1	0.8 ±0.1						
LLA319	3.2 ±0.15	1.6 ±0.15	0.85 ±0.1	0.8 ±0.1						
LLA31M	3.2 ±0.15	1.6 ±0.15	1.15±0.1	0.8 ±0.1						

Eight Terminals Low ESL Type

Part Number	LLA18			LLA21				LLA31	
L x W	1.6x0.8			2.0x1.25			3.2x1.6		
тс	X7S (C7)			7R R7)		X7S (C7)		X7R (R7)	
Rated Volt.	4 (0G)	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	4 (0G)	16 (1C)	10 (1A)	4 (0G)
Capacitance (Ca	pacitance part	t numbering co	de) and T (mn	n) Dimension (T	Dimension pa	rt numbering c	ode)	1	1
10000pF(103)		0.85(9)							
22000pF(223)		0.85(9)							
47000pF(473)		0.85(9)							
0.10μF(104)	0.5(5)		0.85(9)				0.85(9)		
0.22µF(224)	0.5(5)		0.85(9)				0.85(9)		
0.47µF(474)	0.5(5)			0.85(9)			0.85(9)		
1.0μF(105)	0.5(5)				0.85(9)			0.85(9)	
2.2μF(225)	0.5(5)					0.85(9)		1.15(M)	0.85(9)
4.7μF(475)						0.85(9)			

The part numbering code is shown in $% \left({\left. {{{\left({{{}_{{\rm{c}}}} \right)}}} \right)_{{\rm{c}}}}} \right)$ ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Please refer to Specifications and Test Method (2) about LLA18 Series 1.0µF/2.2µF type and LLA21 Series 4.7µF type.

9

Eight Terminals Low ESL Type Low Profile

Part Number			LLA21				LLA31		
LxW			2.0x1.25		3.2x1.			.6	
тс			7R 2 7)		X7S (C7)	X7R (R7)			
Rated Volt.	25 (1E)	16 (1C)	10 (1A)	6.3 (0J)	4 (0G)	16 (1C)	10 (1A)	6.3 (0J)	
Capacitance (Capa	acitance part nu	umbering code)	and T (mm) Dim	ension (T Dimen	sion part numbe	ring code)		1	
10000pF(103)	0.5(5)								
22000pF(223)	0.5(5)								
47000pF(473)		0.5(5)							
0.10μF(104)		0.5(5)				0.5(5)			
0.22µF(224)			0.5 (5)	0.5(5)		0.5(5)			
0.47µF(474)				0.5(5)			0.5(5)		
1.0μF(105)					0.5(5)			0.5(5)	
2.2μF(225)					0.5(5)			0.5(5)	
4.7μF(475)					0.5(5)				

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Please refer to Specifications and Test Method (2) about LLA21 Series (Low Profile) 2.2µF/4.7µF type.

■ Features (Ten Terminals Low ESL Type)

- 1. Low ESL(45pH), suitable to decoupling capacitor for 2GHz clock speed IC.
- 2. Small, large cap
- Applications
- 1. High speed microprocessor
- 2. High frequency digital equipment

E	quiva	alent	Circ	uit
1	3	5	7	(9
		+		
2	4	6	8	(

Dimensions (mm)							
L	W	Т	Р				
2.0 ±0.1	1.25 ±0.1	0.5 +0.05/-0.1	0.5 ±0.05				
3.2 ±0.15	1.6 ±0.15	0.5 +0.05/-0.1	0.8 ±0.1				
		L W 2.0 ±0.1 1.25 ±0.1	L W T 2.0 ±0.1 1.25 ±0.1 0.5 +0.05/-0.1				

Ten Terminals Low ESL Type Low Profile

Part Number		LL	M21			LLM31	
LxW		2.02	x1.25			3.2x1.6	
тс		X7R (R7)		X7S (C7)		X7R (R7)	
Rated Volt.	25 (1E)	16 (1C)	6.3 (0 J)	4 (0G)	16 (1C)	10 (1A)	6.3 (0J)
Capacitance (Ca	pacitance part nur	nbering code) and	T (mm) Dimensior	(T Dimension part	numbering code)		
10000pF(103)	0.5 (5)						
22000pF(223)	0.5(5)						
47000pF(473)		0.5(5)					
0.10μF(104)		0.5(5)			0.5 (5)		
0.22μF(224)			0.5(5)		0.5 (5)		
0.47µF(474)			0.5(5)			0.5(5)	
1.0μF(105)				0.5(5)			
2.2µF(225)				0.5(5)			0.5(5)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Please refer to Specifications and Test Method (2) about LLM21 Series (Low Profile) 2.2µF type.

LLL/LLA/LLM Series Specifications and Test Methods (1)

No.	Ite	em		Spe	cifications			T	est Method		
1	Operating Temperat Range		R7, C7: —	55 to +125°C							
2	Rated Vol	ltage	See the pr	evious pages.			The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p.p} or V ^{o.p} , whichever is larger, should be maintained within the rated voltage range.				
3	Appearan	nce	No defects	or abnormalities			Visual insp	ection			
4	Dimensio	ns	Within the	specified dimensi	on		Using calipers				
5	Dielectric	Strength	No defects	or abnormalities			No failure should be observed when 250% of the rated voltage is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.				
6	Insulation Resistanc			10,000MΩ or 500 r is smaller)	Ω·F		not exceed		Itage at 25°C and	ed with a DC voltage 175%RH max. and	
7	Capacitar	nce	Within the	specified tolerand	e			itance/D.F. shou and voltage sho	Ild be measured wn in the table.	at 25°C at the	
8	Dissipatio (D.F.)	n Factor		W.V.: 25V min.; 0.025 max. W.V.: 16V max.; 0.035 max. *1				pacitance µF (10V min.) ıF (6.3V max.) C>10µF	Frequency 1±0.1kHz 1±0.1kHz 120±24Hz	Voltage 1.0±0.2Vrms 0.5±0.1Vrms 0.5±0.1Vrms	
								The capacitance change should be measured after 5 min. at each specified temperature stage.			
							Step 1		Temperature (°C 25±2	.)	
	Capacitar		Char.	Char. Temp. Range Reference Cap.Change		Cap.Change	2		-55±3		
9	Temperate Character		R7	-55 to +125	25°C	Within ±15%	3 4		25±2 125±3		
	onaracter	131103	C7	-55 to +125	25°C	Within ±22%	5		25±2		
							value over		-	ed with the 25°C n the table should	
10	Adhesive of Termin		No remova	al of the terminatic	ns or other defe	ct should occur.	eutectic so jig for 10± iron or usir	lder. Then apply 1 sec. The solde ng the reflow me at the soldering is	10N* force in paring should be do thod and should s uniform and fre	oxy board) using a arallel with the test one either with an be conducted with e of defects such as LLA/LLM Series: 5N	
		Appearance	No defects	or abnormalities			Solder the	capacitor to the	test jig (glass ep	oxy board) in	
		Capacitance	Within the	specified tolerand	e				er the same cond ted to a simple h	litions as (10). The	
11	Vibration Resistance	D.F.		W.V.: 25V min.; 0.025 max. W.V.: 16V max.; 0.035 max. *1				otal amplitude of between the appli- range, from 10 to rad in approximat	1.5mm, the frequencies for the frequency of the frequency	uency being varied 10 and 55Hz. The n to 10Hz, should s motion should be	
12	Solderabi Terminati	2	75% of the terminations are to be soldered evenly and continuously.				rosin (JIS- 80 to 120° eutectic so	K-5902) (25% ro C for 10 to 30 se Ider solution for	sin in weight pro conds. After prel 2±0.5 seconds a	ol (JIS-K-8101) and portion). Preheat at heating, immerse in ht 230±5°C, or econds at 245±5°C.	
		Appearance	No markin	o marking defects				e capacitor at 12	20 to 150°C for 1	minute. Immerse	
	Desistance	Capacitance Change	Within ±7.	Within ±7.5% Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the capacitor in a eutectic solder or Sn-3.0Ag-0.5Cu solder solution at 270±5°C for 10±0.5 seconds. Let sit at room temperature for 24±2 hours, then measure.				g-0.5Cu solder et sit at room			
13	Resistance to Soldering Heat	D.F.		min.; 0.025 max. max.; 0.035 max.	*1			asurement.	s, men measure.		
		I.R.	More than	10,000MΩ or 500	$\Omega \cdot F$ (Whicheve	er is smaller)				one hour and then	
		Dielectric Strength	No failure				let sit for measurer			the following page	

LLL/LLA/LLM Series Specifications and Test Methods (1)

Continued from the preceding page.

No.	lt∈	em	Specifications	Test Method						
		Appearance Capacitance Change	No marking defects Within ±7.5% *1	Fix the capacitor to the supporting jig in the same manner an under the same conditions as (10). Perform the five cycles according to the four heat treatments listed in the following table. Let sit for 24±2 hours at room						
		D.F.	W.V.: 25V min.; 0.025 max. W.V.: 16V max.; 0.035 max. *1	temperature, then measure.						
14	Temperature	I.R.	W.V.: 16V max.; 0.035 max. 1 More than 10,000MΩ or $500\Omega \cdot F$ (Whichever is smaller)	Step 1 2 3 4						
14	Cycle	1.K.		Temp. (°C) Temp. $\stackrel{+\circ}{=}$ Temp. Temp. $\stackrel{+\circ}{=}$ Temp.						
		Dielectric		Time (min.) 30±3 2 to 3 30±3 2 to 3						
		Strength	No failure	 Initial measurement. Perform a heat treatment at 150⁺⁰/₋₁₀ °C for one hour and then let sit for 24±2 hours at room temperature. Perform the initial measurement. 						
		Appearance	No marking defects							
15	Humidity (Steady	Capacitance Change	Within ±12.5% *1	Sit the capacitor at 40±2°C and 90 to 95% humidity for 500± hours. Remove and let sit for 24±2 hours at room temperature						
	State)	State) D.F. 0.05 I.R. Mor	0.05 max. *1	then measure.						
			More than 1,000M Ω or 50 $\Omega \cdot F$ (Whichever is smaller)							
			No marking defects							
		Capacitance Change	Within ±12.5% *1	Apply the rated voltage at 40±2°C and 90 to 95% humidity for						
16	Humidity	D.F.	0.05 max. *1	500±12 hours. Remove and let sit for 24±2 hours at room						
10	Load	I.R.	More than 500M Ω or 25 $\Omega \cdot$ F *1 (Whichever is smaller)	temperature, then measure. The charge/discharge current is less than 50mA.						
		Dielectric Strength	No failure							
		Appearance	No marking defects	Apply 200% of the rated voltage for 1000±12 hours at the						
		Capacitance Change	Within ±12.5% *1	maximum operating temperature $\pm 3^{\circ}$ C. Let sit for 24 ± 2 hours at room temperature, then measure. The charge/discharge						
17	High	D.F.	W.V.: 25V min.; 0.04 max. W.V.: 16V max.; 0.05 max. *1	current is less than 50mA. Initial measurement. 						
	Load	I.R.	More than 1,000M Ω or 50 Ω · F *1 (Whichever is smaller)	Apply 200% of the rated DC voltage for one hour at the maximum operating temperature ±3°C. Remove and let sit for						
		Dielectric Strength	No failure	24±2 hours at room temperature. Perform initial measurement. (*1)						

*1: The figure indicates typical inspection.Please refer to individual specifications.

54

LLL/LLA/LLM Series Specifications and Test Methods (2)

No.	Ite	em	Specifications	Test Method			
1	Operating Temperat Range		R7, C7: -55 to +125°C C8: -55 to +105°C				
2	Rated Vo	ltage	See the previous pages.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p,p} or V ^{o,p} , whichever is larger, should be maintained within the rated voltage range.			
3	Appearar	nce	No defects or abnormalities	Visual inspection			
4	Dimensio	ns	Within the specified dimension	Using calipers			
5	Dielectric	Strength	No defects or abnormalities	No failure should be observed when 250% of the rated voltage is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.			
6	Insulation Resistanc		50Ω · F min.	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 25°C and 75%RH max. and within 1 minute of charging.			
7	Capacita	nce	Within the specified tolerance	The capacitance/D.F. should be measured at 25°C at the frequency and voltage shown in the table.			
8	Dissipatio (D.F.)	n Factor	R7, C7, C8: 0.120 max.	Capacitance Frequency Voltage C≤10μF (10V min.) 1±0.1kHz 1.0±0.2Vrms C≤10μF (6.3V max.) 1±0.1kHz 0.5±0.1Vrms C>10μF 120±24Hz 0.5±0.1Vrms			
9	Capacitar Temperat Character	ure	Char. Temp. Range (°C) Reference Temp. Cap.Change R7 -55 to +125 Within ±15% C7 -55 to +125 25°C C8 -55 to +105 Within ±22%	The capacitance change should be measured after 5 min. at each specified temperature stage. The ranges of capacitance change compared with the 25°C value over the temperature ranges shown in the table should be within the specified ranges. Solder the capacitor to the test jig (glass epoxy board) using a			
10	Adhesive of Termin	•	No removal of the terminations or other defect should occur.	eutectic solder. Then apply 10N [*] force in parallel with the test jig for 10±1 sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such heat shock. *5N (LLL15, LLL18, LLA,LLM Serie			
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board) in			
		Capacitance	Within the specified tolerance	the same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmonic motion			
11	Vibration	D.F.	R7, C7, C8: 0.120 max.	having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours).			
12	Solderabi Terminati		75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2±0.5 seconds at 230±5°C, or Sn-3.0Ag-0.5Cu solder solution for 2±0.5 seconds at 245±5°C.			
		Appearance	No marking defects	Preheat the capacitor at 120 to 150°C for 1 minute. Immerse			
	Resistance	Capacitance Change	R7, C7, C8: Within ±7.5%	the capacitor in a eutectic solder or Sn-3.0Ag-0.5Cu solder solution at 270±5°C for 10±0.5 seconds. Let sit at room temperature for 24±2 hours, then measure.			
13	to Soldering	D.F.	R7, C7, C8: 0.120 max.				
	Heat	I.R.	50Ω · F min.	• Initial measurement. Perform a heat treatment at 150^{+0}_{-10} °C for one hour and then			
		Dielectric Strength	No failure	let sit for 24±2 hours at room temperature. Perform the initial measurement.			

Continued on the following page. \square

9

LLL/LLA/LLM Series Specifications and Test Methods (2)

Continued from the preceding page.

No.	lt∈	em	Specifications	Test Method							
		Appearance Capacitance Change D.F.	No marking defects R7, C7, C8: Within ±12.5% R7, C7, C8: 0.120 max.	Fix the capacitor to the supporting jig in the same manner a under the same conditions as (10).Perform the five cycles according to the four heat treatments listed in the following table. Let sit for 24±2 hours at room temperature, then measure.							
	Temperature	I.R.	$50\Omega \cdot F$ min.	Step 1 2 3 4							
14	Sudden Change			Temp. (°C)Min. Operating Temp. ± 3 Room Temp.Max. Operating Temp. ± 3 Room Temp.Time (min.)30±32 to 330±32 to 3							
		Dielectric Strength	No failure	 Initial measurement Perform a heat treatment at 150 ± % °C for one hour and then let sit for 24±2 hours at room temperature. Perform the initial measurement. 							
		Appearance	No marking defects	Apply the rated voltage at 40±2°C and 90 to 95% humidity for							
	High	Capacitance Change	R7, C7, C8: Within ±12.5%	500±12 hours. The charge/discharge current is less than 50mA.							
	Temperatue	D.F.	R7, C7, C8: 0.2 max.	Initial measurement							
15	High Humidity (Steady State)	I.R.	12.5Ω · F min.	 Perform a heat treatment at 150⁺Po^oC for one hour and then let sit for 24±2 hours at room temperature. Perform the initial measurement. Measurement after test Perform a heat treatment at 150⁺Po^oC for one hour and then let sit for 24±2 hours at room temperature, then measure. 							
		Appearance	No marking defects	Apply 150% of the rated voltage for 1000±12 hours at the							
		Capacitance Change	R7, C7, C8: Within ±12.5%	maximum operating temperature $\pm 3^{\circ}$ C. The charge/discharge current is less than 50mA.							
		D.F.	R7, C7, C8: 0.2 max.	Initial measurement							
16	Durability			 Perform a heat treatment at 150⁺_{∩0} °C for one hour and then let sit for 24±2 hours at room temperature. Perform the initial measurement. •Measurement after test Perform a heat treatment at 150⁺_{∩0} °C for one hour and then let sit for 24±2 hours at room temperature, then measure. 							

Chip Monolithic Ceramic Capacitors

High-Q GJM Series

Features

- 1. Mobile telecommunications and RF module, mainly
- 2. Quality improvement of telephone call, low power consumption, yield ratio improvement

Applications

VCO, PA, Mobile telecommunications

	Din	nensions (I	nm)	
L	W	Т	е	g min.
±0.03	0.3 ± 0.03	0.3 ± 0.03	0.1 to 0.2	0.2
±0.05	0.5 ±0.05	0.5 ±0.05	0.15 to 0.3	0.4
		L W ±0.03 0.3 ±0.03	L W T ±0.03 0.3 ±0.03 0.3 ±0.03	Dimensions (mm) L W T e ±0.03 0.3 ±0.03 0.3 ±0.03 0.1 to 0.2 ±0.05 0.5 ±0.05 0.5 ±0.05 0.15 to 0.3

Part Number	GJM03	GJM15
L x W [EIA]	0.6x0.3 [0201]	1.0x0.5 [0402]
тс	C0G (5C)	C0G (5C)
Rated Volt.	25 (1E)	50 (1H)
Capacitance (Cap	acitance part numbering code) and T (mm) Dimension (T Dimen	sion part numbering code)
0.20pF(R20)	0.3(3)	
0.30pF(R30)	0.3(3)	0.5 (5)
0.40pF(R40)	0.3(3)	0.5 (5)
0.50pF(R50)	0.3(3)	0.5 (5)
0.60pF(R60)	0.3(3)	0.5 (5)
0.70pF(R70)	0.3(3)	0.5 (5)
0.75pF(R75)	0.3(3)	0.5 (5)
0.80pF(R80)	0.3(3)	0.5 (5)
0.90pF(R90)	0.3(3)	0.5 (5)
1.0pF(1R0)	0.3(3)	0.5 (5)
1.1pF(1R1)	0.3(3)	0.5 (5)
1.2pF(1R2)	0.3(3)	0.5 (5)
1.3pF(1R3)	0.3(3)	0.5 (5)
1.4pF(1R4)	0.3(3)	0.5 (5)
1.5pF(1R5)	0.3(3)	0.5(5)
1.6pF(1R6)	0.3(3)	0.5(5)
1.7pF(1R7)	0.3(3)	0.5(5)
1.8pF(1R8)	0.3(3)	0.5(5)
1.9pF(1R9)	0.3(3)	0.5(5)
2.0pF(2R0)	0.3(3)	0.5(5)
2.1pF(2R1)	0.3(3)	0.5(5)
2.2pF(2R2)	0.3(3)	0.5(5)
2.3pF(2R3)	0.3(3)	0.5(5)
2.4pF(2R4)	0.3(3)	0.5(5)
2.5pF(2R5)	0.3(3)	0.5(5)
2.6pF(2R6)	0.3(3)	0.5(5)
2.7pF(2R7)	0.3(3)	0.5(5)
2.8pF(2R8)	0.3(3)	0.5(5)
2.9pF(2R9)	0.3(3)	0.5(5)
3.0pF(3R0)	0.3(3)	0.5(5)
3.1pF(3R1)	0.3(3)	0.5(5)
3.2pF(3R2)	0.3(3)	0.5(5)
3.3pF(3R3)	0.3(3)	0.5(5)
/	• •	

10

Continued from the preceding page.

Part Number	GJM03	GJM15
L x W [EIA]	0.6x0.3 [0201]	1.0x0.5 [0402]
гс	C0G (5C)	C0G (5C)
Rated Volt.	25 (1E)	50 (1H)
Capacitance (Capacitance p	part numbering code) and T (mm) Dimension (T Dim	ension part numbering code)
3.4pF(3R4)	0.3(3)	0.5(5)
3.5pF(3R5)	0.3(3)	0.5(5)
3.6pF(3R6)	0.3(3)	0.5(5)
3.7pF(3R7)	0.3(3)	0.5(5)
3.8pF(3R8)	0.3(3)	0.5(5)
3.9pF(3R9)	0.3(3)	0.5(5)
4.0pF(4R0)	0.3(3)	0.5(5)
4.1pF(4R1)	0.3(3)	0.5(5)
4.2pF(4R2)	0.3(3)	0.5(5)
4.3pF(4R3)	0.3(3)	0.5(5)
4.4pF(4R4)	0.3(3)	0.5(5)
4.5pF(4R5)	0.3(3)	0.5(5)
4.6pF(4R6)	0.3(3)	0.5(5)
4.7pF(4R7)	0.3(3)	0.5(5)
4.8pF(4R8)	0.3(3)	0.5(5)
4.9pF(4R9)	0.3(3)	0.5(5)
5.0pF(5R0)	0.3(3)	0.5(5)
5.1pF(5R1)	0.3(3)	0.5(5)
5.2pF(5R2)	0.3(3)	0.5(5)
5.3pF(5R3)	0.3(3)	0.5(5)
5.4pF(5R4)	0.3(3)	0.5(5)
5.5pF(5R5)	0.3(3)	0.5(5)
5.6pF(5R6)	0.3(3)	0.5(5)
5.7pF(5R7)	0.3(3)	0.5(5)
5.8pF(5R8)	0.3(3)	0.5(5)
5.9pF(5R9)	0.3(3)	0.5(5)
6.0pF(6R0)	0.3(3)	0.5(5)
6.1pF(6R1)	0.3(3)	0.5(5)
6.2pF(6R2)	0.3(3)	0.5(5)
6.3pF(6R3)	0.3(3)	0.5(5)
6.4pF(6R4)	0.3(3)	0.5(5)
6.5pF(6R5)	0.3(3)	0.5(5)
6.6pF(6R6)	0.3(3)	0.5(5)
6.7pF(6R7)	0.3(3)	0.5(5)
6.8pF(6R8)	0.3(3)	0.5 (5)
6.9pF(6R9)		0.5(5)
7.0pF(7R0)		0.5(5)
7.1pF(7R1)		0.5(5)
7.2pF(7R2)		0.5(5)
7.3pF(7R3)		0.5(5)
7.4pF(7R4)		0.5(5)
7.5pF(7R5)		0.5(5)
7.6pF(7R6)		0.5(5)
7.7pF(7R7)		0.5(5)
7.8pF(7R8)		0.5(5)
7.9pF(7R9)		0.5(5)
8.0pF(8R0)		0.5(5)
8.1pF(8R1)		0.5(5)
8.2pF(8R2)		0.5(5)
8.3pF(8R3)		0.5(5)
8.4pF(8R4)		0.5(5)
8.5pF(8R5)		0.5 (5)

Continued from the preceding page.

