

Chip Monolithic Ceramic Capacitors for Automotive

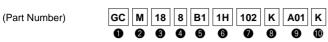
Innovator in Electronics

Murata Manufacturing Co., Ltd.

Cat.No.C03E-1

ANote • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
 • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
 • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

CONTENTS


Part Numbering	
Selection Guide of Chip Monolithic Ceramic Capacitors	
1 for Automotive GCM Series	
Temperature Compensating Type GCM15 Series	
Temperature Compensating Type GCM18 Series	
Temperature Compensating Type GCM21 Series	
Temperature Compensating Type GCM31 Series	
High Dielectric Constant Type, X7R (R7) Characteristics	
High Dielectric Constant Type, X7S (C7) Characteristics	1
High Dielectric Constant Type, X8L (L8) Characteristics	1
High Dielectric Constant Type, X8R (R9) Characteristics	1
Specifications and Test Methods	1
2 for Automotive Low ESL LLC Series Capacitors	1
Specifications and Test Methods	1
Package	2
⁽¹⁾ Caution	2
Notice	3

1

4 Dimension (T)

Part Numbering

Chip Monolithic Ceramic Capacitors

Product	D
---------	---

2Series

Product ID	Code	Series	
GC	м	Power-train, Safety equipment	
LL	С	Low ESL, Power-train, Safety equipment	

3Dimension (LXW)

Code	Dimension (L×W)	EIA
15	1.0×0.5mm	0402
18	1.6×0.8mm	0603
21	2.0×1.25mm	0805
31	3.2×1.6mm	1206
32	3.2×2.5mm	1210

Code Dimension (T) 5 0.5mm 6 0.6mm 8 0.8mm 9 0.85mm в 1.25mm С 1.6mm D 2.0mm Е 2.5mm М 1.15mm Ν 1.35mm R 1.8mm Х Depends on individual standards.

5Temperature Characteristics

Temperature Characteristic Codes			Operating				
Code	Public STD Code		Referance Temperature	Temperature Range	Capacitance Change or Temperature Coefficient	Temperature Range	
5C	COG EIA		25°C	25 to 125°C	0±30ppm/°C	-55 to 125°C	
5G	X8G EIA		25°C	25 to 150°C	0±30ppm/°C	-55 to 150°C	
C7	X7S EIA		25°C	-55 to 125°C	±22%	-55 to 125°C	
L8	X8L EIA		25°C	-55 to 150°C	±15% (-55 to 125°C), +15, -40% (125 to 150°C)	-55 to 150°C	
R7	X7R	EIA	25°C	-55 to 125°C	±15%	-55 to 125°C	
R9	X8R	EIA	25°C	-55 to 150°C	±15%	-55 to 150°C	
9E	ZLM	*1	20°C	-25 to 20°C	-4700+100/-2500ppm/°C	-25 to 85°C	
92	ZLIVI		2010	20 to 85°C	-4700+500/-1000ppm/°C	-25 10 85°C	

*1 Murata Temperature Characteristic Code.

6 Rated Voltage

Code	Rated Voltage
1A	DC10V
1C	DC16V
1E	DC25V
1H	DC50V
2A	DC100V

Capacitance

Expressed by three-digit alphanumerics. The unit is pico-farad (pF). The first and second figures are significant digits, and the third figure expresses the number of zeros which follow the two numbers.

If there is a decimal point, it is expressed by the capital letter "**R**". In this case, all figures are significant digits.

Ex.)	Code	Capacitance
	R50	0.5pF
	1R0	1.0pF
	100	10pF
	103	10000pF

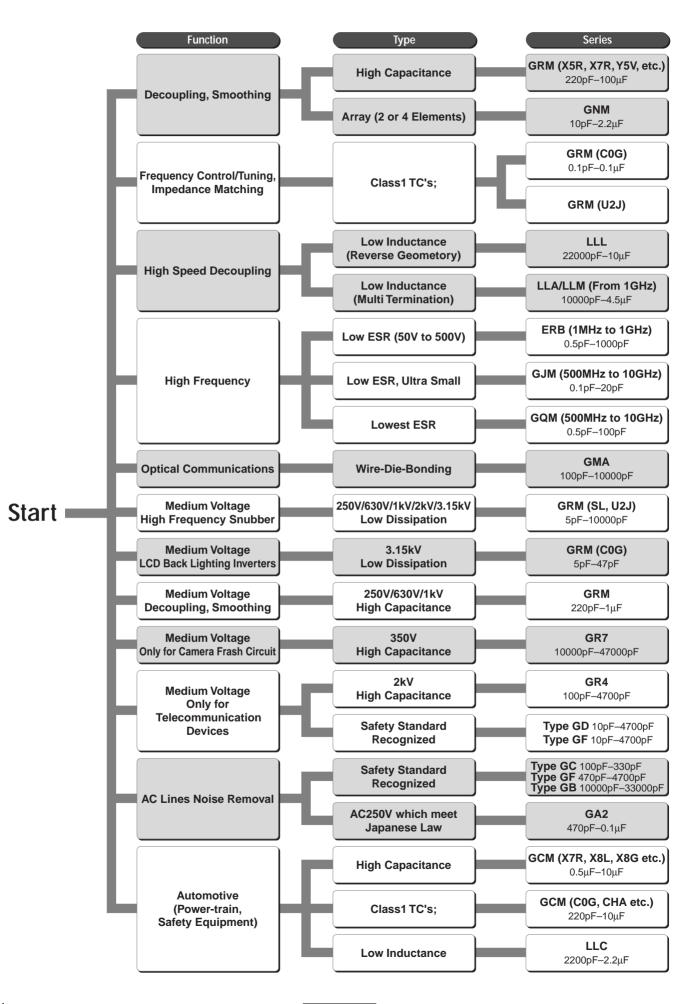
Continued from the preceding page.

0							
	Code	Capacitance Tolerance	TC	Series	Capacitance Step		
	С	±0.25pF	C0G, X8G	GCM	≦5pF	E12+1pF *	
	D	±0.5pF	C0G, X8G	GCM	6.0 to 9.0pF	E12+1pF *	
	J	±5%	C0G, X8G	GCM	≧10pF	E12 Series	
	к	±10%	X7S, X8L, X7R, X8R, ZLM	GCM	E6 Series		
	м	±20%	X7S, X8L, X7R, X8R	GCM, LLC	E6 Series		

* E24 series is also available.

Individual Specification Code

Expressed by three figures.


Packaging

Code	Packaging	
L	ø180mm Embossed Taping	
D	ø180mm Paper Taping	
к	ø330mm Embossed Taping	
J	ø330mm Paper Taping	
В	Bulk	
С	Bulk Case	

Mote • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
 This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications because there is no space for detailed specifications.

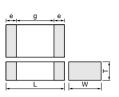
Selection Guide of Chip Monolithic Ceramic Capacitors

Chip Monolithic Ceramic Capacitors for Automotive

for Automotive GCM Series

Features

- 1. The GCM series meet AEC-Q200 requirements.
- Highter resistance of solder-leaching due to the Ni-barriered termination, applicable for reflow-soldering, and flow-soldering (GCM18/21/31 type only).
- 3. The operating temperature range of R7/C7/5C series: -55 to 125 degrees C, and R9/L8/5G series: -55 to 150 degrees C.
- A wide selection of sizes is available, from miniature LxWxT:0.6x0.3x0.3mm to LxWxT: 3.2x2.5x2.5mm.
- 5. The GCM series is available in paper or embossed tape and reel packaging for automatic placement.