Part Number	GJM03	GJM15
L x W [EIA]	0.6x0.3 [0201]	1.0x0.5 [0402]
тс	C0G (5C)	C0G (5C)
Rated Volt.	25 (1E)	50 (1 H)
Capacitance (Capacitance	e part numbering code) and T (mm) Dimension (T Dime	nsion part numbering code)
8.6pF(8R6)		0.5(5)
8.7pF(8R7)		0.5 (5)
8.8pF(8R8)		0.5 (5)
8.9pF(8R9)		0.5 (5)
9.0pF(9R0)		0.5 (5)
9.1pF(9R1)		0.5 (5)
9.2pF(9R2)		0.5 (5)
9.3pF(9R3)		0.5 (5)
9.4pF(9R4)		0.5 (5)
9.5pF(9R5)		0.5 (5)
9.6pF(9R6)		0.5 (5)
9.7pF(9R7)		0.5 (5)
9.8pF(9R8)		0.5 (5)
9.9pF(9R9)		0.5(5)
10pF(100)		0.5(5)
12pF(120)		0.5(5)
15pF(150)		0.5(5)
18pF(180)		0.5(5)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

59

10

Chip Monolithic Ceramic Capacitors

Tight Tolerance High-Q GJM Series

Features

- 1. Mobile telecommunications and RF module, mainly
- 2. Quality improvement of telephone call, low power consumption, yield ratio improvement

Applications

VCO, PA, Mobile telecommunications

Part Number	Dimensions (mm)				
Part Number	L	W	Т	е	g min.
GJM03	0.6 ±0.03	0.3 ±0.03	0.3 ±0.03	0.1 to 0.2	0.2
GJM15	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15 to 0.3	0.4

Part Number		GJM03	GJM15	
L x W [EIA]		0.6x0.3 [0201]	1.0x0.5 [0402]	
тс		C0G (5C)	C0G (5C)	
Rated Volt.		25 (1E)	50 (1H)	
Capacitance, Ca	pacitance Toleran	ce and T Dimension		
0.10pF(R10)	W, В		0.5(5)	
0.20pF(R20)	W, В	0.3 (3)	0.5(5)	
0.30pF(R30)	W, B	0.3(3)	0.5(5)	
0.40pF(R40)	W, B	0.3(3)	0.5(5)	
0.50pF(R50)	W, B	0.3(3)	0.5(5)	
0.60pF(R60)	W, B	0.3 (3)	0.5(5)	
0.70pF(R70)	W, B	0.3 (3)	0.5(5)	
0.80pF(R80)	W, B	0.3 (3)	0.5(5)	
0.90pF(R90)	W, B	0.3 (3)	0.5(5)	
1.0pF(1R0)	W, B	0.3 (3)	0.5(5)	
1.1pF(1R1)	W, В	0.3 (3)	0.5(5)	
1.2pF(1R2)	W, В	0.3 (3)	0.5(5)	
1.3pF(1R3)	W, В	0.3 (3)	0.5(5)	
1.4pF(1R4)	W, В	0.3 (3)	0.5(5)	
1.5pF(1R5)	W, В	0.3 (3)	0.5(5)	
1.6pF(1R6)	W, В	0.3 (3)	0.5(5)	
1.7pF(1R7)	W, В	0.3 (3)	0.5(5)	
1.8pF(1R8)	W, В	0.3 (3)	0.5(5)	
1.9pF(1R9)	W, В	0.3 (3)	0.5(5)	
2.0pF(2R0)	W, В	0.3 (3)	0.5(5)	
2.1pF(2R1)	W, В	0.3 (3)	0.5(5)	
2.2pF(2R2)	W, B	0.3 (3)	0.5(5)	
2.3pF(2R3)	W, B	0.3 (3)	0.5(5)	
2.4pF(2R4)	W, B	0.3 (3)	0.5(5)	
2.5pF(2R5)	W, B	0.3 (3)	0.5(5)	
2.6pF(2R6)	W, B	0.3 (3)	0.5(5)	
2.7pF(2R7)	W, B	0.3 (3)	0.5(5)	
2.8pF(2R8)	W, B	0.3 (3)	0.5(5)	
2.9pF(2R9)	W, B	0.3 (3)	0.5(5)	
3.0pF(3R0)	W, B	0.3 (3)	0.5(5)	
3.1pF(3R1)	W, B	0.3 (3)	0.5(5)	
3.2pF(3R2)	W, B	0.3 (3)	0.5(5)	
3.3pF(3R3)	W, B	0.3 (3)	0.5(5)	

C02E.pdf 07.2.6

Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

l	\square	Continued	from	the	preceding	page.
---	-----------	-----------	------	-----	-----------	-------

Part Number		GJM03	GJM15	
L x W [EIA]		0.6x0.3 [0201]	1.0x0.5 [0402]	
тс		C0G (5C)	C0G (5C)	
Rated Volt.		25 (1E)	50 (1H)	
Capacitance, C	apacitance Tol	erance and T Dimension		
3.4pF(3R4)	W, B	0.3 (3)	0.5(5)	
3.5pF(3R5)	W, B	0.3 (3)	0.5(5)	
3.6pF(3R6)	W, B	0.3 (3)	0.5(5)	
3.7pF(3R7)	W, B	0.3 (3)	0.5(5)	
3.8pF(3R8)	W, B	0.3(3)	0.5(5)	
3.9pF(3R9)	W, B	0.3(3)	0.5(5)	
4.0pF(4R0)	W, B	0.3(3)	0.5(5)	
4.1pF(4R1)	W, B	0.3(3)	0.5(5)	
4.2pF(4R2) 4.3pF(4R3)	W, B W, B	0.3(3) 0.3(3)	0.5(5) 0.5(5)	
4.4pF(4R4)	W, B W, B	0.3(3)	0.5(5)	
4.5pF(4R5)	W, B	0.3(3)	0.5(5)	
4.6pF(4R6)	W, B	0.3(3)	0.5(5)	
4.7pF(4R7)	W, B	0.3(3)	0.5(5)	
4.8pF(4R8)	W, B	0.3(3)	0.5(5)	
4.9pF(4R9)	W, B	0.3 (3)	0.5(5)	
5.0pF(5R0)	W, B	0.3 (3)	0.5(5)	
5.1pF(5R1)	W, B, C	0.3 (3)	0.5(5)	
5.2pF(5R2)	W, B, C	0.3 (3)	0.5(5)	
5.3pF(5R3)	W, B, C	0.3 (3)	0.5(5)	
5.4pF(5R4)	W, B, C	0.3 (3)	0.5(5)	
5.5pF(5R5)	W, B, C	0.3 (3)	0.5(5)	
5.6pF(5R6)	W, B, C	0.3 (3)	0.5(5)	
5.7pF(5R7)	W, B, C	0.3 (3)	0.5(5)	
5.8pF(5R8)		0.3 (3)	0.5(5)	
5.9pF(5R9)	W, B, C	0.3 (3)	0.5(5)	
6.0pF(6R0)		0.3 (3)	0.5(5)	
6.1pF(6R1)		0.3 (3)	0.5(5)	
6.2pF(6R2)		0.3(3)	0.5(5)	
6.3pF(6R3)		0.3(3)	0.5(5)	
6.4pF(6R4)		0.3(3)	0.5(5)	
6.5pF(6R5)		0.3(3)	0.5(5)	
6.6pF(6R6)		0.3(3)	0.5(5)	
6.7pF(6R7) 6.8pF(6R8)	1	0.3(3)	0.5(5) 0.5(5)	
6.9pF(6R9)		0.3(3)	0.5(5)	
7.0pF(7R0)			0.5(5)	
7.1pF(7R1)			0.5(5)	
7.2pF(7R2)			0.5(5)	
7.3pF(7R3)			0.5(5)	
7.4pF(7R4)			0.5(5)	
7.5pF(7R5)			0.5(5)	
7.6pF(7R6)			0.5(5)	
7.7pF(7R7)			0.5(5)	
7.8pF(7R8)	W, B, C		0.5(5)	
7.9pF(7R9)	W, B, C		0.5(5)	
8.0pF(8R0)	W, B, C		0.5(5)	
8.1pF(8R1)	W, B, C		0.5(5)	
8.2pF(8R2)			0.5(5)	
8.3pF(8R3)			0.5(5)	
8.4pF(8R4)			0.5(5)	
8.5pF(8R5)	W, B, C		0.5 (5)	

11

Continued from the preceding page.

Part Number		GJM03	GJM15
L x W [EIA]	W [EIA] 0.6x0.3 [0201]		1.0x0.5 [0402]
тс		C0G (5C)	C0G (5C)
Rated Volt.		25 (1E)	50 (1H)
Capacitance, Ca	apacitance Tolera	ance and T Dimension	
8.6pF(8R6)	W, B, C		0.5(5)
8.7pF(8R7)	W, B, C		0.5(5)
8.8pF(8R8)	W, B, C		0.5(5)
8.9pF(8R9)	W, B, C		0.5(5)
9.0pF(9R0)	W, B, C		0.5(5)
9.1pF(9R1)	W, B, C		0.5(5)
9.2pF(9R2)	W, B, C		0.5(5)
9.3pF(9R3)	W, B, C		0.5(5)
9.4pF(9R4)	W, B, C		0.5(5)
9.5pF(9R5)	W, B, C		0.5(5)
9.6pF(9R6)	W, B, C		0.5(5)
9.7pF(9R7)	W, B, C		0.5(5)
9.8pF(9R8)	W, B, C		0.5(5)
9.9pF(9R9)	W, B, C		0.5(5)

The part numbering code is shown in $% \left({\left. {{{\bf{n}}_{\rm{s}}}} \right)_{\rm{s}}} \right)$ ().

Dimensions are shown in mm and Rated Voltage in Vdc.

62

Specifications and Test Methods

			Specifications			
No.	Ite	em	Temperature Compensating Type	-	Test Method	
1	Operating Temperature Range		-55 to +125℃	Reference Temperatur (2C, 3C, 4C: 20°C)	re: 25℃	
2	2 Rated Voltage		See the previous pages.	The rated voltage is defined as the maximum voltage of may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{p,p} whichever is larger, should be maintained within the ravoltage range.		
3	Appearar	nce	No defects or abnormalities	Visual inspection		
4	Dimensio	ons	Within the specified dimensions	Using calipers		
5	Dielectric	c Strength	No defects or abnormalities	is applied between the	bserved when 300% of the rated voltage e terminations for 1 to 5 seconds, scharge current is less than 50mA.	
6	Insulation (I.R.)	Resistance	10,000M Ω min. or 500 Ω · F min. (Whichever is smaller)		nce should be measured with a DC the rated voltage at 25℃ and 75%RH utes of charging.	
7	Capacita	nce	Within the specified tolerance	The capacitance/Q sho frequency and voltage	ould be measured at 25°C at the	
			30pE max - 0>400±200			
8	Q		30pF max.: Q≧400+20C C: Nominal Capacitance (pF)	Frequency Voltage	1±0.1MHz 0.5 to 5Vrms	
				Voltage	0.010 0 1110	
		Capacitance	Within the specified tolerance (Table A)		ge should be measured after 5 min. at	
		Change		each specified temperature stage. Temperature Compensating Type		
	Temperature Coefficient	Within the specified tolerance (Table A)	The temperature coefficient is determined using the capacitance measured in step 3 as a reference.			
9	Capacitance Temperature Characteristics	e			5, (5C: +25 to 125°C: c capacitance should be temperature coefficien The capacitance drift is between the maximum	berature sequentially from step 1 through other temp. coeffs.: +20 to 125°C) the e within the specified tolerance for the t and capacitance change as Table A. s calculated by dividing the differences a and minimum measured values in steps citance value in step 3.
		Capacitance Drift	Within ±0.2% or ±0.05pF (Whichever is larger.)	Step	Temperature (°C)	
				1	Reference Temp. ±2	
				2	-55±3	
				3	Reference Temp. ±2	
				4 5	125±3	
				5	Reference Temp. ±2	
				Fig. 1 using a eutectic s with the test jig for $10\pm$ with an iron or using the	the test jig (glass epoxy board) shown in solder. Then apply a 5N* force in parallel 1 sec. The soldering should be done either e reflow method and should be conducted Idering is uniform and free of defects such *2N (GJM03)	
10	Adhesive of Termir	e Strength nation	No removal of the terminations or other defect should occur.		Solder resist Baked electrode or copper foil	
				Type GJM03 GJM15	a b c 0.3 0.9 0.3 0.4 1.5 0.5	
				0510115		
			1	1		

Specifications and Test Methods

Continued from the preceding page.

			Specifications					
0.	Ite	em	Temperature Compensating Type	- Test Method				
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board) in the				
1	Vibration Resistance	Capacitance	Within the specified tolerance Q≥400+20C C: Nominal Capacitance (pF)	 same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours). 				
			No cracking or marking defects should occur.	Solder the capacitor to the test jig (glass epoxy boards) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done by the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.				
2	Deflection	ı	Type a b c GJM03 0.3 0.9 0.3 GJM15 0.4 1.5 0.5 (in mm)	Pressurizing speed : 1.0mm/sec. Pressurize Flexure : ≤1 Capacitance meter 45 45 (in mm) Fig. 3				
3	Solderabi Terminati		75% of the terminations are to be soldered evenly and continuously. Immerse the capacitor in a solution of ethanol (rosin (JIS-K-5902) (25% rosin in weight proport Preheat at 80 to 120°C for 10 to 30 seconds. Af immerse in eutectic solder solution for 2±0.5 seconds.					
			The measured and observed characteristics should satisfy the specifications in the following table.					
		Appearance	No marking defects					
	Resistance	Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	Preheat the capacitor at 120 to 150℃ for 1 minute. Immerse the capacitor in a eutectic solder or Sn-3.0Ag-0.5Cu				
4	to Soldering Heat	Q	Q≥400+20C	solder solution at $270\pm5^{\circ}$ for 10 ± 0.5 seconds. Let sit at room temperature for 24 ± 2 hours.				
			C: Nominal Capacitance (pF) More than 10.000M Ω or 500 Ω · F (Whichever is smaller)					
		I.R. Dielectric		-				
		Strength	No failure The measured and observed characteristics should satisfy the					
			specifications in the following table.	 Fix the capacitor to the supporting jig in the same manner and 				
		Appearance	No marking defects	under the same conditions as (10). Perform the five cycles				
_	Temperature	Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	according to the four heat treatments listed in the following table. Let sit for 24±2 hours at room temperature, then measure.				
5	Cycle	Q	Q≧400+20C C: Nominal Capacitance (pF)	$\begin{tabular}{ c c c c c c c } \hline Step & 1 & 2 & 3 & 4 \\ \hline \hline Temp. (°C) & Min. Operating Temp. \stackrel{+\circ}{\to} & Room \\ Temp. \stackrel{+\circ}{\to} & Temp. & Temp. \stackrel{+\circ}{\to} & Temp. \\ \hline \hline \end{array} \\ \end{tabular}$				
		I.R.	More than 10,000M\Omega or $500\Omega \cdot F$ (Whichever is smaller)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
		Dielectric Strength	No failure					
			The measured and observed characteristics should satisfy the specifications in the following table.					
		Appearance	No marking defects					
	Humidity, Steady	Capacitance Change	Within ±5% or ±0.5pF (Whichever is larger)	Let the capacitor sit at 40±2°C and 90 to 95% humidity for 500±12 hours.				
6	Steady State	onungo		nove and let sit for 24±2 hours (temperature compensating				
6	State	Q	10pF and over, 30pF and below: Q≧275+ ½ C 10pF and below: Q≧200+10C C: Nominal Capacitance (pF)	type) at room temperature, then measure.				

Specifications and Test Methods

Continued from the preceding page.

			Specifications	Test Mathed
lo.	Item		Temperature Compensating Type	- Test Method
		The measured and observed characteristics should satisfy the specifications in the following table.		
		Appearance	No marking defects	
17	Humidity	Capacitance Change	Within $\pm 7.5\%$ or ± 0.75 pF (Whichever is larger)	Apply the rated voltage at $40\pm2^{\circ}$ and 90 to 95% humidity for 500±12 hours.
17	Load	Q	30pF and below: Q≧100+ ¹⁰ / ₃ C C: Nominal Capacitance (pF)	Remove and let sit for 24 ± 2 hours at room temperature, then measure. The charge/discharge current is less than 50mA.
		I.R.	More than 500M Ω or 25 Ω \cdot F (Whichever is smaller)	
		Dielectric Strength	No failure	
			The measured and observed characteristics should satisfy the specifications in the following table.	
		Appearance	No marking defects	
	High	Capacitance Change	Within $\pm 3\%$ or ± 0.3 pF (Whichever is larger)	Apply 200% of the rated voltage for 1000 \pm 12 hours at the maximum operating temperature \pm 3°C. Let sit for 24 \pm 2 hours
18	Temperature Load	٥	10pF and over, 30pF and below: Q≧275+ ½ C 10pF and below: Q≧200+10C C: Nominal Capacitance (pF)	(temperature compensating type) at room temperature, then measure. The charge/discharge current is less than 50mA.
		I.R.	More than 1,000M Ω or 50 $\Omega \cdot$ F (Whichever is smaller)	
		Dielectric Strength	No failure	
19	ESR		0.5pF≦C≦1pF: 350mΩ below 1pF <c≦5pf: 300mω="" below<br="">5pF<c≦10pf: 250mω="" below<="" td=""><td>The ESR should be measured at room temperature, and frequency 1 ± 0.2GHz with the equivalent of BOONTON Model 34A.</td></c≦10pf:></c≦5pf:>	The ESR should be measured at room temperature, and frequency 1 ± 0.2 GHz with the equivalent of BOONTON Model 34A.
			10pF <c≦20pf: 400mω="" below<="" td=""><td>The ESR should be measured at room temperature, and frequency 500±50MHz with the equivalent of HP8753B.</td></c≦20pf:>	The ESR should be measured at room temperature, and frequency 500±50MHz with the equivalent of HP8753B.

Table A

	T 0 "	Capacitance Change from 25°C Value (%)						
Char. Code	Temp. Coeff. (ppm/℃) *1	_55℃		−30°C		−10°C		
	(ppm/c) · i	Max.	Min.	Max.	Min.	Max.	Min.	
5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11	

*1: Nominal values denote the temperature coefficient within a range of 25 to 125°C.

(2)

	Nominal Values (ppm/℃) *2	Capacitance Change from 20°C Value (%)						
Char.		−55°C		–25℃		−10℃		
		Max.	Min.	Max.	Min.	Max.	Min.	
2C	0±60	0.82	-0.45	0.49	-0.27	0.33	-0.18	
3C	0±120	0.37	-0.90	0.82	-0.54	0.55	-0.36	
4C	0±250	0.56	-0.88	1.54	-1.13	1.02	-0.75	

*2: Nominal values denote the temperature coefficient within a range of 20 to 125°C.

Chip Monolithic Ceramic Capacitors

High Frequency GQM Series

Features

- 1. HiQ and low ESR at VHF, UHF, Microwave
- 2. Feature improvement, low power consumption for mobile telecommunications (Base station, terminal, etc.)

Applications

High frequency circuit (Mobile telecommunications, etc.)

Part Number	Dimensions (mm)							
Fait Number	L	W	Т	е	g min.			
GQM188	1.6 ±0.1	0.8 ±0.1	0.8 ±0.1	0.2 to 0.5	0.5			
GQM219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1	0.2 to 0.7	0.7			

Part Number	GQM18		GQM21				
L x W	1.6x0.8		2.0x1	.25			
тс	C0G (5C)		C0 (5 0	G \$)			
Rated Volt.	100 (2A)	50 (1H)	100 (2A)	50 (1H)			
Capacitance (Capacit	ance part numbering code) and	I T (mm) Dimension (T Dimen	sion part numbering code)				
0.50pF(R50)	0.8(8)		0.85(9)				
0.75pF(R75)	0.8 (8)		0.85 (9)				
1.0pF(1R0)	0.8 (8)		0.85 (9)				
1.1pF(1R1)	0.8 (8)		0.85(9)				
1.2pF(1R2)	0.8 (8)		0.85(9)				
1.3pF(1R3)	0.8 (8)		0.85 (9)				
1.5pF(1R5)	0.8 (8)		0.85(9)				
1.6pF(1R6)	0.8 (8)		0.85(9)				
1.8pF(1R8)	0.8(8)		0.85(9)				
2.0pF(2R0)	0.8(8)		0.85(9)				
2.2pF(2R2)	0.8(8)		0.85(9)				
2.4pF(2R4)	0.8(8)		0.85(9)				
2.7pF(2R7)	0.8(8)		0.85(9)				
3.0pF(3R0)	0.8(8)		0.85(9)				
3.3pF(3R3)	0.8(8)		0.85(9)				
3.6pF(3R6)	0.8(8)		0.85(9)				
3.9pF(3R9)	0.8(8)		0.85(9)				
4.0pF(4R0)	0.8(8)		0.85(9)				
4.3pF(4R3)	0.8(8)		0.85(9)				
4.7pF(4R7)	0.8(8)		0.85(9)				
5.0pF(5R0)	0.8(8)		0.85(9)				
5.1pF(5R1)	0.8(8)		0.85(9)				
5.6pF(5R6)	0.8(8)		0.85(9)				
6.0pF(6R0)	0.8(8)		0.85(9)				
6.2pF(6R2)	0.8(8)		0.85(9)				
6.8pF(6R8)	0.8(8)		0.85(9)				
7.0pF(7R0)		0.8 (8)	0.85(9)				
7.5pF(7R5)		0.8 (8)	0.85(9)				
8.0pF(8R0)		0.8 (8)	0.85(9)				
8.2pF(8R2)		0.8(8)	0.85(9)				
9.0pF(9R0)		0.8(8)	0.85(9)				
9.1pF(9R1)		0.8(8)	0.85(9)				
10pF(100)		0.8(8)	0.85(9)				

Continued from the preceding page

Part Number	GQM18	8	GQM21				
L x W	1.6x0.8	3	2.0x1.25				
тс	C0G (5C)		C0G (5C)				
Rated Volt. 100 (2A)		50 (1H)	100 (2A)	50 (1H)			
Capacitance (Capacita	ance part numbering code) an	d T (mm) Dimension (T Dimens	ion part numbering code)				
11pF(110)		0.8 (8)	0.85 (9)				
12pF(120)		0.8 (8)	0.85 (9)				
13pF(130)		0.8 (8)	0.85 (9)				
15pF(150)		0.8 (8)	0.85 (9)				
16pF(160)		0.8 (8)	0.85 (9)				
18pF(180)		0.8 (8)	0.85 (9)				
20pF(200)		0.8 (8)		0.85(9)			
22pF(220)		0.8(8)		0.85(9)			
24pF(240)		0.8(8)		0.85(9)			
27pF(270)		0.8 (8)		0.85(9)			
30pF(300)		0.8(8)		0.85(9)			
33pF(330)		0.8(8)		0.85(9)			
36pF(360)		0.8(8)		0.85(9)			
39pF(390)		0.8(8)		0.85(9)			
43pF(430)		0.8 (8)		0.85 (9)			
47pF(470)		0.8 (8)		0.85 (9)			
51pF(510)		0.8 (8)		0.85 (9)			
56pF(560)		0.8 (8)		0.85 (9)			
62pF(620)		0.8 (8)		0.85 (9)			
68pF(680)		0.8 (8)		0.85 (9)			
75pF(750)		0.8 (8)		0.85 (9)			
82pF(820)		0.8 (8)		0.85(9)			
91pF(910)		0.8 (8)		0.85(9)			
100pF(101)		0.8(8)		0.85(9)			

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

■ Q - Frequency Characteristics

■ Resonant Frequency - Capacitance

Specifications and Test Methods

No.	lte	em	Specifications		Test Me	ethod		
1	Operating Temperatu		−55 to 125℃	Reference Temperature: 25℃ (2C, 3C, 4C: 20℃)				
2	Rated Voltage		ated Voltage See the previous page.		The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{P,P} or V ^{O,P} , whichever is larger, should be maintained within the rated voltage range.			
3	Appearar	nce	No defects or abnormalities	Visual inspection				
4	Dimensio	n	Within the specified dimensions	Using calipers				
5	Dielectric	: Strength	No defects or abnormalities	No failure should be of is applied between the provided the charge/d	e terminatio	ns for 1 to 5 se	conds,	
6	Insulation	Resistance	More than 10,000MΩ (Whichever is smaller)	The insulation resistant voltage not exceeding max. and within 2 min	the rated v	oltage at 25℃		
7	Capacita	Capacitance Within the specified tolerance		The capacitance/Q sh			at the	
			30pF min.: Q≧1400	frequency and voltage	e snown in t			
8	Q		30pF max.: Q≧800+20C	Frequency	_	1±0.1MHz		
			C: Nominal Capacitance (pF)	Voltage		0.5 to 5Vrms	3	
	Capacitance Change Temperature Coefficient		Within the specified tolerance (Table A)	The temperature coefficient is determined using the capa measured in step 3 as a reference.			-	
			Within the specified tolerance (Table A)	When cycling the temperature sequentially from step 1 through the capacitance should be within the specified tolerance for the temperature coefficient and capacitance change as in Table A.				
9	Capacitance Temperature Characteristics				The capacitance drift between the maximur steps 1, 3 and 5 by th Step	is calculated n and minim e capacitan	d by dividing th num measured	e differences values in the p 3.
			Within $\pm 0.2\%$ or ± 0.05 pF (Whichever is larger)	1				
				2 3	-55±3		10	
				4	Reference Temp. ±2 125±3		±2	
				5	Ref	ference Temp.	+2	
			No removal of the terminations or other defect should occur.	Solder the capacitor to Fig. 1 using a eutectic	the test jig ((glass epoxy bo	ard) shown in	
10		esive Strength		with the test jig for 10± The soldering should to reflow method and sho soldering is uniform an	be done eith ould be conc	ducted with care	so that the	
	of Termination			Туре	а	b	С	
				GQM18	1.0	3.0	1.2	
			Solder resist	GQM21	1.2	4.0	1.65 (in mm)	
			Baked electrode or copper foil		Fig.	1	(in mm)	
		Appearance	No defects or abnormalities	Solder the capacitor to				
		Capacitance	Within the specified tolerance	 same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmonic motion 				
11	Vibration Resistance	Q	30pF min.: Q≥1400 30pF max.: Q≧800+20C	having a total amplitur uniformly between the frequency range, from be traversed in approx	de of 1.5mm approxima 10 to 55Hz ximately 1 n	n, the frequenc ite limits of 10 a z and return to ninute.	y being varied and 55Hz. The 10Hz, should	
			C: Nominal Capacitance (pF)	This motion should be applied for a period of 2 hours in e 3 mutually perpendicular directions (total of 6 hours).				

Specifications and Test Methods

	Continued fr							
No.	lte	em	Specifications	Test Method				
12	2 Deflection		No crack or marked defect should occur. $\begin{array}{c c} & & & & & & \\ \hline & & & & & \\ \hline & & & & &$	Solder the capacitor on the test jig (glass epoxy board) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done by the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. $\begin{array}{c} & & \\ & & & \\ &$				
				Immerse the capacitor in a solution of otherool (IIS-K-8101) and				
13	Solderab Terminati		75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2±0.5 seconds at 230±5°C or Sn-3.0Ag-0.5Cu solder solution for 2±0.5 seconds at 245±5°C.				
			The measured and observed characteristics should satisfy the					
		Appearance	specifications in the following table. No marking defects	-				
	Resistance to Soldering Heat	Capacitance	Within $\pm 2.5\%$ or ± 0.25 pF	-				
		Change	(Whichever is larger)	Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the				
14		Q	30pF min.: Q≧1400 30pF max.: Q≧800+20C	capacitor in a eutectic solder or Sn-3.0Ag-0.5Cu solder solution at $270\pm5^{\circ}$ C for 10 ± 0.5 seconds. Let sit at room temperature for 24 ± 2 hours.				
			C: Nominal Capacitance (pF)	-				
		I.R. Dielectric	More than 10,000MΩ No failure					
	Strength		The measured and observed characteristics should satisfy the					
		Appearance	specifications in the following table. No marking defects	Fix the capacitor to the supporting jig in the same manner and				
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	under the same conditions as (10). Perform the five cycles according to the four heat treatment listed in the following table.				
15	Temperature		30pF min.: Q≧1400	Let sit for 24±2 hours at room temperature, then measure.				
	Cycle	Q	30pF max.: Q≧800+20C	Step 1 2 3 4 Turne (m) Min. Operating Room Max. Operating Room				
			C: Nominal Capacitance (pF)	Temp. (C) Temp. +0/-3 Temp. Temp. +3/-0 Temp.				
		I.R. Dielectric	More than 10,000MΩ No failure	<u>Time (min.)</u> 30±3 2 to 3 30±3 2 to 3				
		Strength	The measured and observed characteristics should satisfy the specifications in the following table.					
		Appearance	No marking defects	-				
		Capacitance Change	Within ±5% or ±0.5pF (Whichever is larger)					
16	Humidity Steady State	Q	30pF min.: Q≧350 10pF and over, 30pF and below: Q≧275+5C/2 10pF max.: Q≧200+10C	 Let the capacitor sit at 40±2°C and 90 to 95% humidity for 500±12 hours. Remove and let sit for 24±2 hours (temperature compensating type) at room temperature, then measure. 				
			C: Nominal Capacitance (pF)	-				
		I.R.	More than 1,000MΩ	-				
	Dielectric Strength		No failure					

12

Specifications and Test Methods

Continued from the preceding page.

No.	Ite	em	Specifications	Test Method		
			The measured and observed characteristics should satisfy the specifications in the following table.			
17		Appearance	No marking defects			
		Capacitance Change	Within $\pm 7.5\%$ or ± 0.75 pF (Whichever is larger)	Apply the rated voltage at $40\pm2^{\circ}$ C and 90 to 95% humidity for		
	Humidity Load	Q	30pF min.: Q≧200 30pF max.: Q≧100+10C/3	500±12 hours. Remove and let sit for 24±2 hours at room temperature then measure. The charge/discharge current is less than 50mA.		
			C: Nominal Capacitance (pF)			
		I.R.	More than $500M\Omega$	_		
		Dielectric Strength	No failure			
		The measured and observed characteristics sl specifications in the following table.				
		Appearance	No marking defects			
		Capacitance Change	Within $\pm 3\%$ or ± 0.3 pF (Whichever is larger)	Apply 200% of the rated voltage for 1000 ± 12 hours at the		
18	High Temperature Load	Q	30pF min.: Q≧350 10pF and over, 30pF and below: Q≧275+5C/2 10pF max.: Q≧200+10C	maximum operating temperature ±3°C. Let sit for 24±2 hours (temperature compensating type) at room temperature, then measure. The charge/discharge current is less than 50mA.		
			C: Nominal Capacitance (pF)			
		I.R.	More than 1,000M Ω			
		Dielectric Strength	No failure			

12

Table A

	(1)								
		Nominal Values (ppm/℃) *1	Capacitance Change from 25°C (%)						
(Char.		_55℃		-30°C		–10℃		
		(ppm/c) · i	Max.	Min.	Max.	Min.	Max.	Min.	
	5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11	

*1: Nominal values denote the temperature coefficient within a range of 25 to 125 $^\circ\!\!C.$

Chip Monolithic Ceramic Capacitors

High Frequency Type ERB Series

■ Features (ERB Series)

- 1. Negligible inductance is achieved by its monolithic structure so the series can be used at frequencies above 1GHz.
- 2. Nickel barriered terminations of ERB series improve solderability and decrease solder leaching.
- 3. ERB18/21 series are designed for both flow and reflow soldering and ERB32 series are designed for reflow soldering.

Applications

High frequency and high-power circuits

Part Number		Dimen	sions (mm)		
Part Nulliber	L	W	T max.	e min.	g min.
ERB188	1.6±0.1	0.8±0.1	0.9	0.2	0.5
ERB21B	2.0±0.3	1.25±0.3	1.35	0.25	0.7
ERB32Q	3.2±0.3	2.5±0.3	1.7	0.3	1.0

Part Number	ER	B18		ERI	B21				ER	B32		
L×W	1.6	x0.8		2.0x	1.25		3.2x2.5					
тс		0G i C)		COG (5C) 100 50 250 200 100 50 (2E) (2D) (2A) (1H)			C0G (5C)					
Rated Volt.	250 (2E)	200 (2D)					500 (2H)	300 (YD)	250 (2E)	200 (2D)	100 (2A)	50 (1H)
Capacitance (Ca	pacitance	part numb	ering code)	and T (mm) Dimensio	n (T Dimen	sion part n	umbering c	ode)			
0.50pF(R50)	0.9(8)	0.9 (8)	1.35(B)	1.35(B)			1.7(Q)					
0.75pF(R75)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
1.0pF(1R0)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
1.1pF(1R1)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
1.2pF(1R2)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
1.3pF(1R3)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
1.5pF(1R5)	0.9 (8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
1.6pF(1R6)	0.9 (8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
1.8pF(1R8)	0.9 (8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
2.0pF(2R0)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
2.2pF(2R2)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
2.4pF(2R4)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
2.7pF(2R7)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
3.0pF(3R0)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
3.3pF(3R3)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
3.6pF(3R6)	0.9 (8)	0.9 (8)	1.35(B)	1.35(B)			1.7(Q)					
3.9pF(3R9)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
4.0pF(4R0)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
4.3pF(4R3)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
4.7pF(4R7)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
5.0pF(5R0)	0.9 (8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
5.1pF(5R1)	0.9 (8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
5.6pF(5R6)	0.9 (8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
6.0pF(6R0)	0.9 (8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
6.2pF(6R2)	0.9 (8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
6.8pF(6R8)	0.9 (8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
7.0pF(7R0)	0.9 (8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
7.5pF(7R5)	0.9 (8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
8.0pF(8R0)	0.9 (8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
8.2pF(8R2)	0.9 (8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
9.0pF(9R0)	0.9 (8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
9.1pF(9R1)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					

Continued from the preceding page.

Part Number		B18		ERI			ERB32					
LxW	1.6	k0.8		2.0x	1.25		3.2x2.5					
тс	C((5)G C)		C0 (5)G C)		C0G (5C)					
Rated Volt.	250 (2E)	200 (2D)	250 (2E)	200 (2D)	100 (2A)	50 (1H)	500 (2H)	300 (YD)	250 (2E)	200 (2D)	100 (2A)	50 (1H)
Capacitance (Ca	pacitance	part numb	ering code)	and T (mm) Dimensio	n (T Dimen	sion part n	umbering c	ode)			
10pF(100)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
11pF(110)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
12pF(120)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
13pF(130)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
15pF(150)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
16pF(160)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
18pF(180)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
20pF(200)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
22pF(220)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
24pF(240)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
27pF(270)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
30pF(300)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
33pF(330)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
36pF(360)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
39pF(390)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
43pF(430)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
47pF(470)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
51pF(510)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
-												
56pF(560)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
62pF(620)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
68pF(680)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
75pF(750)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
82pF(820)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
91pF(910)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
100pF(101)	0.9(8)	0.9(8)	1.35(B)	1.35(B)			1.7(Q)					
110pF(111)					1.35(B)		1.7(Q)					
120pF(121)					1.35(B)		1.7(Q)					
130pF(131)					1.35(B)			1.7(Q)				
150pF(151)						1.35(B)		1.7(Q)				
160pF(161)						1.35(B)			1.7(Q)	1.7(Q)		
180pF(181)									1.7(Q)	1.7(Q)		
200pF(201)									1.7(Q)	1.7(Q)		
220pF(221)									1.7(Q)	1.7(Q)		
240pF(241)											1.7(Q)	
270pF(271)											1.7(Q)	
300pF(301)											1.7(Q)	
330pF(331)											1.7(Q)	
360pF(361)											1.7(Q)	
390pF(391)											1.7(Q)	
430pF(431)											1.7(Q)	
470pF(471)											1.7(Q)	
510pF(511)			1								. ,	1.7(C
560pF(561)											<u> </u>	1.7(G
620pF(621)												1.7(C
680pF(681)												1.7(G
750pF(751)												1.7(G
820pF(821)												1.7(G
910pF(911)												
910pr(911)												1.7(C 1.7(C

The part numbering code is shown in $% \left({\left. {{\left({{{{\bf{n}}_{{\rm{c}}}}} \right)}} \right.} \right)$ ().

72

Dimensions are shown in mm and Rated Voltage in Vdc.

ANote • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
 • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
 07.2.6

Specifications and Test Methods

No.	lte	em	Specifications	Test Method			
1	Operating Temperatu	ure Range	-55 to +125℃	Reference Temperature: 25°C			
2	Rated Vo	ltage	See the previous pages.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{P-P} or V ^{O-P} , whichever is larger, should be maintained within the rated voltage range.			
3	Appearar	nce	No defects or abnormalities	Visual inspection			
4	Dimensio	ons	Within the specified dimension	Using calipers			
5	Dielectric	: Strength	No defects or abnormalities	No failure should be observed when 300%(*) of the rated volt- age is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA. (*) 300V: 250%, 500V: 200%			
6	Insulation (I.R.)	Resistance	1,000,000MΩ min. (C≦470pF) 100,000MΩ min. (C>470pF)	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 25°C and standard humidity and within 2 minutes of charging.			
7	Capacita	nce	Within the specified tolerance	The capacitance/Q should be measured at 25℃ at the			
8	$Q = \begin{bmatrix} C \leq 220 \text{ F} : Q \geq 10,000 \\ 220 \text{ F} < C \leq 470 \text{ F} : Q \geq 5,000 \\ 470 \text{ F} < C \leq 1,000 \text{ F} : Q \geq 3,000 \\ \text{C: Nominal Capacitance (pF)} \end{bmatrix}$		220pF <c≦ 470pf="" 5,000<br="" :="" q≧="">470pF<c≦1,000pf 3,000<="" :="" q≧="" td=""><td>frequency and voltage shown in the table. Frequency 1±0.1MHz Voltage 1±0.2Vrms</td></c≦1,000pf></c≦>	frequency and voltage shown in the table. Frequency 1±0.1MHz Voltage 1±0.2Vrms			
	Capacitance Change Within the specified tolerance (Table A-6) Temperature Within the specified tolerance (Table A-6)		Within the specified tolerance (Table A-6) Within the specified tolerance (Table A-6)	The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 1 through 5, the capacitance should be within the specified tolerance for the			
9	Capacitance Temperature	Coefficent		 temperature coefficient and capacitance change as Table A. The capacitance drift is calculated by dividing the differences between the maximum and minimum measured values in steps 1, 3 and 5 by the capacitance value in step 3. 			
ŕ	Characteristics			Step Temperature (°C)			
		Capacitance	Within ±0.2% or ±0.05pF	1 25±2			
		Drift	(Whichever is larger)	255±3			
				<u>3</u> 25±2			
				4 125±3			
				525±2			
			No removal of the terminations or other defects should occur.	Solder the capacitor on the test jig (glass epoxy board) shown in Fig. 1 using an eutectic solder. Then apply 10N* force in parallel with the test jig for 10±1sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.			
10		Strength					
	of Termir	ation		Type a b c ERB18 1.0 3.0 1.2			
			Solder Resist	ERB10 1.0 3.0 1.2 ERB21 1.2 4.0 1.65			
			Baked Electrode or Fig.1 Copper Foil	ERB32 2.2 5.0 2.9			
			Fig.1 Copper Foil	(in mm) *5N (ERB188)			

①Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.	C02E.pdf
• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.	07.2.6

Specifications and Test Methods

Continued from the preceding page.

	m the prec								
Iten	n	S	pecifications		Test	t Metho	d		
	Appearance	No defects or abnormalitie	S	Solder the capac	itor to the tes	st jig (gla	ass epoxy boai	d) in the	
	Capacitance	Within the specified tolera	nce	same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmonic motion					
Vibration Resistance	Q	220pF <c≦ 470pf="" :="" q≧<br="">470pF<c≦1,000pf :="" q≧<="" td=""><td>5,000 3,000</td><td colspan="5">The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours).</td></c≦1,000pf></c≦>	5,000 3,000	The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours).					
Deflection		20 50 Pressuri speed :	zing 1.0mm/sec. P Flexure : ≤ 1 f f f f f f f f	in Fig. 2a using a direction shown i the reflow method	an eutectic so in Fig. 3a. Th d and should uniform and fu a 1.0 1.2	blder. T he solde d be con ree of de 0	hen apply a for pring should be ducted with ca	ce in the done by re so that	
		Fig.3a	Fig. 2a				(in	mm)	
	2	95% of the terminations are continuously.	to be soldered evenly and	rosin (25% rosin Preheat at 80 to After preheating,	in weight pro 120℃ for 10 immerse in a	portion) to 30 se an eutee	conds. ctic solder		
Resistance	3		-	Immerse the cap solder solution at	acitor in an e t 270±5℃ for	eutectic	solder or Sn-3.	0Ag-0.5Cu	
		Change	(Whichever is larger)	Chip Size	•	Preh	eat Condition		
		Q Dielectric Strength	220pF <c≦ 470pf="" 5,000<br="" :="" q≧="">470pF<c≦1,000pf 3,000<br="" :="" q≧="">No failure</c≦1,000pf></c≦>	2.0×1.25mm r 3.2×2.5mm					
		specifications in the follow	ved characteristics should satisfy the ing table. Specifications	under the same c	conditions as	(10). P	erform the five	cycles	
		Capacitance	Within ±5% or ±0.5pF	Let sit for 24±2 h	ours at room	tempera	ature, then mea	isure.	
Temperatu Cycle	ıre	Change Q	(Whichever is larger) C≧30pF : Q≧350 10pF≦C<30pF : Q≧275+ ⁵ / ₂ C C<10pF : Q≧200+10C			2 Room Temp.	3 Max. Operating Temp. +3/-0	4 Room Temp.	
				Time (min.)	30±3	5 max.	30±3	5 max.	
				treatment shown 24±2 hours at roo	below, 10 col om temperatu	nsecutiv ure, and	e times. Remov measure.	,	
		specifications in the follow	ing table.	70 65 60	101110119 80–98%	Humidity 90–98% –	80-98%	90-98%	
		Appearance	No marked defect	50 //					
Humidity		Capacitance Change Q	Within $\pm 5\%$ or $\pm 0.5 pF$ (Whichever is larger)C $\geq 30 pF$: Q ≥ 350 10pF $\leq C < 30 pF$: Q $\geq 275 + \frac{5}{2} C$	20 40 35 30 40 40 40 40 40 40 40 40 40 4	+10 ~~				
		<u> </u>	C<10pF : Q≥200+10C 1,000MΩ min. C: Nominal Capacitance (pF)	15 10 5 0 -5	asurement				
							3 14 15 16 17 18 19 2	021 22 23 24	
	Vibration Resistance	Resistance Deflection Solderability of Termination Resistance to Soldering Heat Temperature Cycle	Appearance No defects or abnormalitie Capacitance Within the specified toleral Vibration Q Satisfies the initial value. CS 220pF:QS 470pF:QE 470pF:QE 470pF:QE 470pF:QE 470pF:QE 470pF:QE 470pF:QE 200 F:QE C: Nominal Capacitance (ID 200 F:QE	Appearate (packing)No defects or abnormalitiesVibration Resistance QSatisfies the initial value. $C \leq 220 \text{ PF} : Q \geq 1,000$ $22 \leq 3,000$ C: Nominal Capacitance (pF)DeflectionNo crack or marked defect should occur.Deflection $\int_{presenting mean-tring m$	Appearance Capacitation No defects or abnormalities Solder the capacitation and main and the specified tolerance Within the specified tolerance Satisfies the initial value. 200 The reparature for initial value. 200 The reparature for initial value. 200 Immerse the capacitation in the following table. 200 Preheat accordin Immerse the capacitation	Appendix No defects or abnormaline Solder the capacitor to the test as anomenane and under the same manner and under the same under the same manner and under the same under and should are same same same and under the same under the same manner and under the same	Apparato Capitant No defects or abnormalies Solder the capacitor to the test ijg (g) same manner and under the same Co- same co- sam	Apparation No deflocts or abnormalities Quidate Within the specified userators Quidate Within the specified userators Quidate Statisfies the initial value. CS 220pF (2C4 1000) 220pF (2C5 470pF : 20 5:000 220pF (2C5 470pF : 20 5:000 200pF (2C 5:000F :	

ANote • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
 • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
 07.2.6

Specifications and Test Methods

Continued from the preceding page.

No.	Item	S	pecifications	Test Method	
		The measured and obser specifications in the follow	ved characteristics should satisfy the ing table.		
		Item	Specifications		
		Appearance	No marked defect		
		Capacitance	Within $\pm 3\%$ or ± 0.3 pF	Apply 200% (500V only 150%) of the rated voltage for $1,000\pm12$	
17	High Temperature	Change	(Whichever is larger)	hours at 125±3°C.	
17	Load		C≧30pF : Q≧350	Remove and let sit for 24±2 hours at room temperature, then measure.	
		Q	10pF≦C<30pF : Q≧275+ 출 C	The charge/discharge current is less than 50mA.	
			C<10pF : Q≧200+10C		
		I.R.	1,000MΩ min.		
		Dielectric Strength	No failure		
			C: Nominal Capacitance (pF)		

Table A-6

	Name in al Malura		(Capacitance Cha	nge from 25℃ (%)			
Char.	Nominal Values (ppm/℃) Note 1	-	55		30	-10			
	(ppin/c) Note i	Max.	Min.	Max.	Min.	Max.	Min.		
5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11		

Note 1: Nominal values denote the temperature coefficient within a range of 25 to 125°C (for 5C)

ERB Series Data

Q - Frequency Characteristics

ERB Series

■ Impedance - Frequency Characteristics

Resonant Frequency - Capacitance

ERB Series

■ Allowable Current - Frequency

ANote • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
 • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
 07.2.6

ERB Series Data

Continued from the preceding page.

■ Allowable Apparent Power - Frequency

■ Allowable Effective Power - Frequency

Package

■ Minimum Quantity Guide

Part Nu	mher	Dim	ensions	(mm)	ø190m	m Reel		ty (pcs.) nm Reel		
Part Nu	mper	L	W	Т	Paper Tape	Embossed Tape	Paper Tape	Embossed Tape	Bulk Case	Bulk Bag
		L	vv	-	• •		· · ·			Bulk : B
Packaging	g Code				D	L	J	к	С	Tray : T
	GRM02	0.4	0.2	0.2	20,000	-	-	-	-	1,000
	GRM03	0.6	0.3	0.3	15,000	-	50,000	-	-	1,000
	CDM45	1.0	0.5	0.25	10,000	-	50,000	-	-	1,000
	GRM15	1.0	0.5	0.5	10,000	-	50,000	-	50,000	1,000
	GRM18	1.6	0.8	0.8	4,000	-	10,000	-	15,000 1)	1,000
				0.6	4,000	-	10,000	-	10,000	1,000
	GRM21	2.0	1.25	0.85/1.0	4,000	-	10,000	-	-	1,000
		_		1.25	-	3,000	-	10,000	5,000 ²⁾	1,000
				0.6/0.85	4,000	-	10,000	-	-	1,000
	GRM31	3.2	1.6	1.15	-	3,000	-	10,000	-	1,000
				1.6	-	2,000	-	6,000	-	1,000
For General				0.85	-	4,000	-	10,000	-	1,000
Purpose			2.5	1.15	-	3,000	-	10,000	-	1,000
	GRM32	3.2		1.35	-	2,000	-	8,000	-	1,000
				1.6	-	2,000	-	6,000	-	1,000
		_		1.8/2.0	-	1,000	-	4,000	-	1,000
	GRM43			1.15	-	1,000	-	5,000	-	1,000
		4.5	3.2	1.35/1.6 1.8/2.0	-	1,000	-	4,000	-	1,000
				2.5	-	500	-	2,000	-	1,000
				2.8	-	500	-	1,500	-	500
				1.15	-	1,000	-	5,000	-	1,000
	GRM55	5.7	5.0	1.35/1.6	-	1,000	-	4,000	-	1,000
				2.5	-	500	-	2,000	-	500
	C 11402	0.0	0.0	3.2	-	300	-	1,500	-	500
ligh Power Type	GJM03	0.6	0.3	0.3	15,000	-	50,000	-	-	1,000
	GJM15	1.0	0.5	0.5	10,000	-	50,000	-	50,000	1,000
	GQM18	1.6	0.8	0.8	4,000	-	10,000	-	-	1,000
link Francisco	GQM21	2.0	1.25	0.85	4,000	-	10,000	-	-	1,000
ligh Frequency	ERB18 ERB21	1.6 2.0	0.8	0.9 max. 1.35 max.	4,000	-	10,000	-	-	1,000
				1.35 max.	-	3,000	-	10,000	-	
For Ultrasonic	ERB32 GRM21	3.2	2.5 1.25		-	2,000		8,000	-	1,000
	GMA05	0.5	0.5	0.85	4,000	-	10,000		-	1,000 400 ³⁾
Microchip	GMA05 GMA08		0.5	0.35	-	-	-	-		400 ⁻³
	GNMA08	0.8	1.0	0.5	-	-	- 10,000	-	-	1,000
	GNM21	2.0	1.25	0.6/0.85	4,000	-	10,000	-	-	1,000
Array		2.0	1.20	0.6/0.65	4,000 4,000	-	10,000	-	-	1,000
	GNM31	3.2	1.6	1.0	-+,000	3,000		- 10,000	-	1,000
	LLL15	0.5	1.0	0.3	- 10,000	-	- 50,000	-		1,000
	LLL18	0.8	1.6	0.5	-	4,000	-	10,000	-	1,000
				0.5/0.6	-	4,000	-	10,000	-	1,000
	LLL21	1.25	2.0	0.85	-	3,000	-	10,000	-	1,000
				0.5/0.7	-	4,000	-	10,000	-	1,000
	LLL31	1.6	3.2	1.15	-	3,000	-	10,000	-	1,000
	LLA18	1.6	0.8	0.5	-	4,000	-	10,000	-	1,000
				0.5	-	4,000	-	10,000	-	1,000
Low ESL	LLA21	2.0	1.25	0.85	-	3,000	-	10,000	-	1,000
				0.5	-	4,000	-	10,000	-	1,000
	LLA31	3.2	1.6	0.85	-	3,000	-	10,000	-	1,000
		0.2		1.15	-	3,000	-	10,000	-	1,000
		-		0.5	-	4,000	-	10,000	-	1,000
	LLM21	2.0	1.25	0.85	-	3,000	-	10,000	-	1,000
				0.5	-	4,000	-	10,000	-	1,000
	LLM31	3.2	1.6	1.15	-	3,000	-	10,000		1,000

1) 68,000pF/0.1 μ F of 50V R7 rated are not available by bulk case.

2) Dimension tolerance $\pm 0.15 \text{mm}$ rated are not available by bulk case.

3) Tray

Package

Continued from the preceding page.

Tape Carrier Packaging

(1) Dimensions of Reel

(2) Dimensions of Paper Tape

Package

Continued from the preceding page.

(3) Dimensions of Embossed Tape

(in mm)

(4) Taping Method

- ① Tapes for capacitors are wound clockwise. The sprocket holes are to the right as the tape is pulled toward the user.
- ② Part of the leader and part of the empty tape should be attached to the end of the tape as follows.
- ③ The top tape and base tape are not attached at the end of the tape for a minimum of 5 pitches.
- ④ Missing capacitors number within 0.1% of the number per reel or 1 pc, whichever is greater, and are not continuous.
- (5) The top tape and bottom tape should not protrude beyond the edges of the tape and should not cover sprocket holes.
- (6) Cumulative tolerance of sprocket holes, 10 pitches: ±0.3mm.
- ⑦ Peeling off force: 0.1 to 0.6N* in the direction shown below. *GRM02)

GRM03 : 0.05 to 0.5N GJM03

Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
 • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
 07.2.6

Package

Continued from the preceding page.

Dimensions of Bulk Case Packaging The bulk case uses antistatic materials. Please contact Murata for details.

ANote • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
 • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
 07.2.6

Storage and Operating Conditions

Chip monolithic ceramic capacitors (chips) can experience degradation of termination solderability when subjected to high temperature or humidity, or if exposed to sulfur or chlorine gases.

Storage environment must be at an ambient temperature of 5-40 degree C and an ambient humidity of 20-70%RH. Use chip within 6 months. If 6 months or more have elapsed, check solderability before use. Use of Sn-Zn based solder will deteriorate reliability of MLCC. Please contact Murata factory for the use of Sn-Zn based solder in advance.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

Handling

1. Inspection

Thrusting force of the test probe can flex the PCB, resulting in cracked chips or open solder joints. Provide support pins on the back side of the PCB to prevent warping or flexing.

- 2. Board Separation (or depanalization)
 - (1) Board flexing at the time of separation causes cracked chips or broken solder.
 - (2) Severity of stresses imposed on the chip at the time of board break is in the order of: Pushback<Slitter<V Slot<Perforator.
 - (3) Board separation must be performed using special jigs, not with hands.

Reel and bulk case
 In the handling of reel and case, please be careful
 and do not drop it.

 Do not use chips from a case which has been dropped.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND FUMING WHEN THE PRODUCT IS USED.

■ ① Caution (Soldering and Mounting)

1. Mounting Position

Choose a mounting position that minimizes the stress imposed on the chip during flexing or bending of the board.

(Reference Data 2. Board bending strength for solder fillet height) (Reference Data 3. Temperature cycling for solder fillet height) (Reference Data 4. Board bending strength for board material)

2. Chip Placing

- An excessively low bottom dead point of the suction nozzle imposes great force on the chip during mounting, causing cracked chips. So adjust the suction nozzle's bottom dead point by correcting warp in the board. Normally, the suction nozzle's bottom dead point must be set on the upper surface of the board. Nozzle pressure for chip mounting must be a 1 to 3N static load.
- Dirt particles and dust accumulated between the suction nozzle and the cylinder inner wall prevent the nozzle from moving smoothly. This imposes great force on the chip during mounting, causing cracked chips. And the locating claw, when worn out, imposes uneven forces on the chip when positioning, causing cracked chips. The suction nozzle and the locating claw must be maintained, checked and replaced periodically. (Reference Data 5. Break strength)

[Component Direction] [Chip Mounting Close to Board Separation Point] C Chip arrangement Perforation в Worst A-C-(B_D) Best 00 А Slit

Locate chip horizontal to the direction in which stress acts

Continued from the preceding page.

- 3. Reflow Soldering
- When sudden heat is applied to the components, the mechanical strength of the components should go down because remarkable temperature change causes deformity inside components. In order to prevent mechanical damage in the components, preheating should be required for both of the components and the PCB board. Preheating conditions are shown in table 1. It is required to keep temperature differential between the soldering and the components surface (ΔT) as small as possible.
- Solderability of Tin plating termination chip might be deteriorated when low temperature soldering profile where peak solder temperature is below the Tin melting point is used. Please confirm the solderability of Tin plating termination chip before use.
- When components are immersed in solvent after mounting, be sure to maintain the temperature difference (ΔT) between the component and solvent within the range shown in the table 1.