Temperature Compensating Type GCM15 Series

6. The GCM series is lead free product.

Applications

Automotive electronic equipment (Power-train, safety equipment)

Part Number	Dimensions (mm)					
Fait Number	L	W	Т	е	g min.	
GCM033	0.6 ±0.03	0.3 ±0.03	0.3 ±0.03	0.1 to 0.2	0.2	
GCM155	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15 to 0.3	0.4	
GCM188*	1.6 ±0.1	0.8 ±0.1	0.8 ±0.1	0.2 to 0.5	0.5	
GCM216			0.6 ±0.1			
GCM219	2.0 ±0.15	1.25 ±0.15	0.85 ±0.1	0.2 to 0.7	0.7	
GCM21B			1.25 ±0.15	1		
GCM319	3.2 ±0.15	1.6 ±0.15	0.85 ±0.1	0.3 to 0.8	1.5	
GCM31M	3.2 ±0.15		1.15 ±0.1			
GCM31C	3.2 ±0.2	1.6 ±0.2	1.6 ±0.2			
GCM32N			1.35 ±0.15		2.0	
GCM32R	22102	2.5 ±0.2	1.8 ±0.2	0.3	2.0	
GCM32D	3.2 ±0.3		2.0 ±0.2		10	
GCM32E			2.5 ±0.2		1.0	

* Bulk Case : 1.6 \pm 0.07(L)×0.8 \pm 0.07(W)×0.8 \pm 0.07(T)

Part Number	GCM15
L x W [EIA]	1.00x0.50 [0402]
тс	C0G (5C)
Rated Volt.	50 (1H)
Capacitance (Ca	pacitance part numbering code) and T (mm) Dimension (T Dimension part numbering code)
0.50pF(R50)	0.50 (5)
0.75pF(R75)	0.50 (5)
1.0pF(1R0)	0.50 (5)
1.2pF(1R2)	0.50(5)
1.5pF(1R5)	0.50 (5)
1.8pF(1R8)	0.50 (5)
2.0pF(2R0)	0.50 (5)
2.2pF(2R2)	0.50 (5)
2.7pF(2R7)	0.50 (5)
3.0pF(3R0)	0.50 (5)
3.3pF(3R3)	0.50 (5)
3.9pF(3R9)	0.50 (5)
4.0pF(4R0)	0.50 (5)
4.7pF(4R7)	0.50 (5)
5.0pF(5R0)	0.50 (5)
5.6pF(5R6)	0.50 (5)
6.0pF(6R0)	0.50 (5)
6.8pF(6R8)	0.50 (5)
7.0pF(7R0)	0.50(5)
8.0pF(8R0)	0.50 (5)
8.2pF(8R2)	0.50 (5)
9.0pF(9R0)	0.50 (5)
10pF(100)	0.50 (5)

 ▲Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
 • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering. C03E.pdf 06.3.6

Continued from the preceding page.

	the preceding page.
Part Number	GCM15
L x W [EIA]	1.00x0.50 [0402]
тс	C0G (5C)
Rated Volt.	50 (1H)
Capacitance (Ca	pacitance part numbering code) and T (mm) Dimension (T Dimension part numbering code)
12pF(120)	0.50 (5)
15pF(150)	0.50 (5)
18pF(180)	0.50 (5)

22pF(220)	0.50(5)
27pF(270)	0.50 (5)
33pF(330)	0.50 (5)
39pF(390)	0.50 (5)
47pF(470)	0.50 (5)
56pF(560)	0.50 (5)
68pF(680)	0.50(5)
82pF(820)	0.50(5)
100pF(101)	0.50(5)
120pF(121)	0.50(5)
150pF(151)	0.50(5)
180pF(181)	0.50(5)
220pF(221)	0.50(5)
270pF(271)	0.50(5)
330pF(331)	0.50(5)
390pF(391)	0.50(5)
470pF(471)	0.50(5)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Temperature Compensating Type GCM18 Series

Part Number		GC	M18	
L x W [EIA]		1.60x0.8	30 [0603]	
тс	CC (5))G C)	X8 (5 0	
Rated Volt.	100 (2A)	50 (1H)	100 (2A)	50 (1H)
Capacitance (Capaci	itance part numbering code)	and T (mm) Dimension (T Dimer	sion part numbering code)	
0.50pF(R50)	0.80 (8)	0.80 (8)		
0.75pF(R75)	0.80 (8)	0.80 (8)		
1.0pF(1R0)	0.80 (8)	0.80 (8)		
1.2pF(1R2)	0.80 (8)	0.80 (8)		
1.5pF(1R5)	0.80(8)	0.80 (8)		
1.8pF(1R8)	0.80 (8)	0.80 (8)		
2.0pF(2R0)	0.80 (8)	0.80 (8)		
2.2pF(2R2)	0.80 (8)	0.80 (8)		
2.7pF(2R7)	0.80 (8)	0.80 (8)		
3.0pF(3R0)	0.80 (8)	0.80 (8)		
3.3pF(3R3)	0.80 (8)	0.80 (8)		
3.9pF(3R9)	0.80 (8)	0.80 (8)		
4.0pF(4R0)	0.80 (8)	0.80 (8)		
4.7pF(4R7)	0.80 (8)	0.80 (8)		
5.0pF(5R0)	0.80(8)	0.80 (8)		
5.6pF(5R6)	0.80(8)	0.80 (8)		
6.0pF(6R0)	0.80(8)	0.80 (8)		
6.8pF(6R8)	0.80(8)	0.80 (8)		
7.0pF(7R0)	0.80(8)	0.80(8)		

ANote • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
 • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
 O6.3.6

Continued from the preceding page.

Part Number			CM18	
L x W [EIA]		1.60x0.	80 [0603]	
тс	COG (5C)		×8 (50	G 3)
Rated Volt.	100 (2A)	50 (1H)	100 (2A)	50 (1H)
Capacitance (Capacita	ance part numbering code) ar	nd T (mm) Dimension (T Dime	nsion part numbering code)	
8.0pF(8R0)	0.80 (8)	0.80(8)		
8.2pF(8R2)	0.80 (8)	0.80(8)		
9.0pF(9R0)	0.80(8)	0.80(8)		
10pF(100)	0.80 (8)	0.80(8)	0.80(8)	0.80 (8)
12pF(120)	0.80(8)	0.80(8)	0.80(8)	0.80 (8)
15pF(150)	0.80(8)	0.80 (8)	0.80(8)	0.80(8)
18pF(180)	0.80(8)	0.80(8)	0.80(8)	0.80(8)
22pF(220)	0.80(8)	0.80(8)	0.80(8)	0.80(8)
27pF(270)	0.80(8)	0.80(8)	0.80(8)	0.80(8)
33pF(330)	0.80(8)	0.80(8)	0.80(8)	0.80(8)
39pF(390)	0.80(8)	0.80(8)	0.80(8)	0.80 (8)
47pF(470)	0.80(8)	0.80(8)	0.80(8)	0.80 (8)
56pF(560)	0.80(8)	0.80(8)	0.80(8)	0.80 (8)
68pF(680)	0.80(8)	0.80(8)	0.80(8)	0.80 (8)
82pF(820)	0.80(8)	0.80(8)	0.80(8)	0.80 (8)
100pF(101)	0.80(8)	0.80(8)	0.80(8)	0.80 (8)
120pF(121)	0.80(8)	0.80(8)	0.80(8)	0.80(8)
150pF(151)	0.80(8)	0.80(8)	0.80(8)	0.80(8)
180pF(181)	0.80(8)	0.80(8)	0.80(8)	0.80(8)
220pF(221)	0.80(8)	0.80(8)	0.80(8)	0.80(8)
270pF(271)	0.80(8)	0.80(8)	0.80(8)	0.80(8)
330pF(331)	0.80(8)	0.80(8)	0.80(8)	0.80(8)
390pF(391)	0.80(8)	0.80(8)	0.80(8)	0.80(8)
470pF(471)	0.80(8)	0.80(8)	0.80(8)	0.80(8)
560pF(561)	0.80(8)	0.80(8)	0.80(8)	0.80(8)
680pF(681)	0.80(8)	0.80(8)	0.80(8)	0.80(8)
820pF(821)	0.80(8)	0.80(8)	0.80(8)	0.80(8)
1000pF(102)	0.80(8)	0.80(8)	0.80(8)	0.80(8)
1200pF(122)		0.80(8)		0.80(8)
1500pF(152)		0.80(8)		0.80(8)
1800pF(182)		0.80(8)		0.80(8)
2200pF(222)		0.80(8)		0.80(8)
2700pF(272)		0.80(8)		0.80(8)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Temperature Compensating Type GCM21 Series

Part Number		GC	M21	
L x W [EIA]		2.00x1.2	25 [0805]	
тс	C0 (5			3G G)
Rated Volt.	100 (2A)	50 (1H)	100 (2A)	50 (1H)
Capacitance (Ca	pacitance part numbering code)	and T (mm) Dimension (T Dimen	sion part numbering code)	<u>.</u>
7.0pF(7R0)	0.85 (9)	0.60 (6)		
8.0pF(8R0)	0.85 (9)	0.60 (6)		
8.2pF(8R2)	0.85 (9)	0.60 (6)		
9.0pF(9R0)	0.85 (9)	0.60 (6)		
10pF(100)	0.85 (9)	0.60 (6)		
12pF(120)	0.85 (9)	0.60 (6)		

1

ANote • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
 • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
 O6.3.6

Continued from the preceding page.

Part Number		GCI		
L x W [EIA]		2.00x1.2		
тс	C0 (5)G C)	X8 (5 0	3G G)
Rated Volt.	100 (2A)	50 (1H)	100 (2A)	50 (1H)
Capacitance (Capacit	ance part numbering code)	and T (mm) Dimension (T Dimen	sion part numbering code)	
15pF(150)	0.85(9)	0.60 (6)		
18pF(180)	0.85 (9)	0.60 (6)		
22pF(220)	0.85 (9)	0.60 (6)		
27pF(270)	0.85(9)	0.60 (6)		
33pF(330)	0.85 (9)	0.60 (6)		
39pF(390)	0.85(9)	0.60(6)		
47pF(470)	0.85(9)	0.60 (6)		
56pF(560)	0.85(9)	0.60 (6)		
68pF(680)	0.85(9)	0.60 (6)		
82pF(820)	0.85(9)	0.60 (6)		
100pF(101)	0.60 (6)	0.60(6)	0.60 (6)	0.60 (6)
120pF(121)	0.60 (6)	0.60(6)	0.60(6)	0.60 (6)
150pF(151)	0.60 (6)	0.60(6)	0.60(6)	0.60(6)
180pF(181)	0.60(6)	0.60(6)	0.60(6)	0.60(6)
220pF(221)	0.60 (6)	0.60(6)	0.60(6)	0.60(6)
270pF(271)	0.60(6)	0.60(6)	0.60(6)	0.60(6)
330pF(331)	0.60 (6)	0.60(6)	0.60(6)	0.60(6)
390pF(391)	0.60(6)	0.60(6)	0.60(6)	0.60(6)
470pF(471)	0.60(6)	0.60(6)	0.60(6)	0.60(6)
560pF(561)	0.60(6)	0.60(6)	0.60(6)	0.60(6)
680pF(681)	0.60(6)	0.60(6)	0.60(6)	0.60(6)
820pF(821)	0.60(6)	0.60(6)	0.60(6)	0.60(6)
1000pF(102)	0.85(9)	0.60(6)	0.85(9)	0.60(6)
1200pF(122)	0.85(9)	0.60(6)	0.85(9)	0.60(6)
1500pF(152)	0.85(9)	0.60(6)	0.85(9)	0.60(6)
1800pF(182)		0.60(6)		0.60(6)
2200pF(222)		0.60(6)		0.60(6)
2700pF(272)		0.60(6)		0.60(6)
3300pF(332)		0.60(6)		0.60(6)
3900pF(392)		0.60(6)		0.60(6)
4700pF(472)		0.60(6)		0.60(6)
5600pF(562)		0.85(9)		0.85(9)
6800pF(682)		0.85(9)		0.85(9)
8200pF(822)		0.85(9)		0.85(9)
10000pF(103)		0.85(9)		0.85(9)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Temperature Compensating Type GCM31 Series

Part Number	GC	M31
L x W [EIA]	3.20x1.0	50 [1206]
тс		0G C)
Rated Volt.	100 (2A)	50 (1H)
Capacitance (Ca	apacitance part numbering code) and T (mm) Dimension (T Dimen	sion part numbering code)
12pF(120)	0.85(9)	
15pF(150)	0.85(9)	
18pF(180)	0.85(9)	
22pF(220)	0.85(9)	

 ▲Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
 • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering. C03E.pdf

06.3.6 Continued from the preceding page

Part Number		GCM31
L x W [EIA]		3.20x1.60 [1206]
гс		C0G (5C)
Rated Volt.	100 (2A)	50 (1 H)
Capacitance (Capacitance pa	art numbering code) and T (mm) Dimens	ion (T Dimension part numbering code)
27pF(270)	0.85 (9)	
33pF(330)	0.85 (9)	
39pF(390)	0.85 (9)	
47pF(470)	0.85 (9)	
56pF(560)	0.85 (9)	
68pF(680)	0.85 (9)	
82pF(820)	0.85 (9)	
100pF(101)	0.85 (9)	
120pF(121)	0.85 (9)	
150pF(151)	0.85 (9)	
180pF(181)	0.85 (9)	
220pF(221)	0.85 (9)	
270pF(271)	0.85 (9)	
330pF(331)	0.85 (9)	
390pF(391)	0.85 (9)	
470pF(471)	0.85 (9)	
560pF(561)	0.85 (9)	0.60(6)
680pF(681)	0.85 (9)	0.60(6)
820pF(821)	1.15(M)	0.85(9)
1000pF(102)	0.85 (9)	0.85(9)
1200pF(122)	0.85 (9)	0.85(9)
1500pF(152)	0.85 (9)	0.85(9)
1800pF(182)	0.85 (9)	0.85(9)
2200pF(222)	0.85 (9)	0.85(9)
2700pF(272)	0.85 (9)	0.85(9)
3300pF(332)	0.85 (9)	0.85(9)
3900pF(392)	0.85 (9)	0.85(9)
4700pF(472)	0.85 (9)	0.85(9)
5600pF(562)	0.85 (9)	0.85(9)
6800pF(682)		0.85(9)
8200pF(822)		0.85(9)
10000pF(103)		0.85(9)
12000pF(123)		0.85(9)
15000pF(153)		0.85(9)
18000pF(183)		0.85(9)
22000pF(223)		0.85(9)

The part numbering code is shown in $% \left({\left. {{{\bf{n}}_{\rm{s}}}} \right)_{\rm{s}}} \right)$ ().

Dimensions are shown in mm and Rated Voltage in Vdc.

High Dielectric Constant Type, X7R (R7) Characteristics

тс											X. (R	7R (7)										
Part Number		GCI	M15			GCI	M18			(GCM2	1			C	GCM3	1			GC	M 32	
L x W [EIA]	1.0	0x0.5	50 [040	02]	1.6	60x0.8	80 [060	03]		2.00×	1.25 [0805]			3.20x	1.60 [1206]		3.2	20x2.5	60 [12 ⁻	10]
Rated Volt.	100 (2A)	50 (1H)	25 (1E)	16 (1C)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)
Capacitance (Ca	pacita	ance p	art nu	imberi	ng co	de) an	d T (m	m) Di	mensi	on (T l	Dimen	sion p	art nu	mberi	ng co	de)						
220pF (221)	0.50 (5)	0.50 (5)																				

Continued on the following page.