Table I	Tal	ble	1
---------	-----	-----	---

Part Number	Temperature Differential
GRM02/03/15/18/21/31	
GJM03/15	
LLL15/18/21/31	∆T≦190℃
ERB18/21	
GQM18/21	
GRM32/43/55	
LLA18/21/31	
LLM21/31	∆T≦130℃
GNM	
ERB32	

Recommended Conditions

	Pb-Sn S	Lead Free Solder	
	Infrared Reflow	Vapor Reflow	Lead Free Solder
Peak Temperature	230-250°C	230-240°C	240-260°C
Atmosphere	Air	Air	Air or N2

Pb-Sn Solder: Sn-37Pb

Lead Free Solder: Sn-3.0Ag-0.5Cu

Optimum Solder Amount for Reflow Soldering

• Overly thick application of solder paste results in excessive fillet height solder.

This makes the chip more susceptible to mechanical and thermal stress on the board and may cause cracked chips.

- Too little solder paste results in a lack of adhesive strength on the outer electrode, which may result in chips breaking loose from the PCB.
- Make sure the solder has been applied smoothly to the end surface to a height of 0.2mm min.

Inverting the PCB

Make sure not to impose an abnormal mechanical shock on the PCB.

1 Caution

 \Box Continued from the preceding page.

4. Leaded Component Insertion

If the PCB is flexed when leaded components (such as transformers and ICs) are being mounted, chips may crack and solder joints may break.

Before mounting leaded components, support the PCB using backup pins or special jigs to prevent warping.

5. Flow Soldering

- When sudden heat is applied to the components, the mechanical strength of the components should go down because remarkable temperature change causes deformity inside components. And an excessively long soldering time or high soldering temperature results in leaching of the outer electrodes, causing poor adhesion or a reduction in capacitance value due to loss of contact between electrodes and end termination.
- In order to prevent mechanical damage in the components, preheating shoud be required for the both components and the PCB board. Preheating conditions are shown in table 2. It is required to keep temperature differential between the soldering and the components surface (ΔT) as small as possible.

When components are immersed in solvent after mounting, be sure to maintain the temperature difference between the component and solvent within the range shown in Table 2.

Do not apply flow soldering to chips not listed in Table 2.

Table 2

Part Number	Temperature Differential
GRM18/21/31	
LLL21/31	AT-1500
ERB18/21	∆T≦150℃
GQM18/21	

Recommended Conditions

	Pb-Sn Solder	Lead Free Solder
Peak Temperature	240-250°C	250-260°C
Atmosphere	Air	N2

Pb-Sn Solder: Sn-37Pb

Lead Free Solder: Sn-3.0Ag-0.5Cu

 Optimum Solder Amount for Flow Soldering The top of the solder fillet should be lower than the thickness of components. If the solder amount is excessively big, the risk of cracking is higher during board bending or under any other stressful conditions.

Continued on the following page. \square

Continued from the preceding page.

6. Correction with a Soldering Iron

- (1) For Chip Type Capacitors
- When sudden heat is applied to the components by soldering iron, the mechanical strength of the components should go down because remarkable temperature change causes deformity inside components. In order to prevent mechanical damage in the components, preheating should be required for both of the components and the PCB board. Preheating conditions are shown in table 3. It is required to keep temperature differential between the soldering and the components surface (ΔT) as small as possible. After soldering, it is not allowed to cool it down rapidly.

Optimum Solder Amount when Corrections Are Made Using a Soldering Iron

The top of the solder fillet should be lower than the thickness of components. If the solder amount is excessively big, the risk of cracking is higher during board bending or under any other stressful conditions. Soldering iron ø3mm or smaller should be required. And it is necessary to keep a distance between the soldering iron and the components without direct touch. Thread solder with ø0.5mm or smaller is required for soldering.

7. Washing

Excessive output of ultrasonic oscillation during cleaning causes PCBs to resonate, resulting in cracked chips or broken solder. Take note not to vibrate PCBs.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND FUMING WHEN THE PRODUCT IS USED.

Table 3

Table 3			
Part Number	Temperature Differential	Peak Temperature	Atmosphere
GRM15/18/21/31 GJM15 LLL15/18/21/31 GQM18/21 ERB18/21	∆T≦190℃	300°C max. 3 seconds max. / termination	Air
GRM32/43/55 GNM LLA18/21/31 LLM21/31 ERB32	∆T≦130℃	270°C max. 3 seconds max. / termination	Air

*Applicable for both Pb-Sn and Lead Free Solder.

Pb-Sn Solder: Sn-37Pb

Lead Free Solder: Sn-3.0Ag-0.5Cu

Notice

Rating

Die Bonding/Wire Bonding (GMA Series)

- 1. Die Bonding of Capacitors
- •Use the following materials Brazing alloy:
- Au-Sn (80/20) 300 to 320 degree C in N2 atmosphere •Mounting
- Control the temperature of the substrate so that it matches the temperature of the brazing alloy.
- (2) Place brazing alloy on substrate and place the capacitor on the alloy. Hold the capacitor and gently apply the load. Be sure to complete the operation in 1 minute.

2. Wire Bonding

•Wire Gold wire:

20 micro m (0.0008 inch), 25 micro m (0.001 inch) diameter

•Bonding

- (1) Thermocompression, ultrasonic ball bonding.
- (2) Required stage temperature : 200 to 250 degree C
- (3) Required wedge or capillary weight : 0.5N to 2N.
- (4) Bond the capacitor and base substrate or other devices with gold wire.

ANote • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
 • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
 07.2.6

Notice

■ Notice (Soldering and Mounting)

1. PCB Design

(1) Notice for Pattern Forms

Unlike leaded components, chip components are susceptible to flexing stresses since they are mounted directly on the substrate.

They are also more sensitive to mechanical and thermal stresses than leaded components.

Excess solder fillet height can multiply these stresses and cause chip cracking. When designing substrates, take land patterns and dimensions into consideration to eliminate the possibility of excess solder fillet height.

Pattern Forms

Notice

Continued from the preceding page.

(2) Land Dimensions

Table 1 Flow Soldering Method

Dimensions Part Number	Dimensions (L×W)	а	b	С
GRM18 GQM18	1.6×0.8	0.6—1.0	0.8-0.9	0.6—0.8
GRM21 GQM21	2.0×1.25	1.0-1.2	0.9—1.0	0.8-1.1
GRM31	3.2×1.6	2.2-2.6	1.0-1.1	1.0-1.4
LLL21	1.25×2.0	0.4-0.7	0.5-0.7	1.4—1.8
LLL31	1.6×3.2	0.6-1.0	0.8-0.9	2.6-2.8
ERB18	1.6×0.8	0.6-1.0	0.8-0.9	0.6-0.8
ERB21	2.0×1.25	1.0-1.2	0.9-1.0	0.8-1.1

(in mm)

Table 2 Reflow Soldering Method

Dimensions Part Number	Dimensions (L×W)	а	b	С	
GRM02	0.4×0.2	0.16-0.2	0.12-0.18	0.2-0.23	
GRM03	0.6×0.3	0.2-0.3	0.2-0.35	0.2-0.4	
GJM03					
GRM15	1.0×0.5	0.3-0.5	0.35-0.45	0.4—0.6	
GJM15					
GRM18	1.6×0.8	0.6-0.8	0.6-0.7	0.6-0.8	
GQM18	1.070.0	0.0 0.0	0.0 0.7	0.0 0.0	
GRM21	2.0×1.25	1.0-1.2	0.6-0.7	0.8-1.1	
GQM21	2.0×1.25	1.0-1.2	0.0-0.7	0.6-1.1	
GRM31	3.2×1.6	2.2-2.4	0.8-0.9	1.0-1.4	
GRM32	3.2×2.5	2.0-2.4	1.0-1.2	1.8-2.3	
GRM43	4.5×3.2	3.0-3.5	1.2-1.4	2.3-3.0	
GRM55	5.7×5.0	4.0-4.6	1.4-1.6	3.5-4.8	
LLL15	0.5×1.0	0.15-0.2	0.2-0.3	0.7-1.0	
LLL18	0.8×1.6	0.2-0.4	0.3-0.4	1.0-1.4	
LLL21	1.25×2.0	0.4—0.6	0.3-0.5	1.4-1.8	
LLL31	1.6×3.2	0.6-0.8	0.6-0.7	2.6-2.8	
ERB18	1.6×0.8	0.6-0.8	0.6-0.7	0.6-0.8	
ERB21	2.0×1.25	1.0-1.2	0.6-0.7	0.8-1.1	
ERB32	3.2×2.5	2.0-2.4	1.0-1.2	1.8-2.3	

(in mm)

ANote • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
 • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
 07.2.6

Notice

Continued from the preceding page.

GNM, LLA Series for Reflow Soldering Method

Table 3 GNM, LLA Series for Reflow Soldering Land Dimensions

Part Number	Dimensions (mm)						
Fait Number	L	W	а	b	С	р	
GNM1M2	1.37	1.0	0.4 to 0.5	0.35 to 0.45	0.3 to 0.35	0.64	
GNM212	2.0	1.25	0.6 to 0.7	0.5 to 0.7	0.4 to 0.5	1.0	
GNM214	2.0	1.25	0.6 to 0.7	0.5 to 0.7	0.25 to 0.35	0.5	
GNM314	3.2	1.6	0.8 to 1.0	0.7 to 0.9	0.3 to 0.4	0.8	
LLA18	1.6	0.8	0.3 to 0.4	0.25 to 0.4	0.2 to 0.28	0.4	
LLA21	2.0	1.25	0.7 to 0.8	0.4 to 0.6	0.2 to 0.3	0.5	
LLA31	3.2	1.6	0.8 to 1.0	0.7 to 0.9	0.3 to 0.4	0.8	

• LLM Series for Reflow Soldering Method

Table 4 LLM Series for Reflow Soldering Land Dimensions

Part Number	Dimensions (mm)						
Fait Number	а	b, b'	c, c'	d	е	f	р
LLM21	0.6 to 0.8	(0.3 to 0.5)	0.3	2.0 to 2.6	1.3 to 1.8	1.4 to 1.6	0.5
LLM31	1.0	(0.3 to 0.5)	0.4	3.2 to 3.6	1.6 to 2.0	2.6	0.8

b=(c-e)/2, b'=(d-f)/2

2. Adhesive Application

- Thin or insufficient adhesive causes chips to loosen or become disconnected when flow soldered. The amount of adhesive must be more than dimension c shown in the drawing at right to obtain enough bonding strength. The chip's electrode thickness and land thickness must be taken into consideration.
- Low viscosity adhesive causes chips to slip after mounting. Adhesive must have a viscosity of 5000Pa ⋅s (500ps) min. (at 25°C)
- Adhesive Coverage*

Adhesive Coverage*
0.05mg min.
0.1mg min.
0.15mg min.

*Nominal Value

Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., Itd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
• This PDF catalog is downloaded from the website of Murata Manufacturing co., Itd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Notice

Continued from the preceding page.

3. Adhesive Curing

Insufficient curing of the adhesive causes chips to disconnect during flow soldering and causes deteriorated insulation resistance between outer electrodes due to moisture absorption.

Control curing temperature and time in order to prevent insufficient hardening.

Inverting the PCB

Make sure not to impose an abnormal mechanical shock on the PCB.

4. Flux Application

- An excessive amount of flux generates a large quantity of flux gas, causing deteriorated solderability. So apply flux thinly and evenly throughout. (A foaming system is generally used for flow soldering).
- Flux containing too high a percentage of halide may cause corrosion of the outer electrodes unless sufficiently

5. Flow Soldering

 Set temperature and time to ensure that leaching of the outer electrode does not exceed 25% of the chip end area as a single chip (full length of the edge A-B-C-D shown below) and 25% of the length A-B shown below as mounted on substrate. cleaned. Use flux with a halide content of 0.2wt% max. But do not use strong acidic flux.

Wash thoroughly because water soluble flux causes deteriorated insulation resistance between outer electrodes unless sufficiently cleaned.

(Reference Data 6. Thermal shock) (Reference Data 7. Solder heat resistance)

Others

1. Resin Coating

When selecting resin materials, select those with low contraction.

 Circuit Design These capacitors in this catalog are not safety recognized products

3. Remarks

The above notices are for standard applications and conditions. Contact us when the products are used in special mounting conditions. Select optimum conditions for operation as they determine the reliability of the product after assembly. The data herein are given in typical values, not guaranteed ratings.

- 1. Solderability
- (1) Test Method

Subject the chip capacitor to the following conditions. Then apply flux (an ethanol solution of 25% rosin) to the chip and dip it in 230°C eutectic solder for 2 seconds. Conditions:

Expose prepared at room temperature (for 6 months and 12 months, respectively)

Prepared at high temperature (for 100 hours at 85°) Prepared left at high humidity (for 100 hours under 90%RH to 95%RH at 40°C)

Table 1

Sample	Initial State	Prepared at Room Temperature		Prepared at High Temperature for	Prepared at High Humidity for 100 Hours at 90 to 95% RH and 40℃	
Sample	Sample Initial State 6 months		12 months	100 Hours at 85℃		
GRM21 for flow/reflow soldering	95 to 100%	95 to 100%	95%	90 to 95%	95%	

2. Board Bending Strength for Solder Fillet Height

(1) Test Method

Solder the chip capacitor to the test PCB with the amount of solder paste necessary to achieve the fillet heights. Then bend the PCB using the method illustrated and measure capacitance.

(2) Test Samples

GRM21: 5C/R7/F5 Characteristics T=0.6mm

(3) Acceptance Criteria

Products should be determined to be defective if the change in capacitance has exceeded the values specified in Table 2.

Characteristics	Change in Capacitance	
5C	Within \pm 5% or \pm 0.5pF, whichever is greater	
R7	Within $\pm 12.5\%$	
F5	Within ±20%	

(2) Test Samples

GRM21 : Products for flow/reflow soldering.

(3) Acceptance Criteria With a 60-power optical microscope, measure the surface area of the outer electrode that is covered with solder.

(4) Results

Refer to Table 1.

Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product sing the provided for the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product specifications before ordering.
 This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Reference Data

Continued from the preceding page.

(4) Results

3. Temperature Cycling for Solder Fillet Height

(1) Test Method

Solder the chips to the substrate of various test fixtures using sufficient amounts of solder to achieve the required fillet height. Then subject the fixtures to the cycle illustrated below 200 times.

soldering.

Glass epoxy or paper phenol substrates are typically used for flow soldering.

2 Material

Alumina	(Thickness: 0.64mm)
Glass epoxy	(Thickness: 1.64mm)
Paper phenol	(Thickness: 1.64mm)

③ Land Dimension

Continued from the preceding page.

(2) Test Samples

GRM21 5C/R7/F5 Characteristics T=0.6mm

(3) Acceptance Criteria

Products are determined to be defective if the change in capacitance has exceeded the values specified in Table 3.

Table 3

Characteristics	Change in Capacitance
5C	Within $\pm 2.5\%$ or ± 0.25 pF, whichever is greater
R7	Within ±7.5%
F5	Within ±20%

(4) Results

Continued from the preceding page.

4. Board Bending Strength for Board Material

(1) Test Method

Solder the chip to the test board. Then bend the board using the method illustrated below, to measure capacitance.

(2) Test Samples

GRM21 5C/R7/F5 Characteristics T=0.6mm typical

(3) Acceptance Criteria

Products should be determined to be defective if the change in capacitance has exceeded the values specified in Table 4.

Table 4

Characteristics	Change in Capacitance
5C	Within \pm 5% or \pm 0.5pF, whichever is greater
R7	Within $\pm 12.5\%$
F5	Within ±20%

(4) Results

Continued from the preceding page.

5. Break Strength

(1) Test Method

Place the chip on a steel plate as illustrated on the right. Increase load applied to a point near the center of the test sample.

(2) Test Samples

GRM21 5C/R7/F5 Characteristics GRM31 5C/R7/F5 Characteristics

(3) Acceptance Criteria

Define the load that has caused the chip to break or crack, as the bending force.

(4) Explanation

Break strength, P, is proportionate to the square of the thickness of the ceramic element and is expressed as a curve of secondary degree.

R

F5

1.2

1.6

5

0.8

Thickness of Ceramic Element (mm)

The formula is:

D _	$2\gamma WT^2$	(NI)
F= .	3L	(N)

W: Width of ceramic element	(mm)
T: Thickness of element	(mm)
L: Distance between fulcrums	(mm)
γ: Bending stress	(N/mm²)

GRM21

140

120

100

80

60

40

20

0

0

Bending-break Strength (N)

(5) Results

Dipping Speed : 25mm/sec. Chip Capacitor Solder Bath 25°C 2 sec. Time

6. Thermal Shock

(1) Test method

After applying flux (an ethanol solution of 25% rosin), dip the chip in a solder bath (6×4 eutectic solder) in accordance with the following conditions:

0.4

(2) Test samples

GRM21 5C/R7/F5 Characteristics T=0.6mm typical

(3) Acceptance criteria

Visually inspect the test sample with a 60-power optical microscope. Chips exhibiting breaks or cracks should be determined to be defective.

- Continued from the preceding page.
- (4) Results

7. Solder Heat Resistance

(1) Test Method

1) Reflow soldering:

Apply about 300 µm of solder paste over the alumina substrate. After reflow soldering, remove the chip and check for leaching that may have occurred on the outer electrode.

2 Flow soldering:

After dipping the test sample with a pair of tweezers in wave solder (eutectic solder), check for leaching that may have occurred on the outer electrode.

(2) Test samples

GRM21: For flow/reflow soldering T=0.6mm

(3) Acceptance criteria

The starting time of leaching should be defined as the time when the outer electrode has lost 25% of the total edge length of A-B-C-D as illustrated:

(4) Results

3 Dip soldering:

After dipping the test sample with a pair of tweezers in static solder (eutectic solder), check for leaching that may have occurred on the outer electrode.

(4) Flux to be used: An ethanol solution of 25% rosin.

20

30

Leaching Starting Time (sec.)

40

50

Continued from the preceding page.

8. Thermal Shock when Making Corrections with a Soldering Iron

(1) Test Method

Apply a soldering iron meeting the conditions below to the soldered joint of a chip that has been soldered to a paper phenol board, while supplying wire solder. (Note: the soldering iron tip should not directly touch the ceramic element of the chip.)

(2) Test Samples

GRM21 5C/R7/F5 Characteristics T=0.6mm

(3) Acceptance Criteria for Defects

Observe the appearance of the test sample with a 60-power optical microscope. Those units displaying any breaks or cracks are determined to be defective.

Mote • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
 • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
 07.2.6

Chip Monolithic Ceramic Capacitors

muRata

Medium Voltage Low Dissipation Factor

Features

- 1. Low-loss and suitable for high frequency circuits
- 2. Murata's original internal electrode structure realizes high flash-over voltage.
- 3. A new monolithic structure for small, surfacemountable devices capable of operating at high voltage levels
- 4. Sn-plated external electrodes realize good solderability.
- 5. Use the GRM21/31 type with flow or reflow soldering, and other types with reflow soldering only.

Applications

Ideal for use on high frequency pulse circuits such as snubber circuits for switching power supplies, DC-DC converters, ballasts (inverter fluorescent lamps), etc.

Dont Number	Dimensions (mm)							
Part Number	L	W	Т	e min.	g min.			
GRM21A	2.0 ±0.2	1.25 ±0.2	1.0 +00.3		0.7			
GRM31A	3.2 +0.2	1.6 +0.2	1.0 +0,-0.3					
GRM31B	3.2 ±0.2	1.6 ±0.2	1.25 +0,-0.3		1.5*			
GRM32A	3.2 +0.2	2.5 +0.2	1.0 +0,-0.3	0.3	1.5			
GRM32B	3.2 <u>1</u> 0.2	2.5 <u>1</u> 0.2	1.25 +0,-0.3					
GRM42A	4.5 ±0.3	2.0 ±0.2	1.0 +0,-0.3		2.9			

* GRM31A7U3D, GRM32A7U3D, GRM32B7U3D : 1.8mm min.

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GRM21A7U2E101JW31D	DC250	U2J (EIA)	100 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM21A7U2E151JW31D	DC250	U2J (EIA)	150 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM21A7U2E221JW31D	DC250	U2J (EIA)	220 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM21A7U2E331JW31D	DC250	U2J (EIA)	330 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM21A7U2E471JW31D	DC250	U2J (EIA)	470 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM21A7U2E681JW31D	DC250	U2J (EIA)	680 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM21A7U2E102JW31D	DC250	U2J (EIA)	1000 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM21A7U2E152JW31D	DC250	U2J (EIA)	1500 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM21A7U2E222JW31D	DC250	U2J (EIA)	2200 ±5%	2.0	1.25	1.0	0.7	0.3 min.
GRM31A7U2E332JW31D	DC250	U2J (EIA)	3300 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2E472JW31D	DC250	U2J (EIA)	4700 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31B7U2E682JW31L	DC250	U2J (EIA)	6800 ±5%	3.2	1.6	1.25	1.5	0.3 min.
GRM31B7U2E103JW31L	DC250	U2J (EIA)	10000 ±5%	3.2	1.6	1.25	1.5	0.3 min.
GRM31A7U2J100JW31D	DC630	U2J (EIA)	10 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J150JW31D	DC630	U2J (EIA)	15 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J220JW31D	DC630	U2J (EIA)	22 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J330JW31D	DC630	U2J (EIA)	33 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J470JW31D	DC630	U2J (EIA)	47 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J680JW31D	DC630	U2J (EIA)	68 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J101JW31D	DC630	U2J (EIA)	100 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J151JW31D	DC630	U2J (EIA)	150 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J221JW31D	DC630	U2J (EIA)	220 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J331JW31D	DC630	U2J (EIA)	330 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J471JW31D	DC630	U2J (EIA)	470 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J681JW31D	DC630	U2J (EIA)	680 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U2J102JW31D	DC630	U2J (EIA)	1000 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM32A7U2J152JW31D	DC630	U2J (EIA)	1500 ±5%	3.2	2.5	1.0	1.5	0.3 min.
GRM32A7U2J222JW31D	DC630	U2J (EIA)	2200 ±5%	3.2	2.5	1.0	1.5	0.3 min.
GRM31A7U3A100JW31D	DC1000	U2J (EIA)	10 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A150JW31D	DC1000	U2J (EIA)	15 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A220JW31D	DC1000	U2J (EIA)	22 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A330JW31D	DC1000	U2J (EIA)	33 ±5%	3.2	1.6	1.0	1.5	0.3 min.

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GRM31A7U3A470JW31D	DC1000	U2J (EIA)	47 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A680JW31D	DC1000	U2J (EIA)	68 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A101JW31D	DC1000	U2J (EIA)	100 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A151JW31D	DC1000	U2J (EIA)	150 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A221JW31D	DC1000	U2J (EIA)	220 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31A7U3A331JW31D	DC1000	U2J (EIA)	330 ±5%	3.2	1.6	1.0	1.5	0.3 min.
GRM31B7U3A471JW31L	DC1000	U2J (EIA)	470 ±5%	3.2	1.6	1.25	1.5	0.3 min.
GRM31A7U3D100JW31D	DC2000	U2J (EIA)	10 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D120JW31D	DC2000	U2J (EIA)	12 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D150JW31D	DC2000	U2J (EIA)	15 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D180JW31D	DC2000	U2J (EIA)	18 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D220JW31D	DC2000	U2J (EIA)	22 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D270JW31D	DC2000	U2J (EIA)	27 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D330JW31D	DC2000	U2J (EIA)	33 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D390JW31D	DC2000	U2J (EIA)	39 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D470JW31D	DC2000	U2J (EIA)	47 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D560JW31D	DC2000	U2J (EIA)	56 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM31A7U3D680JW31D	DC2000	U2J (EIA)	68 ±5%	3.2	1.6	1.0	1.8	0.3 min.
GRM32A7U3D820JW31D	DC2000	U2J (EIA)	82 ±5%	3.2	2.5	1.0	1.8	0.3 min.
GRM32A7U3D101JW31D	DC2000	U2J (EIA)	100 ±5%	3.2	2.5	1.0	1.8	0.3 min.
GRM32A7U3D121JW31D	DC2000	U2J (EIA)	120 ±5%	3.2	2.5	1.0	1.8	0.3 min.
GRM32A7U3D151JW31D	DC2000	U2J (EIA)	150 ±5%	3.2	2.5	1.0	1.8	0.3 min.
GRM32B7U3D181JW31L	DC2000	U2J (EIA)	180 ±5%	3.2	2.5	1.25	1.8	0.3 min.
GRM32B7U3D221JW31L	DC2000	U2J (EIA)	220 ±5%	3.2	2.5	1.25	1.8	0.3 min.
GRM42A7U3F270JW31L	DC3150	U2J (EIA)	27 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A7U3F330JW31L	DC3150	U2J (EIA)	33 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A7U3F390JW31L	DC3150	U2J (EIA)	39 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A7U3F470JW31L	DC3150	U2J (EIA)	47 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A7U3F560JW31L	DC3150	U2J (EIA)	56 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A7U3F680JW31L	DC3150	U2J (EIA)	68 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A7U3F820JW31L	DC3150	U2J (EIA)	82 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A7U3F101JW31L	DC3150	U2J (EIA)	100 ±5%	4.5	2.0	1.0	2.9	0.3 min.