1

ANote • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
 • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
 O6.3.6

Continued from the preceding page.

~	
ы	

ТС					[1		(R	7R (7)		1					1			
Part Number		GC					M18				GCM2		-			SCM3					M32	1.01
L x W [EIA]		00x0.5					30 [06		100		(1.25			100	3.20x			10			50 [12	
Rated Volt.	100 (2A)	50 (1H)	25 (1E)	16 (1C)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	50 (1H)	25 (1E)	16 (1C)	10 (1 /
Capacitance (Ca	pacita	ance p	art nu	ımberi	ng co	de) an	d T (m	nm) Di	mensi	on (T	Dimen	sion p	art nu	Imberi	ng co	de)	1	1	1		1	
330pF (331)	0.50 (5)	0.50 (5)																				
470pF (471)	0.50 (5)	0.50 (5)																				
680pF (681)	0.50 (5)	0.50 (5)																				
1000pF (102)	0.50 (5)	0.50 (5)			0.80 (8)	0.80 (8)			0.60 (6)	0.60 (6)												
1500pF (152)	0.50 (5)	0.50 (5)			0.80 (8)	0.80 (8)			0.60 (6)	0.60 (6)												
2200pF (222)	0.50 (5)	0.50 (5)			0.80 (8)	0.80 (8)			0.60 (6)	0.60 (6)												
3300pF (332)	0.50 (5)	0.50 (5)			0.80 (8)	0.80 (8)			0.60 (6)	0.60 (6)												
4700pF (472)	0.50 (5)	0.50 (5)			0.80 (8)	0.80 (8)			0.60 (6)	0.60 (6)												
6800pF (682)		0.50 (5)	0.50 (5)		0.80 (8)	0.80 (8)			0.60 (6)	0.60 (6)												
10000pF (103)		0.50 (5)	0.50 (5)		0.80 (8)	0.80 (8)			0.60 (6)	0.60 (6)												
15000pF (153)		0.50 (5)	0.50 (5)		0.80 (8)	0.80 (8)	0.80 (8)		0.60 (6)	0.60 (6)												
22000pF (223)		0.50 (5)	0.50 (5)		0.80 (8)	0.80 (8)	0.80 (8)		0.60 (6)	0.60 (6)												
33000pF (333)			0.50 (5)	0.50 (5)		0.80 (8)	0.80 (8)		0.85 (9)	0.85 (9)												
47000pF (473)			0.50 (5)	0.50 (5)		0.80 (8)	0.80 (8)		1.25 (B)	1.25 (B)												
68000pF (683)				0.50 (5)		0.80 (8)		0.80 (8)	1.25 (B)	1.25 (B)												
0.10μF (104)				0.50 (5)		0.80 (8)		0.80 (8)	1.25 (B)	1.25 (B)				0.85 (9)	1.15 (M)							
0.15μF (154)							0.80 (8)			1.25 (B)	1.25 (B)			1.15 (M)	1.15 (M)							
0.22µF (224)							0.80 (8)			1.25 (B)	1.25 (B)			1.15 (M)	1.15 (M)	0.85 (9)						
0.33μF (334)								0.80 (8)		0.85 (9)	1.25 (B)	1.25 (B)			1.15 (M)	0.85 (9)						
0.47μF (474)							0.80 (8)	0.80 (8)		1.25 (B)	1.25 (B)	1.25 (B)			1.15 (M)	1.15 (M)						
0.68µF (684)											1.25 (B)											
1.0μF (105)											1.25 (B)					1.15 (M)			2.50 (E)			
1.5μF (155)												1.25 (B)			1.60 (C)	1.15 (M)						
2.2μF (225)											1.25 (B)	1.25 (B)	1.25 (B)		1.60 (C)	1.15 (M)				2.50 (E)		
3.3μF (335)												1.25 (B)				1.15 (M)						
4.7μF (475)																1.60 (C)	1.60 (C)					

Continued from the preceding page.

тс												7R 1 7)										
Part Number		GCI	M15			GCI	M18			C	GCM2	1			C	SCM3	1			GC	M32	
L x W [EIA]	1.0	0x0.5	50 [040	02]	1.6	60x0.8	80 [060	03]		2.00x	1.25 [0805]			3.20x	1.60 [1206]		3.2	20x2.5	50 [12	10]
Rated Volt.	100 (2A)	50 (1H)	25 (1E)	16 (1C)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	100 (2A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)
Capacitance (Ca	pacita	ince p	art nu	imberi	ng coo	de) an	d T (m	im) Dii	mensi	on (T l	Dimen	sion p	art nu	mberi	ng co	de)						
6.8μF (685)																		1.60 (C)				
10μF (106)																		1.60 (C)			2.00 (D)	
22μF (226)																						2.50 (E)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

The tolerance will be changed to L: 3.2 \pm 0.2, W: 1.6 \pm 0.2, T: 1.15 \pm 0.15 for GCM31 25V 2.2 μ F type.

High Dielectric Constant Type, X7S (C7) Characteristics

тс		X7S (C7)	
Part Number	GC	M18	GCM21
L x W [EIA]	1.60x0.8	30 [0603]	2.00x1.25 [0805]
Rated Volt.	16 (1C)	10 (1A)	10 (1A)
Capacitance (Ca	pacitance part numbering code) and T (mm) Dimension (T Dimension part numbering	code)
0.68μF(684)	0.80(8)		
1.0μF(105)	0.80(8)	0.80(8)	
4.7μF(475)			1.25 (B)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

High Dielectric Constant Type, X8L (L8) Characteristics

тс	X8L (L8)								
Part Number	GC	M18	GC	M21	GCM	131			
L x W [EIA]	1.60x0.8	30 [0603]	2.00x1.	25 [0805]	3.20x1.6) [1206]			
Rated Volt.	50 (1H)	16 (1C)	50 (1H)	16 (1C)	50 (1H)	16 (1C)			
Capacitance (Ca	pacitance part numb	ering code) and T (mm) Dimension (T Dimer	sion part numbering	code)				
15000pF(153)	0.80 (8)								
22000pF(223)	0.80(8)								
33000pF(333)	0.80 (8)								
47000pF(473)	0.80(8)								
68000pF(683)	0.80(8)		1.25(B)						
0.10μF(104)	0.80(8)		1.25(B)		1.15(M)				
0.15µF(154)		0.80(8)	1.25(B)		1.15(M)				
0.22µF(224)		0.80(8)	1.25(B)		1.15(M)				
0.33µF(334)			1.25(B)	1.25(B)	1.15(M)				
0.47µF(474)				1.25(B)	1.15(M)				
0.68µF(684)				1.25(B)	1.60(C)				
1.0μF(105)				1.25(B)	1.60(C)				
1.5μF(155)						1.15(M)			
2.2μF(225)						1.15(M)			

The part numbering code is shown in $% \left({\left. {{\left({{{{\bf{n}}_{{\rm{c}}}}} \right)}} \right)$ ().

Dimensions are shown in mm and Rated Voltage in Vdc.

1

High Dielectric Constant Type, X8R (R9) Characteristics

тс	X8R (R9)									
Part Number	GCM18	GCM21	GCM31							
L x W [EIA]	1.60x0.80 [0603]	2.00x1.25 [0805]	3.20x1.60 [1206]							
Rated Volt.	50 (1H)	50 (1H)	50 (1H)							
Capacitance (Ca	pacitance part numbering code) and T (mm) Dimension (T Dimension part numbering	code)							
33000pF(333)	0.80 (8)									
47000pF(473)	0.80 (8)									
68000pF(683)		1.25(B)								
0.10μF(104)		1.25 (B)								
0.15µF(154)			1.15 (M)							
0.22µF(224)			1.15 (M)							
0.33µF(334)			1.15 (M)							

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

ANote • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
 • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
 06.3.6

Specifications and Test Methods

1

No.	AEC-	Q200	Specifi	cations	AEC-Q200 Test Method			
NO.	Test	ltem	Temperature Compensating Type	High Dielectric Type				
1	Pre-and Po Electrical 1				-			
	High Tem Exposure		The measured and observed ch specifications in the following ta					
		Appearance	No marking defects					
2		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	Within ±10.0%	Sit the capacitor for 1000 ± 12 hours at 150 ± 3 °C. Let sit for 24 ± 2			
		Q/D.F.	30pFmin. : Q≧1000 30pFmax. : Q≧400+20C C : Nominal Capacitance (pF)	*1 W.V. : 25Vmin. : 0.03 max. W.V. : 16V : 0.05 max.	hours at room temperature, then measure.			
		I.R.	More than 10,000M Ω or 500 Ω \cdot (Whichever is smaller)	F *1				
	Temperat Cycle	ure	The measured and observed ch specifications in the following ta		Fix the capacitor to the supporting jig in the same manner and under the same conditions as (18). Perform the 1000 cycles			
		Appearance	No marking defects		according to the four heat treatments listed in the following table. Let sit for 24 ± 2 hours at room temperature, then measure			
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	Within ±10.0%	Step 1 2 3 4			
3		Q/D.F.	30pFmin. : Q≧1000 30pFmax. : Q≧400+20C C : Nominal Capacitance (pF)	*1 W.V. : 25Vmin. : 0.03 max. W.V. : 16V : 0.05 max.	Temp. (°C) -55+0/-3 Room 123+3/-0 (L6/R9/5G) Temp.			
	I.R.		More than 10,000M Ω or 500 Ω · (Whichever is smaller)	*1	• Initial measurement for high dielectric constant type Perform a heat treatment at $150 \stackrel{+}{-} \stackrel{0}{_{-}} \circ^{\circ} C$ for one hour and then let sit for 24±2 hours at room temperature. Perform the initial measurement.			
4	Destructiv Physical		No defects or abnormalities		Per EIA-469			
	Moisture Resistanc	ce .	The measured and observed ch specifications in the following ta		Apply the 24-hour heat (25 to 65°C) and humidity (80 to 98%) treatment shown below, 10 consecutive times.			
		Appearance	No marking defects		Let sit for 24±2 hours at room temperature, then measure.			
		Capacitance Change	Within ±3.0% or ±0.30pF (Whichever is larger)	Within ±12.5%	- Humidity Humidity Humidity Humidity Humidity [°] C 90-98% 80-98% 90-98% 80-98% 90-98% 70			
5		Q/D.F.	$\begin{array}{l} 30pFmin.: Q \geqq 350\\ 10pF \mbox{ and over, } 30pF \mbox{ and below:}\\ Q \geqq 275 + \frac{5}{2} \mbox{ C}\\ 10pFmax.: Q \geqq 200 + 10C\\ \mbox{ C}: \mbox{ Nominal Capacitance (pF)} \end{array}$	*1 W.V. : 25Vmin. : 0.03 max. W.V. : 16V : 0.05 max.	66 66 50 45 40 40 40 40 40 40 40 40 40 40			
	I.R.		*1 More than 10,000M Ω or 500 $\Omega \cdot F$ (Whichever is smaller)		Initial measurement Initial measurement Initial measurement Initial measurement			
	Biased H	umidity	The measured and observed ch specifications in the following ta					
		Appearance	No marking defects		Apply the rated voltage and 1.3+0.2/-0Vdc (add 6.8k Ω resistor)			
6		Capacitance Change	Within ±3.0% or ±0.30pF (Whichever is larger)	Within ±12.5%	at $85\pm3^{\circ}$ C and 80 to 85% humidity for 1000 ± 12 hours. Remove and let sit for 24 ± 2 hours at room temperature, then			
0		Q/D.F.	30pF and over : Q≥200 $30pF$ and below : Q≥100+ $\frac{10}{3}$ C C : Nominal Capacitance (pF)	*1 W.V. : 25Vmin. : 0.035 max. W.V. : 16V : 0.05 max.	measure. The charge/discharge current is less than 50mA.			
		I.R.	More than $1,000\Omega$ or $50\Omega \cdot F$ (Whichever is smaller)	*1				

Specifications and Test Methods

Continued from the preceding page.

	AEC-	Q200	Specifi	cations	AEC 0200 Test Method		
۱o.	Test	Item	Temperature Compensating Type High Dielectric Type		AEC-Q200 Test Method		
	Operatior	nal Life	The measured and observed ch specifications in the following ta				
		Appearance	No marking defects		Apply 200% of the rated voltage for 1000±12 hours at		
		Capacitance Change	Within ±3.0% or ±0.30pF (Whichever is larger)	Within ±12.5%	 125±3°C. Let sit for 24±2 hours at room temperature, then measure. *2 The charge/discharge current is less than 50mA. 		
7		Q/D.F.	30pFmin. : Q≧350 10pF and over, 30pF and below: Q≧275+ 5 C 10pFmax. : Q≧200+10C C : Nominal Capacitance (pF)	*1 W.V. : 25Vmin. : 0.035 max. W.V. : 16V : 0.05 max.	 Initial measurement for high dielectric constant type. Apply 200% of the rated DC voltage for one hour at the maximum operating temperature ±3°C. Remove and let sit for 24±2 hours at room temperature. Perform initial measurement. *2 		
		I.R.	More than 1,000M Ω or 50 $\Omega \cdot F$ (Whichever is smaller)	*1			
8	External	Visual	No defects or abnormalities		Visual inspection		
9	Physical [Dimension	Within the specified dimensions		Using calipers		
		Appearance	No marking defects		Per MIL-STD-202 Method 215		
		Capacitance Change	Within the specified tolerance		Solvent 1 : 1 part (by volume) of isopropyl alcohol 3 parts (by volume) of mineral spirits		
10	Resistance to Solvents	Q/D.F.	30pFmin. : Q≧1000 30pFmax. : Q≧400+20C C : Nominal Capacitance (pF)	*1 W.V. : 25Vmin. : 0.025 max. W.V. : 16V : 0.035 max.	Solvent 2 : Terpene defluxer Solvent 3 : 42 parts (by volume) of water 1 part (by volume) of propylene glycol		
		I.R.	More than 10,000M Ω or 500 Ω \cdot (Whichever is smaller)	F *1	monomethylether 1 part (by volume) of monoethanolomine		
		Appearance	No marking defects				
		Capacitance Change	Within the specified tolerance		Three shocks in each direction should be applied along 3		
11	Mechanical Shock	Q/D.F.	30pFmin. : Q≧1000 30pFmax. : Q≧400+20C C : Nominal Capacitance (pF)	*1 W.V. : 25Vmin. : 0.025 max. W.V. : 16V : 0.035 max.	mutually perpendicular axes of the test specimen (18 shocks). The specified test pulse should be Half-sine and should have a duration : 0.5ms, peak value: 1500g and velocity change: 4.7m/s		
		I.R.	More than 10,000M Ω or 500 Ω \cdot (Whichever is smaller)	F *1			
		Appearance	No defects or abnormalities		Solder the capacitor to the test jig (glass epoxy board) in the		
		Capacitance Change	Within the specified tolerance		same manner and under the same conditions as (19). The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied		
12	Vibration	Q/D.F.	30pFmin. : Q≧1000 30pFmax. : Q≧400+20C C : Nominal Capacitance (pF)	*1 W.V. : 25Vmin. : 0.025 max. W.V. : 16V : 0.035 max.	uniformly between the approximate limits of 10 and 2000Hz. The frequency range, from 10 to 2000Hz and return to 10Hz, should be traversed in approximately 20 minutes. This motion should be		
	I.R.		More than 10,000M Ω or 500 Ω · (Whichever is smaller)	F *1	applied for 12 items in each 3 mutually perpendicular directions (total of 36 times).		
	Resistand Soldering		The measured and observed ch specifications in the following ta				
		Appearance	No marking defects		Immerse the capacitor in a eutectic solder solution at 260±5°C for 10±1 seconds. Let sit at room temperature for 24±2 hours, then		
13		Capacitance Change	Within the specified tolerance		measure.		
.5		Q/D.F.	30pFmin. : Q≧1000 30pFmax. : Q≧400+20C C : Nominal Capacitance (pF)	*1 W.V. : 25Vmin. : 0.025 max. W.V. : 16V : 0.035 max.	 Initial measurement for high dielectric constant type Perform a heat treatment at 150⁺⁰/₁₀ °C for one hour and then le sit for 24±2 hours at room temperature. Perform the initial measurement. 		
		I.R.	More than 10,000M Ω or 500 Ω \cdot (Whichever is smaller)	F *1			