Specifications and Test Methods

No.	lte	em	Specifications	Test Method
1	Operating Temperatu		-55 to +125℃	_
2	Appearar	nce	No defects or abnormalities	Visual inspection
3	Dimensio	ons	Within the specified dimension	Using calipers
4	Dielectric	: Strength	No defects or abnormalities	No failure should be observed when voltage in Table is applied between the terminations for 1 to 5 sec., provided the charge/ discharge current is less than 50mA. Rated voltage DC250V 200% of the rated voltage DC630V 150% of the rated voltage DC1kV, DC2kV 120% of the rated voltage DC3.15kV DC4095V
5	Insulation I (I.R.)	Resistance	More than 10,000MΩ	The insulation resistance should be measured with DC500 \pm 50V (DC250 \pm 25V in case of rated voltage: DC250V) and within 60 \pm 5 sec. of charging.
6	Capacita	nce	Within the specified tolerance	The capacitance/Q should be measured at the frequency and
7	Q		1,000 min.	Voltage shown as follows. Capacitance Frequency Voltage C<1,000pF
8	B Temperature -750		Temp. Coefficient —750±120 ppm/℃ (Temp. Range: +25 to +125℃) —750+120, —347 ppm/℃ (Temp. Range: —55 to +25℃)	The capacitance measurement should be made at each step specified in Table. Step Temperature (°C) 1 25±2 2 Min. Operating Temp.±3 3 25±2 4 Max. Operating Temp.±2 5 25±2
9	9 Adhesive Strength of Termination		No removal of the terminations or other defect should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 1. Then apply 10N force in the direction of the arrow. The soldering should be done using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board).
		Capacitance	Within the specified tolerance	The capacitor should be subjected to a simple harmonic motion
10	Vibration Resistance	ibration		 having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 min. This motion should be applied for a period of 2 hrs. in each of 3 mutually perpendicular directions (total of 6 hrs.).

Continued on the following page.

Specifications and Test Methods

Continued from the preceding page.

lo.	lte	em	Specifications	Test Method				
1	Deflection		(mm) a b c d 2.0×1.25 1.2 4.0 1.65	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 2. Then apply a force in the direction shown in Fig. 3. The soldering should be done using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. $\begin{array}{c} & & \\ & &$				
12	2 Solderability of Termination		75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in solder solution for 2±0.5 sec. Immersing speed: 25±2.5mm/s Temp. of solder: 245±5°C Lead Free Solder (Sn-3.0Ag-0.5Cu) 235±5°C H60A or H63A Eutectic Solder				
		Appearance	No marking defects	Preheat the capacitor at 120 to 150°C* for 1 min.				
		Capacitance Change	Within ±2.5%	Immerse the capacitor in solder solution at 260±5°C for 10±1 sec Let sit at room condition* for 24±2 hrs., then measure. Immersing speed: 25±2.5mm/s				
3	Resistance to Soldering	Q	1,000 min.					
	Heat	I.R.	More than 10,000MΩ	*Preheating for more than 3.2×2.5mm				
		Dielectric		Step Temperature Time 1 100 to 120°C 1 min.				
		Strength	In accordance with item No.4	2 170 to 200°C 1 min.				
		Annoaranco	No marking defects	Fix the capacitor to the supporting iig (glass epoxy board) shown				
		Appearance Capacitance Change	No marking defects Within ±2.5%	Fix the capacitor to the supporting jig (glass epoxy board) shown in Fig. 4. Perform the 5 cycles according to the 4 heat treatments listed in				
		Capacitance Change	Within ±2.5%	in Fig. 4. Perform the 5 cycles according to the 4 heat treatments listed in the following table.				
		Capacitance Change Q	Within ±2.5% 500 min.	in Fig. 4. Perform the 5 cycles according to the 4 heat treatments listed in				
		Capacitance Change	Within ±2.5%	in Fig. 4. Perform the 5 cycles according to the 4 heat treatments listed in the following table. Let sit for 24±2 hrs. at room condition*, then measure. <u>Step Temperature (°C) Time (min.)</u> <u>1 Min. Operating Temp.±3 30±3</u>				
4	Temperature Cycle	Capacitance Change Q	Within ±2.5% 500 min.	in Fig. 4. Perform the 5 cycles according to the 4 heat treatments listed in the following table. Let sit for 24±2 hrs. at room condition*, then measure. Step Temperature (°C)				
4	•	Capacitance Change Q	Within ±2.5% 500 min.	in Fig. 4. Perform the 5 cycles according to the 4 heat treatments listed in the following table. Let sit for 24±2 hrs. at room condition*, then measure. Step Temperature (°C) Time (min.) 1 Min. Operating Temp.±3 30±3 2 Room Temp. 2 to 3 3 Max. Operating Temp.±2 30±3				
4	•	Capacitance Change Q I.R. Dielectric	Within ±2.5% 500 min. More than 10,000MΩ	in Fig. 4. Perform the 5 cycles according to the 4 heat treatments listed in the following table. Let sit for 24±2 hrs. at room condition*, then measure. <u>Step Temperature (°C) Time (min.)</u> 1 Min. Operating Temp.±3 30±3 2 Room Temp. 2 to 3 3 Max. Operating Temp.±2 30±3 4 Room Temp. 2 to 3 <u>Step Temperature (°C)</u> <u>Step Temperature (°C)</u> <u>Step Temperature (°C)</u> <u>Time (min.)</u> 1 Min. Operating Temp.±3 30±3 <u>Construction</u> <u>Step Temperature (°C)</u> <u>Step </u>				
4	Cycle	Capacitance Change Q I.R. Dielectric Strength	Within ±2.5% 500 min. More than 10,000MΩ	in Fig. 4. Perform the 5 cycles according to the 4 heat treatments listed in the following table. Let sit for 24±2 hrs. at room condition*, then measure. <u>Step Temperature (°C) Time (min.)</u> 1 Min. Operating Temp.±3 30±3 2 Room Temp. 2 to 3 3 Max. Operating Temp.±2 30±3 4 Room Temp. 2 to 3 <u>3 Max. Operating Temp.±2 30±3</u> 4 Room Temp. 2 to 3 <u>5 clder resist</u> <u>5 clder resist</u> <u>5 clder resist</u> <u>6 clder resist</u> <u></u>				
	Cycle	Capacitance Change Q I.R. Dielectric Strength Appearance Capacitance	Within ±2.5% 500 min. More than 10,000MΩ In accordance with item No.4 No marking defects	in Fig. 4. Perform the 5 cycles according to the 4 heat treatments listed in the following table. Let sit for 24±2 hrs. at room condition*, then measure. <u>Step Temperature (°C) Time (min.)</u> <u>1 Min. Operating Temp.±3 30±3</u> <u>2 Room Temp. 2 to 3</u> <u>3 Max. Operating Temp.±2 30±3</u> <u>4 Room Temp. 2 to 3</u> <u>4 Room Temp. 2 to 3</u> <u>5 IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</u>				
	Cycle	Capacitance Change Q I.R. Dielectric Strength Appearance Capacitance Change	Within ±2.5% 500 min. More than 10,000MΩ In accordance with item No.4 No marking defects Within ±5.0%	in Fig. 4. Perform the 5 cycles according to the 4 heat treatments listed in the following table. Let sit for 24±2 hrs. at room condition*, then measure. <u>Step Temperature (°C) Time (min.)</u> 1 Min. Operating Temp.±3 30±3 2 Room Temp. 2 to 3 3 Max. Operating Temp.±2 30±3 4 Room Temp. 2 to 3 <u>3 Max. Operating Temp.±2 30±3</u> <u>4 Room Temp. 2 to 3</u> <u>5 IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</u>				
4	Cycle Humidity (Steady	Capacitance Change Q I.R. Dielectric Strength Appearance Capacitance Change Q	Within $\pm 2.5\%$ 500 min. More than $10,000M\Omega$ In accordance with item No.4 No marking defects Within $\pm 5.0\%$ 350 min.	in Fig. 4. Perform the 5 cycles according to the 4 heat treatments listed in the following table. Let sit for 24±2 hrs. at room condition*, then measure. <u>Step Temperature (°C) Time (min.)</u> 1 Min. Operating Temp.±3 30±3 2 Room Temp. 2 to 3 3 Max. Operating Temp.±2 30±3 4 Room Temp. 2 to 3 <u>3 Max. Operating Temp.±2 30±3</u> <u>4 Room Temp. 2 to 3</u> <u>5 Ide Faller</u> <u>5 Ide Fall</u>				
	Cycle Humidity (Steady	Capacitance Change Q I.R. Dielectric Strength Appearance Capacitance Change Q I.R. Dielectric	Within $\pm 2.5\%$ 500 min. More than 10,000MΩ In accordance with item No.4 No marking defects Within $\pm 5.0\%$ 350 min. More than 1,000MΩ	in Fig. 4. Perform the 5 cycles according to the 4 heat treatments listed in the following table. Let sit for 24±2 hrs. at room condition*, then measure. <u>Step Temperature (°C) Time (min.)</u> 1 Min. Operating Temp.±3 30±3 2 Room Temp. 2 to 3 3 Max. Operating Temp.±2 30±3 4 Room Temp. 2 to 3 <u>3 Max. Operating Temp.±2 30±3</u> <u>4 Room Temp. 2 to 3</u> <u>5 IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</u>				
	Cycle Humidity (Steady	Capacitance Change Q I.R. Dielectric Strength Appearance Capacitance Change Q I.R. Dielectric Strength	Within $\pm 2.5\%$ 500 min. More than 10,000MΩ In accordance with item No.4 No marking defects Within $\pm 5.0\%$ 350 min. More than 1,000MΩ In accordance with item No.4	in Fig. 4. Perform the 5 cycles according to the 4 heat treatments listed in the following table. Let sit for 24±2 hrs. at room condition*, then measure. <u>Step Temperature (°C) Time (min.)</u> <u>1 Min. Operating Temp.±3 30±3</u> <u>2 Room Temp.</u> 2 to 3 <u>3 Max. Operating Temp.±2 30±3</u> <u>4 Room Temp.</u> 2 to 3 <u>4 Room Temp.</u> 2 to 3 <u>5 Room Temp.</u> 2 to 3 <u>5 Room Temp.</u> 2 to 3 <u>5 Room Temp.</u> 2 to 3 <u>6 Room Temp.</u> 2 to 3 <u>6 Room Temp.</u> 2 to 3 <u>7 Room Temp.</u> 2 to 3 <u>8 Room Temp.</u>				
5	Humidity (Steady State)	Capacitance Change Q I.R. Dielectric Strength Appearance Capacitance Change Q I.R. Dielectric Strength Appearance Capacitance	Within $\pm 2.5\%$ 500 min. More than 10,000MΩ In accordance with item No.4 No marking defects Within $\pm 5.0\%$ 350 min. More than 1,000MΩ In accordance with item No.4 No marking defects Within $\pm 5.0\%$ 350 min. More than 1,000MΩ In accordance with item No.4 No marking defects	in Fig. 4. Perform the 5 cycles according to the 4 heat treatments listed in the following table. Let sit for 24±2 hrs. at room condition*, then measure. <u>Step Temperature (°C) Time (min.)</u> <u>1 Min. Operating Temp.±3 30±3</u> <u>2 Room Temp.</u> 2 to 3 <u>3 Max. Operating Temp.±2 30±3</u> <u>4 Room Temp.</u> 2 to 3 <u>3 Max. Operating Temp.±2 30±3</u> <u>4 Room Temp.</u> 2 to 3 <u>5 Cu </u>				
	Cycle Humidity (Steady	Capacitance Change Q I.R. Dielectric Strength Appearance Capacitance Change Q I.R. Dielectric Strength Appearance Capacitance Change	Within $\pm 2.5\%$ 500 min. More than 10,000MΩ In accordance with item No.4 No marking defects Within $\pm 5.0\%$ 350 min. More than 1,000MΩ In accordance with item No.4 No marking defects Within $\pm 3.0\%$	in Fig. 4. Perform the 5 cycles according to the 4 heat treatments listed in the following table. Let sit for 24±2 hrs. at room condition*, then measure. <u>Step Temperature (°C) Time (min.)</u> <u>1 Min. Operating Temp.±3 30±3</u> <u>2 Room Temp.</u> 2 to 3 <u>3 Max. Operating Temp.±2 30±3</u> <u>4 Room Temp.</u> 2 to 3 <u>4 Room Temp.</u> 2 to 3 <u>5 Room Temp.</u> 2 to 3 <u>6 Room Temp.</u> 2 to 3 <u>6 Room Temp.</u> 2 to 3 <u>7 Room Temp.</u> 2 to 3 <u>7 Room Temp.</u> 2 to 3 <u>8 Room Temp.</u>				

* "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Mote • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
 • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
 07.2.6

Chip Monolithic Ceramic Capacitors

Medium Voltage High Capacitance for General Use

Features

- 1. A new monolithic structure for small, high capacitance capable of operating at high voltage levels
- 2. Sn-plated external electrodes realizes good solderability.
- Use the GRM18/21/31 types with flow or reflow soldering, and other types with reflow soldering only.

Applications

- 1. Ideal for use on diode-snubber circuits for switching power supplies
- 2. Ideal for use as primary-secondary coupling for DC-DC converter
- 3. Ideal for use on line filters and ringer detectors for telephones, facsimiles and modems

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GRM188R72E221KW07D	DC250	X7R (EIA)	220pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM188R72E331KW07D	DC250	X7R (EIA)	330pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM188R72E471KW07D	DC250	X7R (EIA)	470pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM188R72E681KW07D	DC250	X7R (EIA)	680pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM188R72E102KW07D	DC250	X7R (EIA)	1000pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM21AR72E102KW01D	DC250	X7R (EIA)	1000pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM188R72E152KW07D	DC250	X7R (EIA)	1500pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM21AR72E152KW01D	DC250	X7R (EIA)	1500pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM188R72E222KW07D	DC250	X7R (EIA)	2200pF ±10%	1.6	0.8	0.8	0.4	0.2 to 0.5
GRM21AR72E222KW01D	DC250	X7R (EIA)	2200pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM21AR72E332KW01D	DC250	X7R (EIA)	3300pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM21AR72E472KW01D	DC250	X7R (EIA)	4700pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM21AR72E682KW01D	DC250	X7R (EIA)	6800pF ±10%	2.0	1.25	1.0	0.7	0.3 min.
GRM21BR72E103KW03L	DC250	X7R (EIA)	10000pF ±10%	2.0	1.25	1.25	0.7	0.3 min.
GRM31BR72E153KW01L	DC250	X7R (EIA)	15000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72E223KW01L	DC250	X7R (EIA)	22000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31CR72E333KW03L	DC250	X7R (EIA)	33000pF ±10%	3.2	1.6	1.6	1.2	0.3 min.
GRM31CR72E473KW03L	DC250	X7R (EIA)	47000pF ±10%	3.2	1.6	1.6	1.2	0.3 min.
GRM31BR72E683KW01L	DC250	X7R (EIA)	68000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM32QR72E683KW01L	DC250	X7R (EIA)	68000pF ±10%	3.2	2.5	1.5	1.2	0.3 min.
GRM31CR72E104KW03L	DC250	X7R (EIA)	0.10µF ±10%	3.2	1.6	1.6	1.2	0.3 min.
GRM32DR72E104KW01L	DC250	X7R (EIA)	0.10µF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM43QR72E154KW01L	DC250	X7R (EIA)	0.15µF ±10%	4.5	3.2	1.5	2.2	0.3 min.
GRM32DR72E224KW01L	DC250	X7R (EIA)	0.22µF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM43DR72E224KW01L	DC250	X7R (EIA)	0.22µF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM43DR72E334KW01L	DC250	X7R (EIA)	0.33µF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM55DR72E334KW01L	DC250	X7R (EIA)	0.33μF ±10%	5.7	5.0	2.0	3.2	0.3 min.
GRM43DR72E474KW01L	DC250	X7R (EIA)	0.47µF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM55DR72E474KW01L	DC250	X7R (EIA)	0.47µF ±10%	5.7	5.0	2.0	3.2	0.3 min.
GRM55DR72E105KW01L	DC250	X7R (EIA)	1.0μF ±10%	5.7	5.0	2.0	3.2	0.3 min.
GRM31BR72J102KW01L	DC630	X7R (EIA)	1000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72J152KW01L	DC630	X7R (EIA)	1500pF ±10%	3.2	1.6	1.25	1.2	0.3 min.

ANote • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
 • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
 OT.2.6

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GRM31BR72J222KW01L	DC630	X7R (EIA)	2200pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72J332KW01L	DC630	X7R (EIA)	3300pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72J472KW01L	DC630	X7R (EIA)	4700pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72J682KW01L	DC630	X7R (EIA)	6800pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR72J103KW01L	DC630	X7R (EIA)	10000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31CR72J153KW03L	DC630	X7R (EIA)	15000pF ±10%	3.2	1.6	1.6	1.2	0.3 min.
GRM32QR72J223KW01L	DC630	X7R (EIA)	22000pF ±10%	3.2	2.5	1.5	1.2	0.3 min.
GRM32DR72J333KW01L	DC630	X7R (EIA)	33000pF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM32DR72J473KW01L	DC630	X7R (EIA)	47000pF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM43QR72J683KW01L	DC630	X7R (EIA)	68000pF ±10%	4.5	3.2	1.5	2.2	0.3 min.
GRM43DR72J104KW01L	DC630	X7R (EIA)	0.10μF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM55DR72J154KW01L	DC630	X7R (EIA)	0.15µF ±10%	5.7	5.0	2.0	3.2	0.3 min.
GRM55DR72J224KW01L	DC630	X7R (EIA)	0.22µF ±10%	5.7	5.0	2.0	3.2	0.3 min.
GRM31BR73A471KW01L	DC1000	X7R (EIA)	470pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR73A102KW01L	DC1000	X7R (EIA)	1000pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR73A152KW01L	DC1000	X7R (EIA)	1500pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR73A222KW01L	DC1000	X7R (EIA)	2200pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR73A332KW01L	DC1000	X7R (EIA)	3300pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM31BR73A472KW01L	DC1000	X7R (EIA)	4700pF ±10%	3.2	1.6	1.25	1.2	0.3 min.
GRM32QR73A682KW01L	DC1000	X7R (EIA)	6800pF ±10%	3.2	2.5	1.5	1.2	0.3 min.
GRM32QR73A103KW01L	DC1000	X7R (EIA)	10000pF ±10%	3.2	2.5	1.5	1.2	0.3 min.
GRM32DR73A153KW01L	DC1000	X7R (EIA)	15000pF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM32DR73A223KW01L	DC1000	X7R (EIA)	22000pF ±10%	3.2	2.5	2.0	1.2	0.3 min.
GRM43DR73A333KW01L	DC1000	X7R (EIA)	33000pF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM43DR73A473KW01L	DC1000	X7R (EIA)	47000pF ±10%	4.5	3.2	2.0	2.2	0.3 min.
GRM55DR73A104KW01L	DC1000	X7R (EIA)	0.10µF ±10%	5.7	5.0	2.0	3.2	0.3 min.

Specifications and Test Methods

No.	Ite	em	Specifications	Test Method			
1	Operating Temperatu		_55 to +125℃	_			
2	Appearar	nce	No defects or abnormalities	Visual inspection			
3	Dimensio	ns	Within the specified dimensions	Using calipers			
4	Dielectric Strength		No defects or abnormalities	No failure should be observed when 150% of the rated voltage (200% of the rated voltage in case of rated voltage: DC250V, 120% of the rated voltage in case of rated voltage: DC1kV) is applied between the terminations for 1 to 5 sec., provided the charge/discharge current is less than 50mA.			
5	Insulation F (I.R.)	Resistance	C≧0.01μF: More than 100MΩ • μF C<0.01μF: More than 10,000MΩ	The insulation resistance should be measured with DC500±50V (DC250±25V in case of rated voltage: DC250V) and within 60±5 sec. of charging.			
6	Capacita	nce	Within the specified tolerance				
7	Dissipatio Factor (D		0.025 max.	 The capacitance/D.F. should be measured at a frequency of 1±0.2kHz and a voltage of AC1±0.2V(r.m.s.) 			
8	Capacitar Temperat Character	ure	Cap. Change Within ±15% (Temp. Range: −55 to +125℃)	The capacitance measurement should be made at each step specified in Table. Step Temperature (°C) 1 25 ± 2 2 Min. Operating Temp. ± 3 3 25 ± 2 4 Max. Operating Temp. ± 2 5 25 ± 2 •Pretreatment Perform a heat treatment at 150 ± 0 °C for 60 ± 5 min. and then let sit for 24 ± 2 hrs. at room condition*. Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 1. Then apply 10N force in the direction of the arrow. The soldering should be done using the reflow method and			
9	Adhesive Strength of Termination		No removal of the terminations or other defect should occur.	should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 10N (5N : Size 1.6×0.8mm only), 10±1s Glass Epoxy Board Fig. 1			
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board).			
		Capacitance	Within the specified tolerance	The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied			
10	Vibration Resistance	D.F.	0.025 max.	uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 min. This motion should be applied for a period of 2 hrs. in each of 3 mutually perpendicular directions (total of 6 hrs.).			
				Glass Epoxy Board			

* "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Continued on the following page.

Specifications and Test Methods

Continued from the preceding page.

	Continued from the preceding page.				
No.	lo. Item		Specifications	Test Method	
11	11 Deflection		No cracking or marking defects should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 2. Then apply a force in the direction shown in Fig. 3. The soldering should be done using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.	
			$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Gapacitance meter 45 45 (in mm) Fig. 3	
12	Solderability of Termination		75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in solder solution for 2±0.5 sec. Immersing speed: 25±2.5mm/s Temp. of solder: 245±5°C Lead Free Solder (Sn-3.0Ag-0.5Cu) 235±5°C H60A or H63A Eutectic Solder	
13	Resistance to Soldering Heat	Appearance Capacitance Change	No marking defects Within ±10%	Preheat the capacitor at 120 to 150° ° for 1 min. Immerse the capacitor in solder solution at $260\pm5^{\circ}$ ° for 10 ± 1 sec. Let sit at room condition* for 24 ± 2 hrs., then measure.	
		D.F.	0.025 max.	 Immersing speed: 25±2.5mm/s Pretreatment 	
		I.R.	C≥0.01μF: More than 100MΩ • μF C<0.01μF: More than 10,000MΩ	Perform a heat treatment at $150 \pm_{18}^{\circ}$ °C for 60 ± 5 min. and then let sit for 24±2 hrs. at room condition*.	
		Dielectric Strength	In accordance with item No.4	Step Temperature Time 1 100 to 120°C 1 min. 2 170 to 200°C 1 min.	
	Temperature Cycle	Appearance	No marking defects	Fix the capacitor to the supporting jig (glass epoxy board) shown	
		Capacitance Change	Within ±7.5%	 in Fig. 4. Perform the 5 cycles according to the 4 heat treatments listed in the following table. 	
		D.F.	0.025 max.	Let sit for 24 ± 2 hrs. at room condition*, then measure.	
14		I.R.	C≧0.01μF: More than 100MΩ • μF C<0.01μF: More than 10,000MΩ	Step Temperature (°C) Time (min.) 1 Min. Operating Temp.±3 30±3 2 Room Temp. 2 to 3	
				2 Room Temp. 2 to 3 3 Max. Operating Temp.±2 30±3 4 Room Temp. 2 to 3	
		Dielectric Strength	In accordance with item No.4	Pretreatment Perform a heat treatment at 150 ± 18 °C for 60±5 min. and then let sit for 24±2 hrs. at room condition*.	
15	Humidity (Steady State)	Appearance	No marking defects		
		Capacitance Change	Within ±15%	Let the capacitor sit at 40 ± 2 °C and relative humidity of 90 to 95% for 500^{+24}_{-20} hrs.	
		D.F.	0.05 max.	Remove and let sit for 24±2 hrs. at room condition*, then measure.	
		I.R.	C≥0.01µF: More than 10MΩ • µF C<0.01µF: More than 1,000MΩ	•Pretreatment Perform a heat treatment at 150^{+}_{-1} °C for 60±5 min. and then	
		Dielectric Strength	In accordance with item No.4	let sit for 24±2 hrs. at room condition*.	

* "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Specifications and Test Methods

Continued from the preceding page.

No.	lte	em	Specifications	Test Method
		Appearance	No marking defects	_ Apply 120% of the rated voltage (150% of the rated voltage in
		Capacitance Change	Within ±15% (rated voltage: DC250V, DC630V) Within ±20% (rated voltage: DC1kV)	case of rated voltage: DC250V, 110% of the rated voltage in case of rated voltage: DC1kV) for $1,000^{\pm48}$ hrs. at maximum
16	Life	D.F.	0.05 max.	operating temperature $\pm 3^{\circ}$ C. Remove and let sit for 24 ± 2 hrs. at room condition*, then measure.
10	Liic	I.R.	C≥0.01µF: More than 10MΩ • µF C<0.01µF: More than 1,000MΩ	The charge/discharge current is less than 50mA. •Pretreatment
		Dielectric Strength	In accordance with item No.4	Apply test voltage for 60 ± 5 min. at test temperature. Remove and let sit for 24 ± 2 hrs. at room condition*.
		Appearance	No marking defects	
	Humidity Loading	Capacitance Change	Within ±15%	Apply the rated voltage at 40 \pm 2°C and relative humidity of 90 to 95% for 500 \pm 2° hrs.
17	(Application:	D.F.	0.05 max.	Remove and let sit for 24±2 hrs. at room condition*, then measure.
17	DC250V, DC630V item)	I.R.	C≥0.01µF: More than 10MΩ • µF C<0.01µF: More than 1,000MΩ	Pretreatment Apply test voltage for 60±5 min. at test temperature.
		Dielectric Strength	In accordance with item No.4	Remove and let sit for 24 ± 2 hrs. at room condition*.

* "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Chip Monolithic Ceramic Capacitors

Only for LCD Backlight Inverter Circuit

Features

- 1. Low-loss and suitable for high frequency circuits
- 2. Murata's original internal electrode structure realizes high flash-over voltage.
- 3. A new monolithic structure for small, surfacemountable devices capable of operating at high voltage levels.
- 4. Sn-plated external electrodes realize good solderability.
- 5. Only for reflow soldering
- 6. The capacitors less than 22pF can be applied maximum 4.0kV peak to peak at 100kHz or less only for the ballast or the resonance usage in the LCD backlight inverter circuit.