1

Continued from the preceding page.

	AEC-	-Q200	Specifi	cations	AEC-0200 Test Method			
۱o.	Test	Item	Temperature Compensating Type	High Dielectric Type	AEC-Q200 Test Method			
	Thermal	Shock	The measured and observed ch specifications in the following ta		Fix the capacitor to the supporting jig in the same manner and under the same conditions as (18). Perform the 300 cycles			
		Appearance	No marking defects		according to the two heat treatments listed in the following table (Maximum transfer time is 20 seconds). Let sit for 24±2 hours at			
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	Within ±10.0%	room temperature, then measure.			
14		Q/D.F.	30pF min. : Q≧1000 30pF max. : Q≧400+20C C : Nominal Capacitance (pF)	*1 W.V. : 25Vmin. : 0.025 max. W.V. : 16V : 0.035 max.	Temp. (°C) -55+0/-3 125+3/-0 (5C, C7, R7) 150+3/-0 (L8, R9, 5G) Time (min.) 15±3 15±3 • Initial measurement for high dielectric constant type			
		I.R.	More than 10,000M Ω or 500 Ω \cdot (Whichever is smaller)	F *1	Perform a heat treatment at $150 \pm 0_{10}^{\circ}$ °C for one hour and then let sit for 24±2 hours at room temperature. Perform the initial measurement.			
		Appearance	No marking defects					
		Capacitance Change	Within the specified tolerance					
15	ESD	Q/D.F.	30pF min. : Q≧1000 30pF max. : Q≧400+20C C : Nominal Capacitance (pF)	*1 W.V. : 25Vmin. : 0.025 max. W.V. : 16V : 0.035 max.	Per AEC-Q200-004			
		I.R.	More than 10,000M Ω or 500 Ω \cdot (Whichever is smaller)	F *1				
					(a) Preheat at 155°C for 4 hours. After preheating, immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS- K-5902) (25% rosin in weight proportion). Immerse in eutectic solder solution for 5+0/-0.5 seconds at 235±5°C.			
16	Solderab	ility	95% of the terminations is to be a continuously.	soldered evenly and	 (b) Should be placed into steam aging for 8 hours±15 minutes. After preheating, immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in eutectic solder solution for 5+0/-0.5 seconds at 235±5°C. (c) Should be placed into steam aging for 8 hours±15 minutes. After preheating, immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Immerse in eutectic solder solution for 120 ±5 seconds at 260±5°C. 			
		Appearance	No defects or abnormalities		Visual inspection.			
		Capacitance Change	Within the specified tolerance		The capacitance/Q/D.F. should be measured at 25°C at the frequency and voltage shown in the table.			
		Q/D.F.	30pF min. : Q≧1000 30pF max. : Q≧400+20C C : Nominal Capacitance (pF)	*1 W.V. : 25V min. : 0.025 max. W.V. : 16V : 0.035 max	$(1) \mbox{ Temperature Compensating Type} \\ \hline \hline Capacitance Frequency Voltage \\ \hline C \leq 1000 pF 1 \pm 0.1 MHz 0.5 to 5 Vrms \\ \hline C > 1000 pF 1 \pm 0.1 kHz 1 \pm 0.2 Vrms \\ \hline (2) \mbox{ High Dielectric Type} \\ \hline \hline Capacitance Frequency Voltage \\ \hline C \leq 10 \mu F 1 \pm 0.1 kHz 1 \pm 0.2 Vrms \\ \hline C > 10 \mu F 120 \pm 24 Hz 0.5 \pm 0.1 Vrms \\ \hline \end{array}$			
17	Electrical Chatacteri- zation		25°C More than 100,000MΩ or 1,000Ω · F (Whichever is smaller)	*1 25°C More than 10,000MΩ or 500Ω · F (Whichever is smaller)				
		I.R.	Max. Operating Temperature125°C More than $10,000M\Omega$ or $100\Omega \cdot F$ (Whichever is smaller)	Max. Operating Temperature…125°C More than 1,000M Ω or 10 Ω · F (Whichever is smaller)	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 25°C and 125°C and within 2 minutes of charging.			
			Max. Operating Temperature150°C More than $10,000M\Omega$ or $100\Omega \cdot F$ (Whichever is smaller)	Max. Operating Temperature150°C More than $1,000M\Omega$ or $1\Omega \cdot F$ (Whichever is smaller)				
		Dielectric Strength	No failure		No failure should be observed when 250% of the rated voltage is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.			

Specifications and Test Methods

Continued from the preceding page.

		eding page.						
AEC-	Q200	Specifi	cations	AEC-Q200 Test Method				
		Temperature Compensating Type	High Dielectric Type					
	Appearance	No marking defects		Solder the capacitor on the test jig (glass epoxy board) shown in				
	Capacitance Change	Within ±5.0% or ±0.5pF (Whichever is larger)	Within ±10.0%	Fig. 1 using a eutectic solder. Then apply a force in the direction shown in Fig. 2 for 5±1sec. The soldering should be done either with an iron or using the reflow method and should be conducted				
	Q/D.F.	30pF min. : Q≧1000 30pF max. : Q≧400+20C	*1 W.V. : 25Vmin. : 0.025 max. W.V. : 16V : 0.035 max	with care so that the soldering is uniform and free of defects such as heat shock.				
		C : Nominal Capacitance (pF)	W.V. 10V . 0.055 max.	Type a b c GCM15 0.5 1.5 0.6 GCM18 0.6 2.2 0.9 GCM21 0.8 3.0 1.3				
Board Flex				GCM31 2.0 4.4 1.7 GCM32 2.0 4.4 2.6 (in mm)				
	I.R.	*1 More than 10,000M Ω or 500 $\Omega \cdot F$ (Whichever is smaller)		20 114 Pressunzing speed : 1.0mm/sec Pressurize				
			(GCM15 : 0.8mm) Fig. 1	Capacitance meter 45 45 Flexure : ≦2 (High Dielectric Type) Flexure : ≦3 (Temperature Compensating Type)				
				Fig. 2				
	Appearance	No marking defects		Solder the capacitor to the test jig (glass epoxy board) shown in				
	Capacitance Change	Within the specified tolerance		Fig. 3 using a eutectic solder. Then apply *18N force in parallel with the test jig for 60sec. The soldering should be done either with an iron or using the				
	Q/D.F.	30pF min. : Q≧1000 30pF max. : Q≧400+20C C : Nominal Capacitance (pF)	*1 W.V. : 25Vmin. : 0.025 max. W.V. : 16V : 0.035 max.	reflow method and should be conducted with air for or using the soldering is uniform and free of defects such as heat shock. *2N (GCM15)				
Terminal Strength	I.R.	More than 10,000MΩ or 500Ω · (Whichever is smaller)	*1 F	Type a b c GCM15 0.4 1.5 0.5 GCM18 1.0 3.0 1.2 GCM21 1.2 4.0 1.65 GCM32 2.2 5.0 2.0 GCM32 2.2 5.0 2.9 (in mm) Solder resist Baked electrode or copper foil Fig. 3				
Beam Lo	ad Test	Chip thickness > 0.5mm ran Chip thickness ≦ 0.5mm ran < Chip L dimension : 3.2mm mi Chip thickness < 1.25mm ran	Place the capacitor in the beam load fixture as Fig. 4. Apply a force. < Chip Length : 2.5mm max. > Iron Board Speed supplied the Stress Load : 0.5mm / sec. < Chip Length : 3.2mm min. > Fig. 4 Speed supplied the Stress Load : 2.5mm / sec.					
	AEC- Test Board Flex	AEC-Q200 Test Item Appearance Capacitance Change Q/D.F. Board Flex I.R. Appearance Capacitance Change Q/D.F. Terminal Strength	AEC-Q200 Test Item Specific Temperature Compensating Type Appearance No marking defects Capacitance Change Within ±5.0% or ±0.5pF (Whichever is larger) Q/D.F. 30pF min.: Q≥1000 30pF max.: Q≥400+20C C : Nominal Capacitance (pF) Board Flex I.R. More than 10,000MΩ or 500Ω · F (Whichever is smaller) Appearance No marking defects Capacitance Change No marking defects Q/D.F. 30pF min.: Q≥1000 30pF max.: Q≥400+20C C : Nominal Capacitance (pF) Appearance No marking defects Capacitance Change Within the specified tolerance Q/D.F. 30pF min.: Q≥1000 30pF max.: Q≥400+20C C : Nominal Capacitance (pF) Terminal Strength I.R. More than 10,000MΩ or 500Ω · (Whichever is smaller) I.R. More than 10,000MΩ or 500Ω · (Whichever is smaller) Beam Load Test The chip endure following force. < Chip L dimension : 2.5mm man Chip thickness > 0.5mm ran Chip thickness > 0.5mm ran Chip thickness > 1.25mm ran Chip thickness < 1.25mm ran	AEC-Q20 Test Item Specifications Appearance Capadrame (Whin ± 50% or 20.5pF Capadrame (Whin ± 50% or 20.5pF Capadrame (Whin ± 50% or 20.5pF Capadrame (Whin ± 10.0% High Dielectric Type Board Flex Appearance (QD_F. 300F max. : 02400-20C C : Nominal Capacitance (pF) Within ± 10.0% I.R. More than 10,000MΩ or 500Ω · F (Whichever is smaller) V.V. : 25Vmin. : 0.025 max. W.V. : 16V : 0.035 max. I.R. More than 10,000MΩ or 500Ω · F (Whichever is smaller) Import for the specified tolerance Change Q/D.F. 300F min. : 02400-20C C : Nominal Capacitance (pF) W.V. : 25Vmin. : 0.025 max. Q/D.F. 300F min. : 02400-20C C : Nominal Capacitance (pF) W.V. : 25Vmin. : 0.025 max. Q/D.F. 300F min. : 02400-20C C : Nominal Capacitance (pF) W.V. : 16V : 0.035 max. I.R. More than 10,000MΩ or 500Ω · F "1 I.R. More than 10,000MΩ or 500Ω · F "1 I.R. More than 10,000MΩ or 500Ω · F "1 The chip endure following force. < Chip L dimension : 2.5mm max > Chip L dimension : 2.5mm Smart > Chip L dimension : 2.5mm				

Specifications and Test Methods

1

Continued from the preceding page.

N -	AEC-	Q200	Specifi	cations		
No.	Test	Item	Temperature Compensating Type High Dielectric Type		AEC-Q200 Test Method	
		Capacitance Change	Within the specified tolerance (Table A)	C7 : Withn ±22% (-55°C to +125°C) L8 : Withn +15/-40% (-55°C to +150°C) R7 : Withn ±15% (-55°C to +125°C) R9 : Withn ±15% (-55°C to +150°C)	 The capacitance change should be measured after 5 min. at each specified temperature stage. (1) Temperature Compensating Type The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step1 through 5 (ΔC: +25°C to +125°C to +125°C to temperature specified tolerance for the temperature specified tolerance for the temperature 	
		Temperature Coefficent	Within the specified tolerance (Table A)		coefficient and capacitance change as shown in Table A. The capacitance drift is calculated by dividing the differences between the maximum and minimum measured values in steps	
21	Capacitance Temperature Character- istics	Capacitance Drift	Within ±0.2% or ±0.05 pF (Whichever is larger) * Do not apply to 1X/25V		1, 3 and 5 by the capacitance value in step 3. $\begin{array}{r c c c c c c c c c c c c c c c c c c c$	

*1: The figure indicates typical inspection. Please refer to individual specifications.

*2: Some of the parts are applicable in rated voltage x 150%. Please refer to individual specifications.

Table A

			(Capacitance Char	nge from 25°C (%	b)	
Char.	Nominal Values (ppm/°C) Note1	-55		-30		-10	
		Max.	Min.	Max.	Min.	Max.	Min.
5C/5G	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11

Note 1 : Nominal values denote the temperature coefficient within a range of 25°C to 125°C (for 5C)/150°C (for 5G).

...

Chip Monolithic Ceramic Capacitors for Automotive

muRata

for Automotive Low ESL LLC Series Capacitors

2

- Features
- 1. Low ESL, good for noise reduction for high frequency
- 2. Small, high cap

Applications

- 1. High speed micro processor
- 2. High frequency digital equipment

		F	-;
rt Number	Dim	nensions (r	nm)
it mulliber	L	W	Т
		00101	<u> </u>

4	Part Number	Dimensions (mm)					
	Fait Number	L	W	Т			
	LLC185	1.6 ±0.1	0.8 ±0.1	0.6 max.			
	LLC216	2.0 ±0.1	1.25 ±0.1	0.6 ±0.1			
	LLC219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1			
	LLC317 LLC31M	3.2 ±0.15	1 4 +0 15	0.7 ±0.1			
		3.2 ±0.15	1.0 ±0.15	1.15 ±0.1			