Applications

Ideal for use as the ballast in LCD backlight inverter.

e +++	, g	e	
			⊢
	L		

Part Number	Dimensions (mm)					
Fait Number	L	W	Т	e min.	g min.	
GRM42A	4.5 ±0.3	2.0 ±0.2	1.0 +0, -0.3	0.3	2.9	

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GRM42A5C3F050DW01L	DC3150	COG (EIA)	5.0 ±0.5pF	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F100JW01L	DC3150	COG (EIA)	10 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F120JW01L	DC3150	COG (EIA)	12 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F150JW01L	DC3150	COG (EIA)	15 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F180JW01L	DC3150	COG (EIA)	18 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F220JW01L	DC3150	COG (EIA)	22 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F270JW01L	DC3150	COG (EIA)	27 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F330JW01L	DC3150	COG (EIA)	33 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F390JW01L	DC3150	COG (EIA)	39 ±5%	4.5	2.0	1.0	2.9	0.3 min.
GRM42A5C3F470JW01L	DC3150	COG (EIA)	47 ±5%	4.5	2.0	1.0	2.9	0.3 min.

Specifications and Test Methods

No.	o. Item		Specifications	Test Method		
1	Operating Temperatu	ire Range	−55 to +125℃	-		
2	Appearan	ice	No defects or abnormalities	Visual inspection		
3	Dimensio	ns	Within the specified dimension	Using calipers		
4	Dielectric	Strength	No defects or abnormalities	No failure should be observed when DC4095V is applied between the terminations for 1 to 5 sec., provided the charge/ discharge current is less than 50mA.		
5	Insulation F (I.R.)	Resistance	More than 10,000M Ω	The insulation resistance should be measured with DC500±50V and within 60±5 sec. of charging.		
6	Capacitar	nce	Within the specified tolerance	The capacitance/Q should be measured at a frequency of		
7	Q		1,000 min.	1±0.2MHz and a voltage of AC0.5 to 5V(r.m.s.)		
8	Capacitance		Temp. Coefficient 0±30 ppm/℃ (Temp. Range: +25 to +125℃) 0+30, -72 ppm/℃ (Temp. Range: -55 to +25℃)	The capacitance measurement should be made at each step specified in Table. Step Temperature (°C) 1 25±2 2 Min. Operating Temp.±3 3 25±2 4 Max. Operating Temp.±2 5 25±2		
9	9 Adhesive Strength of Termination		No removal of the terminations or other defect should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 1. Then apply 10N force in the direction of the arrow. The soldering should be done using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.		
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board).		
		Capacitance	Within the specified tolerance	The capacitor should be subjected to a simple harmonic motion		
10	Vibration Resistance	Q	1,000 min.	having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 min. This motion should be applied for a period of 2 hrs. in each of 3 mutually perpendicular directions (total of 6 hrs.).		
			No cracking or marking defects should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown		
11	Deflection			in Fig. 2. Then apply a force in the direction shown in Fig. 3. The soldering should be done using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. $ \frac{20}{10} \frac{50}{10} \frac{\text{Pressurizing}}{\text{Pressurize}} \frac{100 \text{ mm/s}}{(\text{in mm})} $ Fig. 2		
				Fig. 3		

Specifications and Test Methods

lo.	Ite	em	Specifications	Test Method
12	Solderabi Terminati		75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in solder solution for 2±0.5 sec. Immersing speed: 25±2.5mm/s Temp. of solder: 245±5°C Lead Free Solder (Sn-3.0Ag-0.5Cu) 235±5°C H60A or H63A Eutectic Solder
		Appearance	No marking defects	Preheat the capacitor as table.
		Capacitance Change	Within ±2.5%	Immerse the capacitor in solder solution at 260±5°C for 10±1 se Let sit at room condition* for 24±2 hrs., then measure. Immersing speed: 25±2.5mm/s
13	Resistance to Soldering	Q	1,000 min.	
	Heat	I.R.	More than 10,000M Ω	*Preheating
		Dielectric Strength	In accordance with item No.4	Step Temperature Time 1 100 to 120℃ 1 min. 2 170 to 200℃ 1 min.
		Appearance	No marking defects	Fix the capacitor to the supporting jig (glass epoxy board) show
		Capacitance Change	Within ±2.5%	in Fig. 4. Perform the 5 cycles according to the 4 heat treatments listed in the following table.
		Q	1,000 min.	Let sit for 24 ± 2 hrs. at room condition [*] , then measure.
	Temperature Cycle	I.R.	More than 10,000MΩ	Step Temperature (°C) Time (min.)
14		Dielectric Strength	In accordance with item No.4	1 Min. Operating Temp.±3 30±3 2 Room Temp. 2 to 3 3 Max. Operating Temp.±2 30±3 4 Room Temp. 2 to 3 4 Room Temp. 2 to 3 2 Image: Solid resist for the second seco
		Appearance	No marking defects	
	Humidity	Capacitance Change	Within ±5.0%	Let the capacitor sit at $40\pm2^{\circ}$ C and relative humidity of 90 to 95%
15	(Steady	Q	350 min.	for $500 \stackrel{+2.6}{-0}$ hrs. Remove and let sit for 24±2 hrs. at room condition*, then
	State)	I.R.	More than 1,000M Ω	measure.
		Dielectric Strength	In accordance with item No.4	
		Appearance	No marking defects	
		Capacitance Change	Within ±3.0%	Apply 120% of the rated voltage for $1,000 \stackrel{+}{=} \stackrel{a}{=} \stackrel{a}{=} hrs.$ at maximum operating temperature ± 3 °C.
16	Life	Q	350 min.	Remove and let sit for 24±2 hrs. at room condition*, then
		I.R.	More than 1,000M Ω	measure. The charge/discharge current is less than 50mA.
	-	Dielectric Strength	In accordance with item No.4	

* "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Chip Monolithic Ceramic Capacitors

muRata

Only for Information Devices/Tip & Ring

Features

- These items are designed specifically for telecommunications devices (IEEE802.3) in Ethernet LAN and primary-secondary coupling for DC-DC converter.
- 2. A new monolithic structure for small, high capacitance capable of operating at high voltage levels
- 3. Sn-plated external electrodes realizes good solderability.
- 4. Only for reflow soldering
- 5. The low-profile type (thickness: 1.5mm max.) is available. Fit for use on thinner type equipment.

Applications

- 1. Ideal for use on telecommunications devices in Ethernet LAN
- Ideal for use as primary-secondary coupling for DC-DC converter

		-	┶				
Dort Number		Dimensions (mm)					
Part Number	L	W	Т	g min.			
GR442Q	4.5 ±0.3	2.0 ±0.2	1.5 +0, -0.3				
GR443D	4.5 ±0.4	3.2 ±0.3	2.0 +0, -0.3	2.5			
GR443Q	4.5 ±0.4		1.5 +0, -0.3				
GR455D	5.7 ±0.4	5.0 ±0.4	2.0 +0, -0.3	3.2			

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GR442QR73D101KW01L	DC2000	X7R (EIA)	100 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D121KW01L	DC2000	X7R (EIA)	120 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D151KW01L	DC2000	X7R (EIA)	150 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D181KW01L	DC2000	X7R (EIA)	180 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D221KW01L	DC2000	X7R (EIA)	220 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D271KW01L	DC2000	X7R (EIA)	270 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D331KW01L	DC2000	X7R (EIA)	330 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D391KW01L	DC2000	X7R (EIA)	390 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D471KW01L	DC2000	X7R (EIA)	470 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D561KW01L	DC2000	X7R (EIA)	560 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D681KW01L	DC2000	X7R (EIA)	680 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D821KW01L	DC2000	X7R (EIA)	820 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D102KW01L	DC2000	X7R (EIA)	1000 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D122KW01L	DC2000	X7R (EIA)	1200 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR442QR73D152KW01L	DC2000	X7R (EIA)	1500 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GR443QR73D182KW01L	DC2000	X7R (EIA)	1800 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443QR73D222KW01L	DC2000	X7R (EIA)	2200 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443QR73D272KW01L	DC2000	X7R (EIA)	2700 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443QR73D332KW01L	DC2000	X7R (EIA)	3300 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443QR73D392KW01L	DC2000	X7R (EIA)	3900 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GR443DR73D472KW01L	DC2000	X7R (EIA)	4700 ±10%	4.5	3.2	2.0	2.5	0.3 min.
GR455DR73D103KW01L	DC2000	X7R (EIA)	10000 ±10%	5.7	5.0	2.0	3.2	0.3 min.

Specifications and Test Methods

No.	Ite	m	Specifications	Test Method			
1	Operating Temperatu	ire Range	_55 to +125℃	_			
2	Appearar	ice	No defects or abnormalities	Visual inspection			
3	Dimensio	ns	Within the specified dimensions	Using calipers			
4	4 Dielectric Strength		No defects or abnormalities	No failure should be observed when voltage in table is applied between the terminations, provided the charge/discharge current is less than 50mA. Rated voltage Test Voltage Time DC2kV 120% of the rated voltage 60±1 sec.			
5	5 Pulse Voltage		No self healing breakdowns or flash-overs have taken place in the capacitor.	AC1500V(r.m.s.) 60±1 sec. 10 impulse of alternating polarity is subjected. (5 impulse for each polarity) The interval between impulse is 60 sec. Applied Voltage: 2.5kV zero to peak			
6	Insulation F (I.R.)	Resistance	More than 6,000M Ω	The insulation resistance should be measured with DC500 \pm 50V and within 60 \pm 5 sec. of charging.			
7	Capacita	nce	Within the specified tolerance	The capacitance/D.F. should be measured at a frequency of			
8	Dissipatio Factor (D		0.025 max.	1 \pm 0.2kHz and a voltage of AC1 \pm 0.2V(r.m.s.)			
9	Capacitance 7 Temperature Characteristics		Cap. Change within ±15% (Temp. Range: −55 to +125℃)	The capacitance measurement should be made at each step specified in Table. $\begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			
10	0 Adhesive Strength of Termination		No removal of the terminations or other defect should occur.	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 1. Then apply 10N force in the direction of the arrow. The soldering should be done using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.			
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board).			
		Capacitance	Within the specified tolerance	The capacitor should be subjected to a simple harmonic motion			
11	Vibration Resistance	D.F.	0.025 max.	having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 min. This motion should be applied for a period of 2 hrs. in each of 3 mutually perpendicular directions (total of 6 hrs.).			

* "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Specifications and Test Methods

lo.	Ite	em	Specifications	Test Method			
2 Deflection		lection $\frac{1}{100}$ $\frac{1}{100}$		Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 2. Then apply a force in the direction shown in Fig. 3. The soldering should be done using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. $\frac{20}{10} \frac{50}{\text{pressurize}} \frac{10 \text{mm/s}}{\text{speed} : 1.0 \text{mm/s}}$			
13	3 Solderability of Termination		75% of the terminations are to be soldered evenly and continuously.	Fig. 3 Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in solder solution for 2±0.5 sec. Immersing speed: 25±2.5mm/s Temp. of solder: 245±5°C Lead Free Solder (Sn-3.0Ag-0.5Cu) 235±5°C H60A or H63A Eutectic Solder			
		Appearance Capacitance Change	No marking defects Within ±10%	Preheat the capacitor as table. Immerse the capacitor in solder solution at $260\pm5^{\circ}$ C for 10 ± 1 sec. Let sit at room condition* for 24 ± 2 hrs., then measure.			
		D.F.	0.025 max.	 Immersing speed: 25±2.5mm/s Pretreatment 			
4	Resistance to Soldering	I.R.	More than 1,000MΩ	Perform a heat treatment at 150 ±18 ℃ for 60±5 min. and then let sit for 24±2 hrs. at room condition*.			
		Dielectric Strength	In accordance with item No.4	Step Temperature Time 1 100 to 120°C 1 min. 2 170 to 200°C 1 min.			
		Appearance	No marking defects	Fix the capacitor to the supporting jig (glass epoxy board) shown			
		Capacitance Change	Within ±15%	 in Fig. 4. Perform the 5 cycles according to the 4 heat treatments listed in the following table. 			
		D.F.	0.05 max.	Let sit for 24±2 hrs. at room condition*, then measure.			
		I.R.	More than 3,000MΩ	Step Temperature (°C) Time (min.) 1 Min. Operating Temp.±3 30±3 2 Room Temp. 2 to 3 3 Max. Operating Temp.±2 30±3			
15	Temperature Cycle	Dielectric Strength	In accordance with item No.4	A Room Temp. 2 to 3 Pretreatment Perform a heat treatment at 150±1%°C for 60±5 min. and then let sit for 24±2 hrs. at room condition*.			
		Appearance	No marking defects				
	Humidity	Capacitance Change	Within ±15%	Let the capacitor sit at 40±2°C and relative humidity of 90 to 95% for 500 ^{±2} ^o / ₀ hrs. Remove and let sit for 24±2 hrs. at room condition*, then			
6	(Steady	D.F.	0.05 max.	measure.			
	(Steady State)	I.R.	More than 1,000M Ω	•Pretreatment			
		1.1		Perform a heat treatment at 150 ⁺ ₁ ⁰ [°] C for 60±5 min. and then			

Continued on the following page. \square

Specifications and Test Methods

Z	Continued from the preceding page.								
No.	o. Item		Specifications	Test Method					
		Appearance	No marking defects						
		Capacitance Change	Within ±20%	Apply 110% of the rated voltage for $1,000 \pm 48$ hrs. at maximum operating temperature $\pm 3^{\circ}$ C. Remove and let sit for 24 ± 2 hrs. at room condition*, then measure.					
17	Life	D.F.	0.05 max.	The charge/discharge current is less than 50mA.					
		I.R.	More than 2,000M Ω	Pretreatment Apply test voltage for 60±5 min. at test temperature.					
		Dielectric Strength	In accordance with item No.4	Remove and let sit for 24 ± 2 hrs. at room condition*.					

* "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Chip Monolithic Ceramic Capacitors

Only for Camera Flash Circuit

Features

- 1. Suitable for the trigger of the flash circuit, because real capacitance is stable during operating voltage
- 2. The thin type fit for thinner camera.
- 3. Sn-plated external electrodes realizes good solderability.
- 4. For flow and reflow soldering

Applications

For strobe circuit

Dont Number	Dimensions (mm)					
Part Number	L	W	Т	g min.		
GR731A			1.0 +0, -0.3			
GR731B	3.2 ±0.2	1.6 ±0.2	1.25 +0, -0.3	1.2		
GR731C			1.6 ±0.2			

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GR731AW0BB103KW01D	DC350	-	10000 ±10%	3.2	1.6	1.0	1.2	0.3 min.
GR731AW0BB153KW01D	DC350	-	15000 ±10%	3.2	1.6	1.0	1.2	0.3 min.
GR731BW0BB223KW01L	DC350	-	22000 ±10%	3.2	1.6	1.25	1.2	0.3 min.
GR731BW0BB333KW01L	DC350	-	33000 ±10%	3.2	1.6	1.25	1.2	0.3 min.
GR731CW0BB473KW03L	DC350	-	47000 ±10%	3.2	1.6	1.6	1.2	0.3 min.

Specifications and Test Methods

No.	Ite	em	Specifications	Test Method		
1	Operating Temperatu	ire Range	−55 to +125℃	_		
2	Appearar	nce	No defects or abnormalities	Visual inspection		
3	Dimensio	ns	Within the specified dimensions	Using calipers		
4	Dielectric Strength		No defects or abnormalities	No failure should be observed when DC500V is applied between the terminations for 1 to 5 sec., provided the charge/discharge current is less than 50mA.		
5	Insulation F (I.R.)	Resistance	C≧0.01μF: More than 100MΩ • μF C<0.01μF: More than 10,000MΩ	The insulation resistance should be measured with DC250 $\pm50V$ and within 60 ±5 sec. of charging.		
6	Capacita	nce	Within the specified tolerance	The capacitance/D.F. should be measured at a frequency of		
7	Dissipatio Factor (D		0.025 max.	1 ± 0.2 kHz and a voltage of AC1 ± 0.2 V(r.m.s.)		
8	Capacitance 8 Temperature Characteristics		Cap. Change Within ±10% (Apply DC350V bias) Within ±33 % (No DC bias) (Temp. Range : −55 to +125℃)	The capacitance measurement should be made at each step specified in Table. Step Temperature (°C) 1 25±2 2 Min. Operating Temp.±3 3 25±2 4 Max. Operating Temp.±2 5 25±2 •Pretreatment Perform a heat treatment at 150±9°°C for 60±5 min. and then let sit for 24±2 hrs. at room condition*. Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 1. Then apply 10N force in the direction of the arrow. The soldering should be done using the reflow method and		
9	Adhesive of Termin		No removal of the terminations or other defect should occur.	should be conducted with care so that the soldering is uniform and free of defects such as heat shock.		
		Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board).		
		Capacitance	Within the specified tolerance	The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied		
10	Vibration Resistance D.F.		0.025 max.	uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 min. This motion should be applied for a period of 2 hrs. in each of 3 mutually perpendicular directions (total of 6 hrs.).		

* "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Specifications and Test Methods

lo.	Ite	em	Specifications	Test Method			
11	1 Deflection		No cracking or marking defects should occur. $\begin{array}{c c} & & & & & & \\ \hline & & & & & \\ \hline & & & & &$	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 2. Then apply a force in the direction shown in Fig. 3. The soldering should be done using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. $\begin{array}{c} 20 & 50 \\ Fressurizing \\ speed: 1.0mm/s \\ Flexure=1 \\ 45 \\ flexure=1 \\ 45 \\ flexure=1 \\ fl$			
12	Solderability of Termination		75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in solder solution for 2±0.5 sec. Immersing speed: 25±2.5mm/s Temp. of solder: 245±5°C Lead Free Solder (Sn-3.0Ag-0.5Cu) 235±5°C H60A or H63A Eutectic Solder			
		Appearance	No marking defects				
	Decisiona	Capacitance Change	Within ±10%	Preheat the capacitor at 120 to 150° for 1 min. Immerse the capacitor in solder solution at $260\pm5^{\circ}$ for 10 ± 1			
13	Resistance to Soldering Heat	D.F.	0.025 max.	sec. Let sit at room condition* for 24±2 hrs., then measure. Immersing speed: 25±2.5mm/s			
		I.R.	C≥0.01μF: More than 100MΩ • μF C<0.01μF: More than 10,000MΩ	•Pretreatment Perform a heat treatment at 150 [±] ₁ 8 [°] C for 60±5 min. and then let sit for 24±2 hrs. at room condition*.			
		Dielectric Strength	In accordance with item No.4				
		Appearance	No marking defects	Fix the capacitor to the supporting jig (glass epoxy board) shown in Fig. 4.			
		Capacitance Change	Within ±7.5%	Perform the 5 cycles according to the 4 heat treatments listed in the following table.			
		D.F.	0.025 max.	Let sit for 24 ± 2 hrs. at room condition*, then measure.			
		I.R.	C≧0.01μF: More than 100MΩ • μF C<0.01μF: More than 10.000MΩ	Step Temperature (°C) Time (min.) 1 Min. Operating Temp.±3 30±3			
				2 Room Temp. 2 to 3 3 Max. Operating Temp.±2 30±3			
14	Temperature Cycle			4 Room Temp. 2 to 3 •Pretreatment Perform a heat treatment at 150 [±] ₁ % c for 60±5 min. and then let sit for 24±2 hrs. at room condition*. 10 10 10 10 10 10 Solder resist Glass Epoxy Board Fig. 4			
		Appearance	No marking defects				
		Capacitance Change	Within ±15%	Let the capacitor sit at $40\pm2^{\circ}$ and relative humidity of 90 to 95% for $500\pm^{2}_{0}$ hrs.			
15	Humidity (Stoady	D.F.	0.05 max.	Remove and let sit for 24±2 hrs. at room condition*, then measure.			
15	(Steady State)	I.R.	C≧0.01μF: More than 10MΩ • μF C<0.01μF: More than 1,000MΩ	 Pretreatment Perform a heat treatment at 150[±]₁⁰^o^c for 60±5 min. and then 			
	Dielectric Strength			let sit for 24 ± 2 hrs. at room condition*.			

* "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Specifications and Test Methods

Continued from the preceding page.

No.	Ite	m	Specifications	Test Method		
		Appearance	No marking defects			
		Capacitance Change	Within ±15%	Apply DC350V for 1,000 \pm^{48} hrs. at maximum operating temperature \pm 3°C. Remove and let sit for 24 \pm 2 hrs. at room		
16	Life	D.F.	0.05 max.	condition*, then measure. The charge/discharge current is less than 50mA.		
10	Life	I.R.	C≧0.01μF: More than 10MΩ • μF C<0.01μF: More than 1,000MΩ	•Pretreatment Apply test voltage for 60±5 min. at test temperature.		
		Dielectric Strength	In accordance with item No.4	Remove and let sit for 24±2 hrs. at room condition*.		
		Appearance	No marking defects			
		Capacitance Change	Within ±15%	Apply the rated voltage at $40\pm2^{\circ}$ and relative humidity of 90 to 95% for $500\pm^{24}_{0}$ hrs.		
17	Humidity	D.F.	0.05 max.	Remove and let sit for 24±2 hrs. at room condition*, then measure.		
.,	Loading	I.R.	C≥0.01µF: More than 10MΩ • µF C<0.01µF: More than 1,000MΩ	Pretreatment Apply test voltage for 60±5 min. at test temperature.		
	-	Dielectric Strength	In accordance with item No.4	Remove and let sit for 24±2 hrs. at room condition*.		

* "Room condition" Temperature: 15 to 35°c, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

Chip Monolithic Ceramic Capacitors

AC250V (r.m.s.) Type (Which Meet Japanese Law)

Features

- 1. Chip monolithic ceramic capacitor for AC lines
- 2. A new monolithic structure for small, high
- capacitance capable of operating at high voltage levels
- Sn-plated external electrodes realizes good solderability.
- 4. Only for reflow soldering
- 5. Capacitance 0.01 to 0.1uF for connecting lines and 470 to 4700pF for connecting lines to earth

Applications

Noise suppression filters for switching power supplies, telephones, facsimiles, modems

Reference standard

GA2 series obtains no safety approval. This series is based on JIS C 5102, JIS C 5150, and the standards of the electrical appliance and material safety law of Japan (separated table 4).

~~~	



			L	W				
Part Number		Dimensions (mm)						
Fait Number	L	W	Т	e min.	g min.			
GA242Q	4.5 ±0.3	2.0 ±0.2	1.5 +0, -0.3					
GA243D	4.5 ±0.4	3.2 ±0.3	2.0 +0, -0.3	0.3	2.5			
GA243Q	4.5 ±0.4	3.2 ±0.3	1.5 +0, -0.3	0.3				
GA255D	5.7 ±0.4	5.0 ±0.4	2.0 +0, -0.3		3.2			

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GA242QR7E2471MW01L	AC250 (r.m.s.)	X7R (EIA)	470pF ±20%	4.5	2.0	1.5	2.5	0.3 min.
GA242QR7E2102MW01L	AC250 (r.m.s.)	X7R (EIA)	1000pF ±20%	4.5	2.0	1.5	2.5	0.3 min.
GA243QR7E2222MW01L	AC250 (r.m.s.)	X7R (EIA)	2200pF ±20%	4.5	3.2	1.5	2.5	0.3 min.
GA243QR7E2332MW01L	AC250 (r.m.s.)	X7R (EIA)	3300pF ±20%	4.5	3.2	1.5	2.5	0.3 min.
GA243DR7E2472MW01L	AC250 (r.m.s.)	X7R (EIA)	4700pF ±20%	4.5	3.2	2.0	2.5	0.3 min.
GA243QR7E2103MW01L	AC250 (r.m.s.)	X7R (EIA)	10000pF ±20%	4.5	3.2	1.5	2.5	0.3 min.
GA243QR7E2223MW01L	AC250 (r.m.s.)	X7R (EIA)	22000pF ±20%	4.5	3.2	1.5	2.5	0.3 min.
GA243DR7E2473MW01L	AC250 (r.m.s.)	X7R (EIA)	47000pF ±20%	4.5	3.2	2.0	2.5	0.3 min.
GA255DR7E2104MW01L	AC250 (r.m.s.)	X7R (EIA)	0.10μF ±20%	5.7	5.0	2.0	3.2	0.3 min.



## **Specifications and Test Methods**

No.	Ite	em	Specifications	Test Method			
1	Operating Temperatu	ire Range	_55 to +125℃	-			
2	Appearan	ice	No defects or abnormalities	Visual inspection			
3	Dimensio	ns	Within the specified dimensions	Using calipers			
4	Dielectric Strength		No defects or abnormalities	No failure should be observed when voltage in table is appliedbetween the terminations for $60\pm1$ sec., provided thecharge/discharge current is less than 50mA.Nominal CapacitanceC \geq 10,000 pFAC575V (r.m.s.)C<10,000 pF			
5	Insulation F (I.R.)	Resistance	More than 2,000MΩ	The insulation resista and within 60±5 sec.		be measured with DC500±50V	
6	Capacitar	nce	Within the specified tolerance				
7	Dissipatio	on	0.025 max.	The capacitance/D.F 1±0.2kHz and a volt		neasured at a frequency of 0.2V (r.m.s.)	
				The capacitance measure specified in Table.	asurement sł	nould be made at each step	
				Step	-	Temperature (°C)	
	Conscille		Con Change	1 2	K #1	25±2 Operating Tamp +2	
8	Capacitar Temperat		Cap. Change Within ±15%	3	Min.	Operating Temp.±3 25±2	
0	Character		(Temp. Range: −55 to +125°C)	4	Max.	. Operating Temp.±2	
			- · ·	5		25±2	
				•Pretreatment Perform a heat treatment at $150 \pm_{10}^{\circ}$ °C for $60\pm5$ min. and then let sit for 24±2 hrs. at room condition*.			
9	Discharge Test (Application: Nominal Capacitance C<10,000pF)	Appearance	No defects or abnormalities	the capacitor (Cd) ch R3 W = 10kV V E Ct: Cap	acitor under	imes at 5 sec. intervals from voltage of specified.	
10	Adhesive Strength of Termination		No removal of the terminations or other detects should occur		Solder the capacitor to the testing jig (glass epoxy board) show in Fig. 1. Then apply 10N force in the direction of the arrow. The solderin should be done using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.		
		Appearance	No defects or abnormalities			(glass epoxy board).	
		Capacitance	Within the specified tolerance			d to a simple harmonic motion	
11	Vibration Resistance	D.F.	0.025 max.	uniformly between th frequency range, fror traversed in approxin for a period of 2 hrs. directions (total of 6 l	e approxima m 10 to 55Hz nately 1 min. in each of 3 hrs.).	n, the frequency being varied te limits of 10 and 55Hz. The and return to 10Hz, should be This motion should be applied mutually perpendicular	
			$r_{2}$			ZZSolder resist	

* "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa



## Specifications and Test Methods

۷o.	lte	em	Specifications	Test Method		
		No cracking or marking defects should occur.		Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 2. Then apply a force in the direction shown in Fig. 3. The solderin		
12	2 Deflection		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	should be done using the reflow method and should be conducted with care so that the soldering is uniform and free defects such as heat shock. $\underbrace{20_{speed: 1.0mm/s}^{0}}_{Pressurize}$		
13	3 Solderability of Termination 75% of the terminations are to be soldered evenly and continuously			Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in solder solution for 2±0.5 sec. Immersing speed: 25±2.5mm/s Temp. of solder: 245±5°C Lead Free Solder (Sn-3.0Ag-0.5Cu) 235±5°C H60A or H63A Eutectic Solder		
		Appearance	No marking defects	-		
	Humidity	Capacitance Change	Within ±15%	The capacitor should be subjected to $40\pm2^{\circ}$ C, relative humic		
14	Insulation	D.F.	0.05 max.	90 to 98% for 8 hrs., and then removed in room condition* for 16 hrs. until 5 cycles.		
		I.R. Dielectric Strength	More than 1,000MΩ In accordance with item No.4	-		
		Appearance	No marking defects	Preheat the capacitor as table. Immerse the capacitor in solder solution at 260±5°C for 10±1 sec. Let sit at room condition* for 24±2 hrs., then measure. •Immersing speed: 25±2.5mm/s •Pretreatment		
		Capacitance Change	Within ±10%			
	Resistance	D.F.	0.025 max.			
15		I.R.	More than 2,000MΩ	Perform a heat treatment at 150 ±18 ℃ for 60±5 min. and then let sit for 24±2 hrs. at room condition*. *Preheating		
		Dielectric Strength	In accordance with item No.4	Step         Temperature         Time           1         100 to 120°C         1 min.           2         170 to 200°C         1 min.		
		Appearance	No marking defects	Fix the capacitor to the supporting jig (glass epoxy board) shown		
		Capacitance Change	Within ±15%	Perform the 5 cycles according to the 4 heat treatments listed in the following table.		
		D.F.	0.05 max.	Let sit for $24\pm2$ hrs. at room condition*, then measure.		
		I.R.	More than 2,000MΩ	Step         Temperature (℃)         Time (min.)           1         Min. Operating Temp.±3         30±3		
				2         Room Temp.         2 to 3           3         Max. Operating Temp.±2         30±3           4         Room Temp.         2 to 3		
16	Temperature Cycle			•Pretreatment Perform a heat treatment at 150 ⁺ ₁ % °C for 60±5 min. and then let sit for 24±2 hrs. at room condition*.		

* "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa



### **Specifications and Test Methods**

Continued from the preceding page.

No.	Item	Specifications	Test Method				
	Appearance	No marking defects					
Humic	Capacitance Change	Within ±15%	Let the capacitor sit at $40\pm2^{\circ}$ and relative humidity of 90 to 95% for $500 \pm 2^{\circ}_{0}$ hrs. Remove and let sit for $24\pm2$ hrs. at room condition*, then				
17 (Stead	ly D.F.	0.05 max.	measure.				
State	) I.R.	More than 1,000M $\Omega$	•Pretreatment Perform a heat treatment at $150 \pm 10^{\circ}$ c for 60±5 min. and then				
	Dielectric Strength	In accordance with item No.4	let sit for $24\pm2$ hrs. at room condition*.				
	Appearance	No marking defects	Apply voltage and time as Table at 85±2℃. Remove and let sit				
	Capacitance Change	Within ±20%	for 24 $\pm$ 2 hrs. at room condition*, then measure. The charge / discharge current is less than 50mA.				
	D.F.	0.05 max.	Nominal Capacitance         Test Time         Test voltage           C≥10,000pF         1,000 ^{±4} 8 hrs.         AC300V (r.m.s.)				
18 Life	I.R.	More than 1,000MΩ	C<10,000pF 1,500 ⁺⁴⁸ / ₀ hrs. AC500V (r.m.s.)*				
	Dielectric Strength	In accordance with item No.4	<ul> <li>* Except that once each hour the voltage is increased to AC1,000V (r.m.s.) for 0.1 sec.</li> <li>• Pretreatment Apply test voltage for 60±5 min. at test temperature. Remove and let sit for 24±2 hrs. at room condition*.</li> </ul>				
	Appearance	No marking defects					
	Capacitance Change	Within ±15%	Apply the rated voltage at $40\pm2^{\circ}$ and relative humidity of 90 to 95% for $500\pm2^{\circ}$ hrs. Remove and let sit for $24\pm2$ hrs. at room condition*, then				
19 Humic Loadii	2   D F	0.05 max.	measure.				
Loadin	I.R.	More than 1,000M $\Omega$	•Pretreatment     Apply test voltage for 60±5 min. at test temperature.				
	Dielectric Strength In accordance with item No.4		Remove and let sit for 24±2 hrs. at room condition*.				

* "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

19



# **Chip Monolithic Ceramic Capacitors**



# Safety Standard Recognized Type GC (UL, IEC60384-14 Class X1/Y2)

### Features

- 1. Chip monolithic ceramic capacitor (certified as conforming to safety standards) for AC lines
- 2. A new monolithic structure for small, high capacitance capable of operating at high voltage levels
- Compared to lead type capacitors, this new capacitor is greatly downsized and low-profiled to 1/10 or less in volume, and 1/4 or less in height.
- 4. The type GC can be used as an X1-class and Y2-class capacitor, line-by-pass capacitor of UL1414.
- 5. +125 degree C guaranteed
- 6. Only for reflow soldering

### Applications

- 1. Ideal for use as Y capacitor or X capacitor for various switching power supplies
- 2. Ideal for modem applications



4	L	<del>∢</del> W	

Part Number	Dimensions (mm)						
Part Number	L	W	Т	e min.	g min.		
GA355D	5.7 ±0.4	5.0 ±0.4	2.0 ±0.3	0.3	4.0		

### Standard Recognition

$\overline{\ }$	Standard No.	Status of R	Recognition	Rated	
	Standard NO.	Type GB	Type GC	Voltage	
UL	UL1414	_	0*		
BSI		-	0		
VDE	EN132400	0	0	AC250V	
SEV	EN132400	0	0	(r.m.s.)	
SEMKO		0	0		
EN132400 Class		X2	X1, Y2		

*: Line By-pass only

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GA355DR7GC101KY02L	AC250 (r.m.s.)	X7R (EIA)	100 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GC151KY02L	AC250 (r.m.s.)	X7R (EIA)	150 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GC221KY02L	AC250 (r.m.s.)	X7R (EIA)	220 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GC331KY02L	AC250 (r.m.s.)	X7R (EIA)	330 ±10%	5.7	5.0	2.0	4.0	0.3 min.



# **Chip Monolithic Ceramic Capacitors**



 $\bigcirc$ 

# Safety Standard Recognized Type GD (IEC60384-14 Class Y3)

### Features

- 1. Available for equipment based on IEC/EN60950 and UL1950
- 2. The type GD can be used as a Y3-class capacitor.
- 3. A new monolithic structure for small, high capacitance capable of operating at high voltage levels
- 4. +125 degree C guaranteed
- 5. Only for reflow soldering
- 6. The low-profile type (thickness: 1.5mm max.) is available. Fit for use on thinner type equipment.

### Applications

- 1. Ideal for use on line filters and couplings for DAA modems without transformers
- 2. Ideal for use on line filters for information equipment



Part Number		Dir	mensions (mm)		
Part Number	L	W	Т	e min.	g min.
GA342A			1.0 +0, -0.3		
GA342D	4.5 ±0.3	2.0 ±0.2	2.0 ±0.3		
GA342Q			1.5 +0, -0.3	0.3	2.5
GA343D	4.5 ±0.4	3.2 +0.3	2.0 +0, -0.3		
GA343Q	4.5 ±0.4	J.∠ ±0.5	1.5 +0, -0.3		

### Standard Recognition

4.5×3.2mm and under

$\overline{}$	Standard C		Status of Recognitio		Rated
No.		Class	Type GD		Voltage
SEMKO	EN132400	Y3	0		AC250V(r.m.s.)
Applicatio	ons				
Size			tching power supplies	n	Communication etwork devices uch as a modem

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GA342D1XGD100JY02L	AC250 (r.m.s.)	SL (JIS)	10 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD120JY02L	AC250 (r.m.s.)	SL (JIS)	12 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD150JY02L	AC250 (r.m.s.)	SL (JIS)	15 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD180JY02L	AC250 (r.m.s.)	SL (JIS)	18 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGD220JY02L	AC250 (r.m.s.)	SL (JIS)	22 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342A1XGD270JW31L	AC250 (r.m.s.)	SL (JIS)	27 ±5%	4.5	2.0	1.0	2.5	0.3 min.
GA342A1XGD330JW31L	AC250 (r.m.s.)	SL (JIS)	33 ±5%	4.5	2.0	1.0	2.5	0.3 min.
GA342A1XGD390JW31L	AC250 (r.m.s.)	SL (JIS)	39 ±5%	4.5	2.0	1.0	2.5	0.3 min.
GA342A1XGD470JW31L	AC250 (r.m.s.)	SL (JIS)	47 ±5%	4.5	2.0	1.0	2.5	0.3 min.
GA342A1XGD560JW31L	AC250 (r.m.s.)	SL (JIS)	56 ±5%	4.5	2.0	1.0	2.5	0.3 min.
GA342A1XGD680JW31L	AC250 (r.m.s.)	SL (JIS)	68 ±5%	4.5	2.0	1.0	2.5	0.3 min.
GA342A1XGD820JW31L	AC250 (r.m.s.)	SL (JIS)	82 ±5%	4.5	2.0	1.0	2.5	0.3 min.
GA342QR7GD101KW01L	AC250 (r.m.s.)	X7R (EIA)	100 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD151KW01L	AC250 (r.m.s.)	X7R (EIA)	150 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD221KW01L	AC250 (r.m.s.)	X7R (EIA)	220 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD331KW01L	AC250 (r.m.s.)	X7R (EIA)	330 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD471KW01L	AC250 (r.m.s.)	X7R (EIA)	470 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD681KW01L	AC250 (r.m.s.)	X7R (EIA)	680 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD102KW01L	AC250 (r.m.s.)	X7R (EIA)	1000 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GD152KW01L	AC250 (r.m.s.)	X7R (EIA)	1500 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA343QR7GD182KW01L	AC250 (r.m.s.)	X7R (EIA)	1800 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GA343QR7GD222KW01L	AC250 (r.m.s.)	X7R (EIA)	2200 ±10%	4.5	3.2	1.5	2.5	0.3 min.
GA343DR7GD472KW01L	AC250 (r.m.s.)	X7R (EIA)	4700 ±10%	4.5	3.2	2.0	2.5	0.3 min.





# **Chip Monolithic Ceramic Capacitors**



# Safety Standard Recognized Type GF (IEC60384-14 Class Y2, X1/Y2)

### Features

- 1. Available for equipment based on IEC/EN60950 and UL1950. Besides, the GA352/355 types are available for equipment based on IEC/EN60065, UL1492, and UL6500
- 2. The type GF can be used as a Y2-class capacitor.
- 3. A new monolithic structure for small, high capacitance capable of operating at high voltage levels
- 4. +125 degree C guaranteed
- 5. Only for reflow soldering
- 6. The low-profile type (thickness: 1.5mm max.) is available. Fit for use on thinner type equipment.

### Applications

- 1. Ideal for use on line filters and couplings for DAA modems without transformers
- 2. Ideal for use on line filters for information equipment
- 3. Ideal for use as Y capacitor or X capacitor for various switching power supplies (GA352/355 types only)

				F	
Part Number		Dir	mensions (mm)		
Part Nulliber	L	W	Т	e min.	g min.
GA342A			1.0 +0, -0.3		
GA342D	4.5 ±0.3	2.0 +0.2	0.0.00		
073720	4.5 ±0.5	2.0 ±0.2	2.0 ±0.2*		2.5
GA342D GA342Q	4.5 ±0.5	2.0 ±0.2	2.0 ±0.2 [*] 1.5 +0, -0.3	0.2	2.5
	4.5 ±0.5	2.0 ±0.2 2.8 ±0.3		0.3	2.5
GA342Q	5.7 ±0.4	2.8 ±0.3	1.5 +0, -0.3	0.3	4.0
GA342Q GA352Q			1.5 +0, -0.3 1.5 +0, -0.3	0.3	

### Standard Recognition

$\langle$			Status of Recognition				
	Standard	Class	Туре	e GF	Rated		
	No.	Class	Size : 4.5×2.0mm	Size : 5.7×2.8mm and over	Voltage		
UL	UL1414	X1, Y2	-	0	AC250V		
SEMKO	EN132400	100 Y2 🔘		0	(r.m.s.)		
Applicatio	ons						

мμμ

Size	Switching power supplies	Communication network devices such as a modem
4.5×2.0mm	_	0
5.7×2.8mm and over	O	0

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GA342D1XGF100JY02L	AC250 (r.m.s.)	SL (JIS)	10 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF120JY02L	AC250 (r.m.s.)	SL (JIS)	12 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF150JY02L	AC250 (r.m.s.)	SL (JIS)	15 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF180JY02L	AC250 (r.m.s.)	SL (JIS)	18 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342D1XGF220JY02L	AC250 (r.m.s.)	SL (JIS)	22 ±5%	4.5	2.0	2.0	2.5	0.3 min.
GA342A1XGF270JW31L	AC250 (r.m.s.)	SL (JIS)	27 ±5%	4.5	2.0	1.0	2.5	0.3 min.
GA342A1XGF330JW31L	AC250 (r.m.s.)	SL (JIS)	33 ±5%	4.5	2.0	1.0	2.5	0.3 min.
GA342A1XGF390JW31L	AC250 (r.m.s.)	SL (JIS)	39 ±5%	4.5	2.0	1.0	2.5	0.3 min.
GA342A1XGF470JW31L	AC250 (r.m.s.)	SL (JIS)	47 ±5%	4.5	2.0	1.0	2.5	0.3 min.
GA342A1XGF560JW31L	AC250 (r.m.s.)	SL (JIS)	56 ±5%	4.5	2.0	1.0	2.5	0.3 min.
GA342A1XGF680JW31L	AC250 (r.m.s.)	SL (JIS)	68 ±5%	4.5	2.0	1.0	2.5	0.3 min.
GA342A1XGF820JW31L	AC250 (r.m.s.)	SL (JIS)	82 ±5%	4.5	2.0	1.0	2.5	0.3 min.
GA342QR7GF101KW01L	AC250 (r.m.s.)	X7R (EIA)	100 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342QR7GF151KW01L	AC250 (r.m.s.)	X7R (EIA)	150 ±10%	4.5	2.0	1.5	2.5	0.3 min.
GA342DR7GF221KW02L	AC250 (r.m.s.)	X7R (EIA)	220 ±10%	4.5	2.0	2.0	2.5	0.3 min.
GA342DR7GF331KW02L	AC250 (r.m.s.)	X7R (EIA)	330 ±10%	4.5	2.0	2.0	2.5	0.3 min.
GA352QR7GF471KW01L	AC250 (r.m.s.)	X7R (EIA)	470 ±10%	5.7	2.8	1.5	4.0	0.3 min.
GA352QR7GF681KW01L	AC250 (r.m.s.)	X7R (EIA)	680 ±10%	5.7	2.8	1.5	4.0	0.3 min.
GA352QR7GF102KW01L	AC250 (r.m.s.)	X7R (EIA)	1000 ±10%	5.7	2.8	1.5	4.0	0.3 min.
GA352QR7GF152KW01L	AC250 (r.m.s.)	X7R (EIA)	1500 ±10%	5.7	2.8	1.5	4.0	0.3 min.
GA355QR7GF182KW01L	AC250 (r.m.s.)	X7R (EIA)	1800 ±10%	5.7	5.0	1.5	4.0	0.3 min.
GA355QR7GF222KW01L	AC250 (r.m.s.)	X7R (EIA)	2200 ±10%	5.7	5.0	1.5	4.0	0.3 min.
GA355QR7GF332KW01L	AC250 (r.m.s.)	X7R (EIA)	3300 ±10%	5.7	5.0	1.5	4.0	0.3 min.
GA355DR7GF472KW01L	AC250 (r.m.s.)	X7R (EIA)	4700 ±10%	5.7	5.0	2.0	4.0	0.3 min.



# **Chip Monolithic Ceramic Capacitors**



# Safety Standard Recognized Type GB (IEC60384-14 Class X2)

### Features

- 1. The type GB can be used as an X2-class capacitor.
- 2. Chip monolithic ceramic capacitor (certified as conforming to safety standards) for AC lines
- 3. A new monolithic structure for small, high capacitance capable of operating at high voltage levels
- Compared to lead type capacitors, this new capacitor is greatly downsized and low-profiled to 1/10 or less in volume, and 1/4 or less in height.
- 5. +125 degree C guaranteed
- 6. Only for reflow soldering

### Applications

Ideal for use as X capacitor for various switching power supplies





Part Number		Din	nensions (m	nm)	
Part Number	L	W	Т	e min.	g min.
GA355D	5.7 ±0.4	5.0 ±0.4	2.0 ±0.3	0.3	4.0
GA355X	J.7 <u>⊥</u> 0.4	5.0 <u>1</u> 0.4	2.7 ±0.3	0.3	4.0

### Standard Recognition

$\overline{\ }$	Standard No.	Status of R	Recognition	Rated
	Standard NO.	Type GB	Type GC	Voltage
UL	UL1414	_	0*	
BSI		-	0	
VDE	EN132400	0	0	AC250V
SEV	EIN132400	0	0	(r.m.s.)
SEMKO		0	0	
EN132400 Class		X2	X1, Y2	

*: Line By-pass only

Part Number	Rated Voltage (V)	TC Code (Standard)	Capacitance (pF)	Length L (mm)	Width W (mm)	Thickness T (mm)	Electrode g min. (mm)	Electrode e (mm)
GA355DR7GB103KY02L	AC250 (r.m.s.)	X7R (EIA)	10000 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GB153KY02L	AC250 (r.m.s.)	X7R (EIA)	15000 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355DR7GB223KY02L	AC250 (r.m.s.)	X7R (EIA)	22000 ±10%	5.7	5.0	2.0	4.0	0.3 min.
GA355XR7GB333KY06L	AC250 (r.m.s.)	X7R (EIA)	33000 ±10%	5.7	5.0	2.7	4.0	0.3 min.



### GA3 Series Specifications and Test Methods

No.	Item Specifications			Test Method	
1	Operating Temperatu	ure Range	−55 to +125℃	_	
2	Appearar	nce	No defects or abnormalities	Visual inspection	
3	Dimensio	ns	Within the specified dimensions	Using calipers	
4	Dielectric Strength		No defects or abnormalities		erved when voltage in table is applied for 60±1 sec., provided the is less than 50mA. Test Voltage DC1075V AC1500V (r.m.s.)
5	Pulse Vol (Applicati GD/GF)	0	No self healing breakdowns or flash-overs have taken place in the capacitor.	10 impulse of alternating (5 impulse for each polar The interval between imp Applied Voltage: 2.5kV ze	ity) vulse is 60 sec.
6	Insulation F (I.R.)	Resistance	More than 6,000M $\Omega$	The insulation resistance and within 60±5 sec. of c	should be measured with DC500±50V charging.
7	Capacita	nce	Within the specified tolerance		
8	Dissipation		$\begin{tabular}{ c c c c c } \hline Char. & Specification \\ \hline X7R & D.F. \le 0.025 \\ \hline SL & $Q \ge 400 + 20C^{*2}$ (C < 30pF) \\ $Q \ge 1000$ (C \ge 30pF) \\ \hline \end{tabular}$	The capacitance/Q/D.F. should be measured at a freq 1±0.2kHz (SL char.: 1±0.2MHz) and a voltage of AC1±0.2V (r.m.s.).	
9	Capacitance 9 Temperature Characteristics		Char.       Capacitance Change         X7R       Within ±15%         Temperature characteristic guarantee is       -55 to +125°C         Char.       Temperature Coefficient         SL       +350 to -1000ppm/°C         Temperature characteristic guarantee is +20 to +85°C	specified in Table. Step 1 2 3 4 5 SL char. : The capacitance should to 3 and step 4. •Pretreatment for X7R c	nt at $150^{+}_{-1}$ ° ℃ for 60±5 min. and then
		Appearance	No defects or abnormalities	As in Fig., discharge is m	ade 50 times at 5 sec. intervals from
		I.R.	More than 1,000M $\Omega$		ed at DC voltage of specified.
10	Discharge Test (Application: Type GC)	Dielectric Strength	In accordance with item No.4	•	$\begin{array}{c} R1 \\ \hline \\ Ct \\ \hline \\ Cd \\ \hline \\ Cd \\ \hline \\ Ct \\ R2 \\ R$
11	of Termination		No removal of the terminations or other defect should occur. Derature: 15 to 35℃, Relative humidity: 45 to 75%, Atmospheric p	in Fig. 1. Then apply 10N force in the should be done using the conducted with care so the defects such as heat sho	e testing jig (glass epoxy board) shown the direction of the arrow. The soldering e reflow method and should be hat the soldering is uniform and free of ck. 10N, 10±1s Glass Epoxy Board Fig. 1

*2 "C" expresses nominal capacitance value (pF).



### **GA3 Series Specifications and Test Methods**

#### Continued from the preceding page.

Vo.	o. Item		Specifications	Test Method
12	2     Vibration Resistance     D.F. Q     Char.     Specification D.F.≦0.025 SL       Q≥400+20C*2 (C<30pF) Q≥1000 (C≥30pF)		Within the specified toleranceChar.SpecificationX7RD.F. $\leq 0.025$ SIQ $\geq$ 400+20C*2 (C<30pF)	Solder the capacitor to the test jig (glass epoxy board). The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 min. This motion should be applied for a period of 2 hrs. in each of 3 mutually perpendicular directions (total of 6 hrs.).
13 Deflection		n	b $\phi 4.5$ $\phi 6.6$ $fig. 2$	Solder the capacitor to the testing jig (glass epoxy board) shown in Fig. 2. Then apply a force in the direction shown in Fig. 3. The soldering should be done using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. $\frac{20^{50} \text{ Pressurize}}{\text{Pressurize}} \text{ Figures}  Figure$
14	Solderability of Termination 75% of the terminations at		75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in solder solution for 2±0.5 sec. Immersing speed: 25±2.5mm/s Temp. of solder: 245±5°C Lead Free Solder (Sn-3.0Ag-0.5Cu) 235±5°C H60A or H63A Eutectic Solder
15	Resistance to Soldering Heat I.R.		No marking defects         Char.       Capacitance Change         X7R       Within ±10%         SL       Within ±2.5% or ±0.25pF         (Whichever is larger)         More than 1,000MΩ	<ul> <li>Preheat the capacitor as table. Immerse the capacitor in solder solution at 260±5°C for 10±1 sec. Let sit at room condition*' for 24±2 hrs., then measure.</li> <li>Immersing speed: 25±2.5mm/s</li> <li>Pretreatment for X7R char.</li> <li>Perform a heat treatment at 150±18°C for 60±5 min. and then let sit for 24±2 hrs. at room condition*'.</li> <li>*Preheating</li> </ul>
		Dielectric Strength	In accordance with item No.4	Step         Temperature         Time           1         100 to 120°C         1 min.           2         170 to 200°C         1 min.

*1 "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

*2 "C" expresses nominal capacitance value (pF).



### **GA3 Series Specifications and Test Methods**

No.	Ite	m	Specifications	Test Method		
16	Temperature Cycle	Appearance       No marking defects         Capacitance Change       Char.       Capacitance Change X7R         Within ±15%         SL       Within ±2.5% or ±0.25pF (Whichever is larger)         D.F.       Char.       Specification X7R         Q.F.       Q≥400+20C*2 (C<30pF) Q≥1000         I.R.       More than 3,000MΩ		<ul> <li>Fix the capacitor to the supporting jig (glass epoxy board) show in Fig. 4.</li> <li>Perform the 5 cycles according to the 4 heat treatments listed in the following table.</li> <li>Let sit for 24±2 hrs. at room condition*1, then measure.</li> <li>Step Temperature (°C) Time (min.) <ol> <li>Min. Operating Temp.±3</li> <li>30±3</li> <li>Room Temp.</li> <li>2 to 3</li> </ol> </li> <li>Pretreatment for X7R char. Perform a heat treatment at 150⁺₁0°C for 60±5 min. and then let sit for 24±2 hrs. at room condition*1. </li> </ul>		
		Dielectric Strength	In accordance with item No.4	Glass Epoxy Board Fig. 4		
		Appearance	No marking defects			
		Capacitance Change	Char.Capacitance ChangeX7RWithin ±15%SLWithin ±5.0% or ±0.5pF (Whichever is larger)	Before this test, the test shown in the following is performed. Item 11 Adhesive Strength of Termination (applied force is 5 Item 13 Deflection		
17	Humidity (Steady State)	D.F. Q	$\begin{tabular}{ c c c c c } \hline Char. & Specification \\ \hline X7R & D.F. \le 0.05 \\ \hline SL & $Q \ge 275 + 5/2C^{*2}$ (C < 30pF) \\ \hline Q \ge 350 & (C \ge 30pF) \\ \hline \hline \end{tabular}$	<ul> <li>Let the capacitor sit at 40±2°C and relative humidity of 90 tr for 500⁺²C hrs.</li> <li>Remove and let sit for 24±2 hrs. at room condition*1, then measure.</li> <li>Pretreatment for X7R char.</li> <li>Perform a heat treatment at 150[±]1%°C for 60±5 min. and</li> </ul>		
		I.R.	More than 3,000MΩ	let sit for $24\pm 2$ hrs. at room condition*1.		
		Dielectric Strength	In accordance with item No.4			
		Appearance	No marking defects           Char.         Capacitance Change	efore this test, the test shown in the following is performed. tem 11 Adhesive Strength of Termination (apply force is 5N) tem 13 Deflection		
		Capacitance Change	X7R     Within ±20%       SL     Within ±3.0% or ±0.3pF       (Whichever is larger)	Impulse Voltage Each individual capacitor should be subjected to a 2.5kV (Type		
		D.F. Q	$\begin{tabular}{ c c c c c } \hline Char. & Specification \\ \hline X7R & D.F. \le 0.05 \\ \hline SL & Q \ge 275 + 5/2C^{\star_2} (C < 30 pF) \\ Q \ge 350 & (C \ge 30 pF) \\ \hline \end{tabular}$	GC/GF: 5kV) Impulse (the voltage value means zero to peak) for three times. Then the capacitors are applied to life test. Apply voltage as Table for 1,000 hrs. at $125 \stackrel{+2}{=} ^{\circ}$ C, relative		
18	Life	I.R.	More than 3,000MΩ	humidity 50% max.		
		Dielectric Strength	In accordance with item No.4	Type         Applied Voltage           GB         AC312.5V (r.m.s.), except that once each hour the voltage is increased to AC1,000V (r.m.s.) for 0.1 sec.           GC         AC425V (r.m.s.), except that once each hour the voltage is increased to AC1,000V (r.m.s.) for 0.1 sec.           GF         AC425V (r.m.s.), except that once each hour the voltage is increased to AC1,000V (r.m.s.) for 0.1 sec.           Let sit for 24±2 hrs. at room condition*1, then measure.         •Pretreatment for X7R char.           Perform a heat treatment at 150±18°C for 60±5 min. and then let sit for 24±2 hrs. at room condition*1.		

*1 "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

*2 "C" expresses nominal capacitance value (pF).



### **GA3 Series Specifications and Test Methods**

#### Continued from the preceding page. Specifications Test Method No Item Appearance No marking defects Char Capacitance Change Before this test, the test shown in the following is performed. Capacitance X7R Within ±15% ·Item 11 Adhesive Strength of Termination (apply force is 5N) Change Within ±5.0% or ±0.5pF SL ·Item 13 Deflection (Whichever is larger) Humidity Apply the rated voltage at 40±2℃ and relative humidity of 90 to 19 Char Specification 95% for $500^{+24}_{-0}$ hrs. Remove and let sit for 24±2 hrs. at room Loading D.F. X7R D.F.≤0.05 condition*1, then measure Q≥275+5/2C*2 (C<30pF) Q •Pretreatment for X7R char. SI Q≧350 (C≧30pF) Perform a heat treatment at 150⁺₁₀ ℃ for 60±5 min. and then let sit for 24±2 hrs. at room condition*1. LR More than 3,000MΩ Dielectric In accordance with item No.4 Strength The capacitor should be individually wrapped in at least one but not more than two complete layers of cheesecloth. The capacitor should be subjected to 20 discharges. The interval between successive discharges should be 5 sec. The UAC should be maintained for 2 min. after the last discharge. Ca UAC Oscilloscope Active 20 The cheesecloth should not be on fire. C1,2 : 1µF±10% : 0.033µF±5% 10kV Flammability C₃ L1 to 4 : 1.5mH±20% 16A Rod core choke Ct : 3µF±5% 10kV R : 100Ω±2% Cx : Capacitor under test UAC : UR±5% : Rated Voltage F : Fuse, Rated 16A UR Ut : Voltage applied to Ct U Ui Туре GB, GD 2.5kV GC, GF 5kV time The capacitor under test should be held in the flame in the position which best promotes burning. Each specimen should only be exposed once to the flame. Time of exposure to flame: 30 sec. Length of flame : 12±1mm : Length 35mm min. Gas burner Inside Dia. 0.5±0.1mm Outside Dia. 0.9mm max. Passive The burning time should not exceed 30 sec. Gas : Butane gas Purity 95% min. 21 Flammability The tissue paper should not ignite. -Test Specimen About 8mm 200±5mm 45° Tissue About 10mm Thick Board

*1 "Room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

*2 "C" expresses nominal capacitance value (pF).



### GRM/GR4/GR7/GA2/GA3 Series Data (Typical Example)

### ■ Capacitance - Temperature Characteristics



X7R Characteristics 30 20 X7R Char. Spec.(upper) 10 (%) . Change ( Cap. -10 X7R Char. S -20 -30 -60 -40 -20 0 20 40 60 80 100 120 140 Temperature (°C)





### ■ Impedance - Frequency Characteristics

GRM Series (X7R Char. 250V)



GRM Series (X7R Char. 630V)





## GRM/GR4/GR7/GA2/GA3 Series Data (Typical Example)

Continued from the preceding page.













GA3 Series (Type GD)



GA3 Series (Type GB)





### GRM/GR4/GR7/GA2/GA3 Series Data (Typical Example)

### ■ Capacitance - AC Voltage Characteristics







### Package

Taping is standard packaging method.

### Minimum Quantity Guide

Part Number			Dimensions (mm	n)	Quantity (pcs.)		
				.,	ø180mm Reel		
		L	W	Т	Paper Tape	Embossed Tape	
	GRM18	1.6	0.8	0.8	4,000	-	
	GRM21	2.0	1.25	1.0	4,000	-	
	GRMZT	2.0	1.25	1.25	-	3,000	
				1.0	4,000	-	
	GRM31/GR731	3.2	1.6	1.25	-	3,000	
				1.6	-	2,000	
				1.0	4,000	-	
	GRM32	3.2	2.5	1.25	-	3,000	
/ledium-voltage	GRIVIJZ	3.2		1.5	-	2,000	
				2.0	- 1,000		
			2.0	1.0	-	3,000	
	GRM42/GR442	4.5		1.5	-	2,000	
				2.0	-	2,000	
	GRM43/GR443	4.5	3.2	1.5	-	1,000	
				2.0	-	1,000	
				2.5	-	500	
	GRM55/GR455	5.7	5.0	2.0	-	1,000	
	GA242	4.5	2.0	1.5	-	2,000	
100501	0.4.9.49	4.5	3.2	1.5	-	1,000	
AC250V	GA243			2.0	-	1,000	
	GA255	5.7	5.0	2.0	-	1,000	
				1.0	-	3,000	
	GA342	4.5	2.0	1.5	-	2,000	
				2.0	-	2,000	
Safety Std.	0.4.9.4.9	4.5		1.5	-	1,000	
Recognition	GA343	4.5	3.2	2.0	-	1,000	
	GA352	5.7	2.8	1.5	-	1,000	
				1.5	-	1,000	
	GA355	5.7	5.0	2.0	-	1,000	
				2.7	-	500	

### ■ Tape Carrier Packaging

- (1) Appearance of Taping
- ① Embossed Tape







### Package

Continued from the preceding page.

### (2) Dimensions of Tape

① Embossed Tape



Part Number	A*	B*
<b>GRM21</b> (T≧1.25mm)	1.45	2.25
<b>GRM31/GR731</b> (T≧1.25mm)	2.0	3.6
<b>GRM32</b> (T≧1.25mm)	2.9	3.6
		*Nominal Value

12mm width 8mm/4mm pitch Tape					
01.5 ^{+0.1} 01.5 ^{+0.1} 01.5 ^{+0.1} 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0.1 0.175±0	0.3±0.1				
Direction of Feed	<b>→</b> 3.7 max.				

Part Number	A*	B*
GRM42/GR442/GA242/GA342	2.5	5.1
GRM43/GR443/GA243/GA343	3.6	4.9
GA352	3.2	6.1
GRM55/GR455/GA255/GA355	5.4	6.1

*1 4.0±0.1mm in case of GRM42/GR442/GA242/GA342 *Nominal Value

(in mm)









### Package

Continued from the preceding page.

- (4) Taping Method
  - Tapes for capacitors are wound clockwise. The sprocket holes are to the right as the tape is pulled toward the user.
  - ② Part of the leader and part of the empty tape should be attached to the end of the tape as shown at right.
  - ③ The top tape or cover tape and base tape are not attached at the end of the tape for a minimum of 5 pitches.
  - ④ Missing capacitors number within 0.1% of the number per reel or 1 pc, whichever is greater, and are not continuous.
  - (5) The top tape or cover tape and bottom tape should not protrude beyond the edges of the tape and should not cover sprocket holes.
  - ⑥ Cumulative tolerance of sprocket holes, 10 pitches: ±0.3mm.
  - $\ensuremath{\overline{\mathcal{O}}}$  Peeling off force: 0.1 to 0.6N in the direction shown at right.







### Storage and Operating Conditions

Operating and storage environment Do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors

### ■ Handling

- Vibration and impact Do not expose a capacitor to excessive shock or vibration during use.
- 2. Do not directly touch the chip capacitor, especially the ceramic body. Residue from hands/fingers may create a short circuit environment.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED. where the temperature and relative humidity do not exceed 5 to 40 degrees centigrade and 20 to 70%. Use capacitors within 6 months after delivered. Check the solderability after 6 months or more.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.



### Caution (Rating)

### 1. Operating Voltage

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range.

When the voltage is applied to the circuit, starting or stopping may generate irregular voltage for a transit period because of resonance or switching. Be sure to use a capacitor with a rated voltage range that includes these irregular voltages.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage (1)	Pulse Voltage (2)
Positional Measurement	Vo-p	Vo-p	Vp-p	Vp-p	Vp-p

- 2. Operating Temperature, Self-generated Heat, and Lead Reduction at High-frequency voltage condition Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a highfrequency voltage, pulse voltage, it may self-generate heat due to dielectric loss.
- (1) In case of X7R char.

Applied voltage should be the load such as selfgenerated heat is within 20°C <u>on the condition of</u> <u>atmosphere temperature 25°C</u>. When measuring, use a thermocouple of small thermal capacity -K of ø0.1mm in conditions where the capacitor is not affected by radiant heat from other components or surrounding ambient fluctuations. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)



Continued from the preceding page.

#### (2) In case of C0G, U2J char.

Due to the low self-heating characteristics of lowdissipation capacitors, the allowable electric power of these capacitors is generally much higher than that of X7R characteristic capacitors.

When a high frequency voltage which cause 20°C self heating to the capacitor is applied, it will exceed capacitor's allowable electric power.

### <C0G char.>

Therefore, in case of COG char., the frequency of the applied sine wave voltage should be less than 100kHz. The applied voltage should be less than the value shown in figure at right. The capacitors less than 22pF can be applied maximum 4.0kV peak to peak at 100kHz or less only for the ballast or the resonance usage in the LCD backlight inverter circuit.

#### <U2J char.>

In case of U2J char., the frequency of the applied sine wave voltage should be less than 500kHz (less than 100kHz in case of rated voltage: DC3.15kV). The applied voltage should be less than the value shown in figure below.

<Capacitor selection tool>

We are also offering free software the "capacitor selection tool: Murata Medium Voltage Capacitors Selection Tool by Voltage Form (*)" which will assist you in selecting a suitable capacitor.



The software can be downloaded from Murata's Internet Website (http://www.murata.com/designlib/mmcsv_e.html). By inputting capacitance values and applied voltage waveform of the specific capacitor series, this software will calculate the capacitor's power consumption and list suitable capacitors (non-sine wave is also available).

- * As of Jul. 2006, subject series are below.
  - · Temperature Characteristics C0G, U2J





Continued from the preceding page.

### 3. Fail-safe

Failure of a capacitor may result in a short circuit. Be sure to provide an appropriate fail-safe function such as a fuse on your product to help eliminate possible electric shock, fire, or fumes.

Please consider using fuses on each AC line if the capacitors are used between the AC input lines and earth (line bypass capacitors), to prepare for the worst case, such as a short circuit.

### 4. Test condition for AC withstanding Voltage

### (1) Test Equipment

Tests for AC withstanding voltage should be made with equipment capable of creating a wave similar to a 50/60 Hz sine wave.

If the distorted sine wave or overload exceeding the specified voltage value is applied, a defect may be caused.

### (2) Voltage applied method

The capacitor's leads or terminals should be firmly connected to the output of the withstanding voltage test equipment, and then the voltage should be raised from near zero to the test voltage. If the test voltage is applied directly to the capacitor without raising it from near zero, it should be applied with the zero cross*. At the end of the test time, the test voltage should be reduced to near zero, and then the capacitor's leads or terminals should be taken off the output of the withstanding voltage test equipment. If the test voltage is applied directly to the capacitor without raising it from near zero, surge voltage may occur and cause a defect.

*ZERO CROSS is the point where voltage sine wave pass 0V.

- See the figure at right -

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.









1. Vibration and Impact

Do not expose a capacitor to excessive shock or vibration during use.

2. Circuit Board Material

In case that ceramic chip capacitor is soldered on the metal board, such as Aluminum board, the stress of heat expansion and contraction might cause the crack of ceramic capacitor, due to the difference of thermal expansion coefficient between metal board and ceramic chip.

### 3. Land Layout for Cropping PC Board Choose a mounting position that minimizes the stress imposed on the chip during flexing or bending of the board.

[Component Direction]

Locate chip horizontal to the direction in which stress acts.



[Chip Mounting Close to Board Separation Point]

Chip arrangement Worst A>C>B~D Best



Continued from the preceding page.

- 4. Reflow Soldering
- When sudden heat is given to the components, the mechanical strength of the components should go down because remarkable temperature change causes deformity of components inside. In order to prevent mechanical damage in the components, preheating should be required for both of the components and the PCB board. Preheating conditions are shown in Table 1. It is required to keep temperature differential between the soldering and the components surface (ΔT) as small as possible.
- Solderability of Tin plating termination chip might be deteriorated when low temperature soldering profile where peak solder temperature is below the Tin melting point is used. Please confirm the solderability of Tin plating termination chip before use.
- When components are immersed in solvent after mounting, be sure to maintain the temperature difference (ΔT) between the component and solvent within the range shown in the Table 1.

#### Table 1

Part Number	Temperature Differential	
G□□18/21/31	∆T≦190℃	
G32/42/43/52/55	∆T≦130℃	

### **Recommended Conditions**

	Pb-Sn S	Solder	
	Infrared Reflow	Vapor Reflow	Lead Free Solder
Peak Temperature	230-250°C	230-240°C	240-260°C
Atmosphere	Air	Air	Air or N2

Pb-Sn Solder: Sn-37Pb

Lead Free Solder: Sn-3.0Ag-0.5Cu

Optimum Solder Amount for Reflow Soldering

 Overly thick application of solder paste results in excessive fillet height solder.

This makes the chip more susceptible to mechanical and thermal stress on the board and may cause cracked chips.

- Too little solder paste results in a lack of adhesive strength on the outer electrode, which may result in chips breaking loose from the PCB.
- Make sure the solder has been applied smoothly to the end surface to a height of 0.2mm min.

#### Inverting the PCB

Make sure not to impose an abnormal mechanical shock on the PCB.



### [Allowable Soldering Temperature and Time]







Caution

Continued from the preceding page.

- 5. Flow Soldering
- When sudden heat is given to the components, the mechanical strength of the components should go down because remarkable temperature change causes deformity of components inside. And an excessively long soldering time or high soldering temperature results in leaching by the outer electrodes, causing poor adhesion or a reduction in capacitance value due to loss of contact between electrodes and end termination.
- In order to prevent mechanical damage in the components, preheating should be required for both of the components and the PCB board. Preheating conditions are shown in Table 2. It is required to keep temperature differential between the soldering and the components surface (ΔT) as small as possible.
- When components are immersed in solvent after mounting, be sure to maintain the temperature difference between the component and solvent within the range shown in Table 2.

Do not apply flow soldering to chips not listed in Table 2.

#### Table 2

Part Number	Temperature Differential
G□□18/21/31	∆T≦150℃

#### **Recommended Conditions**

	Pb-Sn Solder	Lead Free Solder
Peak Temperature	240-250°C	250-260°C
Atmosphere	Air	N2

Pb-Sn Solder: Sn-37Pb

Lead Free Solder: Sn-3.0Ag-0.5Cu

Optimum Solder Amount for Flow Soldering

The top of the solder fillet should be lower than the thickness of components. If the solder amount is excessively big, the risk of cracking is higher during board bending or under any other stressful conditions.





In case of repeated soldering, the accumulated soldering time must be within the range shown above.





### **Caution**

Continued from the preceding page.

#### 6. Correction with a Soldering Iron

(1) For Chip Type Capacitors

When sudden heat is applied to the components by soldering iron, the mechanical strength of the components should go down because remarkable temperature change causes deformity of components inside. In order to prevent mechanical damage in the components, preheating should be required for both of the components and the PCB board. Preheating conditions are shown in Table 3. It is required to keep temperature differential between the soldering and the components surface (ΔT) as small as possible. After soldering, it should not be allowed to cool down rapidly.

#### Table 3

	-	-	
Part Number	Temperature Differential	Peak Temperature	Atmosphere
G□□18/21/31	∆T≦190℃	300°C max. 3 sec. max. / termination (both sides total 6 sec. max.)	Air
G32/42/43/ 52/55	∆T≦130℃	270°C max. 3 sec. max. / termination (both sides total 6 sec. max.)	Air

*Applicable for both Pb-Sn and Lead Free Solder. Pb-Sn Solder: Sn-37Pb

Lead Free Solder: Sn-3.0Ag-0.5Cu

 Optimum Solder Amount when Corrections Are Made Using a Soldering Iron

The top of the solder fillet should be lower than the thickness of components. If the solder amount is excessively big, the risk of cracking is higher during board bending or under any other stressful conditions. Soldering iron ø3mm or smaller should be required. And it is necessary to keep a distance between the soldering iron and the components without direct touch. Thread solder with ø0.5mm or smaller is required for soldering.

### 7. Washing

Excessive output of ultrasonic oscillation during cleaning causes PCBs to resonate, resulting in cracked chips or broken solder. Take note not to vibrate PCBs.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND FUMING WHEN THE PRODUCT IS USED.





Notice

### Notice (Soldering and Mounting)

 Construction of Board Pattern After installing chips, if solder is excessively applied to the circuit board, mechanical stress will cause destruction resistance characteristics to lower. To prevent this, be extremely careful in determining shape and dimension before designing the circuit board diagram.

#### Construction and Dimensions of Pattern (Example)



Flow Soldering						
L×W	а	b	с			
1.6×0.8	0.6-1.0	0.8-0.9	0.6-0.8			
2.0×1.25	1.0-1.2	0.9-1.0	0.8-1.1			
3.2×1.6	2.2-2.6	1.0-1.1	1.0-1.4			

Flow soldering :  $3.2 \times 1.6$  or less available.

#### Reflow Soldering

	Johng				
L×W	а	b	С	d	е
1.6×0.8	0.6-0.8	0.6-0.7	0.6-0.8	-	-
2.0×1.25	1.0-1.2	0.9-1.0	0.8-1.1	-	-
3.2×1.6	2.2-2.4	0.8-0.9	1.0-1.4	1.0-2.0	3.2-3.7
3.2×2.5	2.0-2.4	1.0-1.2	1.8-2.3	1.0-2.0	4.1-4.6
4.5×2.0	2.8-3.4	1.2-1.4	1.4-1.8	1.0-2.8	3.6-4.1
4.5×3.2	2.8-3.4	1.2-1.4	2.3-3.0	1.0-2.8	4.8-5.3
5.7×2.8	4.0-4.6	1.4-1.6	2.1-2.6	1.0-4.0	4.4-4.9
5.7×5.0	4.0-4.6	1.4-1.6	3.5-4.8	1.0-4.0	6.6-7.1
					(in m

Land Layout to Prevent Excessive Solder



Continued on the following page.  $\boxed{}$ 



### Notice

Continued from the preceding page.

- 2. Mounting of Chips
- Thickness of adhesives applied Keep thickness of adhesives applied (50-105μm or more) to reinforce the adhesive contact considering the thickness of the termination or capacitor (20-70μm) and the land pattern (30-35μm).
- Mechanical shock of the chip placer
   When the positioning claws and pick-up nozzle are worn, the load is applied to the chip while positioning is concentrated in one position, thus causing cracks, breakage, faulty positioning accuracy, etc.
   Careful checking and maintenance are necessary to prevent unexpected trouble.

An excessively low bottom dead point of the suction nozzle imposes great force on the chip during mounting, causing cracked chips. Please set the suction nozzle's bottom dead point on the upper surface of the board.

- 3. Soldering
- (1) Limit of losing effective area of the terminations and conditions needed for soldering.

Depending on the conditions of the soldering temperature and/or immersion (melting time), effective areas may be lost in some part of the terminations.

To prevent this, be careful in soldering so that any possible loss of the effective area on the terminations will securely remain at a maximum of 25% on all edge length A-B-C-D-A of part with A, B, C, D, shown in the Figure below.



(2) Flux

• Please use it after confirming there is no problem in the reliability of the product beforehand with the intended equipment. The residue of flux might cause a decrease in nonconductivity and the corrosion of an external electrode, etc.

Continued on the following page.  $\square$ 



Notice

Continued from the preceding page.

### 4. Cleaning

Please confirm there is no problem in the reliability of the product beforehand when cleaning it with the intended equipment.

The residue after cleaning it might cause the decrease in the surface resistance of the chip and the corrosion of the electrode part, etc. As a result it might cause reliability to deteriorate. Please confirm beforehand that there is no problem with the intended equipment in ultrasonic cleansing.

### 5. Resin Coating

Please use it after confirming there is no influence on the product with a intended equipment beforehand when the resin coating and molding.

A cracked chip might be caused at the cooling/heating cycle by the amount of resin spreading and/or bias thickness.

The resin for coating and molding must be selected as the stress is small when stiffening and the hygroscopic is low as possible.

### Rating

1. Capacitance change of capacitor

(1) In case of X7R char.

Capacitors have an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor is left on for a long time. Moreover, capacitance might change greatly depending on the surrounding temperature or an applied voltage. So, it is not likely to be suitable for use in a time constant circuit.

Please contact us if you need detailed information. (2) In case of any char. except X7R

Capacitance might change a little depending on the surrounding temperature or an applied voltage. Please contact us if you intend to use this product in a strict time constant circuit.  Performance check by equipment Before using a capacitor, check that there is no problem in the equipment's performance and the

specifications.

Generally speaking, CLASS 2 (X7R char.) ceramic capacitors have voltage dependence characteristics and temperature dependence characteristics in capacitance. So, the capacitance value may change depending on the operating condition in the equipment. Therefore, be sure to confirm the apparatus performance of receiving influence in a capacitance value change of a capacitor, such as leakage current and noise suppression characteristics. Moreover, check the surge-proof ability of a capacitor in the equipment, if needed, because the surge voltage may exceed specific value by the inductance of the circuit.



## ISO 9001 Certifications

### Qualified Standards

The products listed here have been produced by ISO 9001 certified factory.

Plant	
Fukui Murata Mfg. Co., Ltd.	
Izumo Murata Mfg. Co., Ltd.	
Okayama Murata Mfg. Co., Ltd.	
Murata Electronics Singapore (Pte.) Ltd.	
Murata Amazonia Industria E Comercio Ltda.	
Suzhou Murata Electronics Co., Ltd.	
Beijing Murata Electronics Co., Ltd.	



#### ▲ Note:

1. Export Control

(For customers outside Japan)

No muRata products should be used or sold, through any channels, for use in the design, development, production, utilization, maintenance or operation of, or otherwise contribution to (1) any weapons (Weapons of Mass Destruction (nuclear, chemical or biological weapons or missiles) or conventional weapons) or (2) goods or systems specially designed or intended for military end-use or utilization by military end-users.

For products which are controlled items subject to the "Foreign Exchange and Foreign Trade Law" of Japan, the export license specified by the law is required for export.

- 2. Please contact our sales representatives or product engineers before using the products in this catalog for the applications listed below, which require especially high reliability for the prevention of defects which might directly damage a third party's life, body or property, or when one of our products is intended for use in applications other than those specified in this catalog.
  - 1 Aircraft equipment
  - ③ Undersea equipment
  - 5 Medical equipment
     7 Traffic signal equipment
- 6 Transportation equipment (vehicles, trains, ships, etc.)
- Bisaster prevention / crime prevention equipment
   Application of similar complexity and/or reliability requirements to the applications listed above
- Data-processing equipment
   Applic
- 3. Product specifications in this catalog are as of July 2006. They are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering. If there are any questions, please contact our sales representatives or product engineers.
- 4. Please read rating and ACAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
- 5. This catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
- 6. Please note that unless otherwise specified, we shall assume no responsibility whatsoever for any conflict or dispute that may occur in connection with the effect of our and/or a third party's intellectual property rights and other related rights in consideration of your use of our products and/or information described or contained in our catalogs. In this connection, no representation shall be made to the effect that any third parties are authorized to use the rights mentioned above under licenses without our consent.
- 7. No ozone depleting substances (ODS) under the Montreal Protocol are used in our manufacturing process.

⁽²⁾ Aerospace equipment

(4) Power plant equipment

## muRata Murata Manufacturing Co., Ltd.

Head Office 1-10-1, Higashi Kotari, Nagaokakyo-shi, Kyoto 617-8555, Japan Phone: 81-75-951-9111 International Division 3-29-12, Shibuya, Shibuya-ku, Tokyo 150-0002, Japan Phone: 81-3-5469-6123 Fax: 81-3-5469-6155 E-mail: intl@murata.co.jp

http://www.murata.com/