тс		X7R (R7)										
Part Number		LLO	C18			LLO	C21			LLO	C31	
L x W [EIA]		1.60x0.8	30 [0603]			2.00x1.2	25 [0805]			3.20x1.6	50 [1206]	
Rated Volt.	50 (1H)	25 (1E)	16 (1C)	10 (1A)	50 (1H)	25 (1E)	16 (1C)	10 (1A)	50 (1 H)	25 (1E)	16 (1C)	10 (1A)
Capacitance (Ca	pacitance	part numbe	ering code)	and T (mm) Dimensio	n (T Dimen	sion part n	umbering c	ode)			
2200pF(222)	0.50(5)											
3300pF(332)	0.50(5)											
4700pF(472)	0.50(5)				0.60(6)							
6800pF(682)		0.50(5)			0.60(6)							
10000pF(103)		0.50(5)	0.50(5)		0.60(6)				0.70(7)			
15000pF(153)		0.50(5)	0.50(5)		0.60(6)				0.70(7)	0.70(7)		
22000pF(223)		0.50(5)	0.50(5)		0.60(6)	0.60(6)			0.70(7)	0.70(7)		
33000pF(333)			0.50(5)		0.85(9)	0.85(9)	0.60(6)		0.70(7)	0.70(7)		
47000pF(473)			0.50(5)			0.85(9)	0.60(6)		0.70(7)	0.70(7)		
68000pF(683)			0.50(5)			0.85(9)	0.60(6)		0.70(7)	0.70(7)		
0.10μF(104)				0.50(5)		0.85(9)	0.85(9)		1.15(M)	1.15(M)	0.70(7)	
0.15μF(154)						0.85(9)	0.85(9)		1.15(M)	1.15(M)	0.70(7)	
0.22µF(224)							0.85(9)	0.60(6)		1.15(M)	0.70(7)	
0.33µF(334)								0.60(6)		1.15(M)	1.15(M)	
0.47µF(474)								0.85(9)		1.15(M)	1.15(M)	0.70(7)
0.68μF(684)											1.15(M)	0.70(7)
1.0μF(105)											1.15(M)	0.70(7)
1.5μF(155)												1.15(M)
2.2μF(225)												1.15(M)

The part numbering code is shown in ().

Dimensions are shown in mm and Rated Voltage in Vdc.

Specifications and Test Methods

2

No.	Item	Specifications	Test Method		
1	Operating Temperature Range	R7 : −55 to +125℃			
2	Rated Voltage	See the previous pages.	The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, $V^{\text{p.p}}$ or $V^{\text{o.p}}$, whichever is larger, should be maintained within the rated voltage range.		
3	Appearance	No defects or abnormalities	Visual inspection		
4	Dimensions	Within the specified dimension	Using calipers		
5	Dielectric Strength	No defects or abnormalities	No failure should be observed when 250% of the rated voltage is applied between the terminations for 1 to 5 seconds, provid- ed the charge/discharge current is less than 50mA.		
6	Insulation Resistance (I.R.)	More than 10,000M Ω or 500 Ω \cdot F (Whichever is smaller)	The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 25° and 75° RH max. and within 2 minutes of charging.		
7	Capacitance	Within the specified tolerance	The capacitance/D.F. should be measured at 25°C at the		
			frequency and voltage shown in the table.		
8	Dissipation Factor (D.F.)	Char. 25V min. 16V, 10V 6.3V R7 0.025 max. 0.035 max. 0.05 max.	Item Char. R7 Frequency 1±0.1kHz		
	(D.I.)	<u> </u>	Voltage 1±0.2Vr.m.s.		
9	Capacitance Temperature Characteristics	Char.Temp. Range (℃)Reference Temp.Cap. Change.R7-55 to +12525℃Within ±15%	The ranges of capacitance change compared with the 25°C value over the temperature ranges shown in the table should be within the specified ranges. The capacitance change should be measured after 5 min. at each specified temperature stage.		
			Solder the capacitor to the test jig (glass epoxy board) shown in Fig. 1 using a eutectic solder. Then apply $10N^*$ force in the direction of the arrow. $*5N$: LLC18 The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock.		
10	Adhesive Strength of Termination	No mechanical defect	Solder resist Baked electrode or roman fail		
			Type a b c		
			LLC18 0.3 1.2 2.0		
			LLC21 0.6 1.6 2.4 LLC31 1.0 3.0 3.7		
			(in mm)		
			Fig. 1		
	Appearance	No defects or abnormalities	Solder the capacitor to the test jig (glass epoxy board) in the same manner and under the same conditions as (10).		
	Capacitance	Within the specified tolerance	- The capacitor should be subjected to a simple harmonic motion		
11	Vibration Resistance D.F.	Char.25V min.16V, 10V6.3VR70.025 max.0.035 max.0.05 max.	having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours).		

Specifications and Test Methods

No.	lte	em	Specifications	Test Method				
	2 Deflection		No crack or marked defect should occur.	Solder the capacitor to the test jig (glass epoxy boards) shown in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as beat shock				
12			Type a b c LLC18 0.3 1.2 2.0 LLC21 0.6 1.6 2.4 LLC31 1.0 3.0 3.7 (in mm) Fig. 2	soldering is uniform and free of defects such as heat shock. $\begin{array}{c} \downarrow 20 \\ \text{speed: } 1.0\text{mm/sec.} \\ \downarrow \text{Pressurize} \\ \hline \\ $				
13	Solderab Terminati	2	75% of the terminations are to be soldered evenly and continuously.	Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2±0.5 seconds at 230±5°C.				
		Appearance Capacitance Change	No defects or abnormalities R7 : Within ±7.5%	 Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the capacitor in a eutectic solder solution at 270±5°C for 10±0.5 seconds. Let sit at room temperature for 48±4 hours , then 				
14	Resistance to Soldering Heat	D.F.	Char. 25V min. 16V, 10V 6.3V measure. R7 0.025 max. 0.035 max. 0.05 max. •Initial measurement.					
	neal	I.R.	More than 10,000M Ω or 500 $\Omega \cdot$ F (Whichever is smaller)	Perform a heat treatment at 150^{+0}_{-10} °C for one hour and then				
		Dielectric Strength	No failure	Iet sit for 48±4 hours at room temperature. Perform the initial measurement.				
		Appearance Capacitance Change	No defects or abnormalities R7 : Within ±7.5%	Fix the capacitor to the supporting jig in the same manner and under the same conditions as (10). Perform the five cycles according to the four heat treatments listed in the following table. Let sit for 48±4 hours at room tem-				
		D.F.	Char. 25V min. 16V, 10V 6.3V R7 0.025 max. 0.035 max. 0.05 max.	perature, then measure.				
15	Temperature	I.R.	More than $10,000M\Omega$ or $500\Omega \cdot F$ (Whichever is smaller)	Step 1 2 3 4 Temp. (°C) Min. Operating Temp. +0 Room Max. Operating Temp. +3 Room				
	Cycle	1.1X.		- $ -$				
		Dielectric Strength	No failure	Time (min.) 30 ± 3 $2 \text{ to } 3$ 30 ± 3 $2 \text{ to } 3$ •Initial measurement.Perform a heat treatment at $150 \pm 0 \ C$ for one hour and thenlet sit for 48 ± 4 hours at room temperature. Perform the initialmeasurement.				
		Appearance	No defects or abnormalities					
	Humidity,	Capacitance Change	R7 : Within ±12.5%	Let the capacitor sit at 40±2℃ and 90 to 95% humidity for 500±12 hours.				
16	Steady State	D.F.	Char. 25V min. 16V, 10V 6.3V R7 0.05 max. 0.05 max. 0.075 max.	Remove and let sit for 48±4 hours at room temperature, then measure.				
		I.R.	More than 1,000M Ω or 50 $\Omega \cdot F$ (Whichever is smaller)					
		Appearance	No defects or abnormalities	_				
		Capacitance Change	R7 : Within ±12.5%	Apply the rated voltage at $40\pm2^{\circ}$ and 90 to 95% humidity for				
17	Humidity Load	D.F.	Char. 25V min. 16V, 10V 6.3V R7 0.05 max. 0.05 max. 0.075 max.	500 ± 12 hours. Remove and let sit for 48 ± 4 hours at room temperature, then measure. The charge/discharge current is less				
		I.R.	More than 500M Ω or 25 $\Omega \cdot$ F (Whichever is smaller)	— than 50mA.				

ANote • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
 • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
 • Of A.3.6

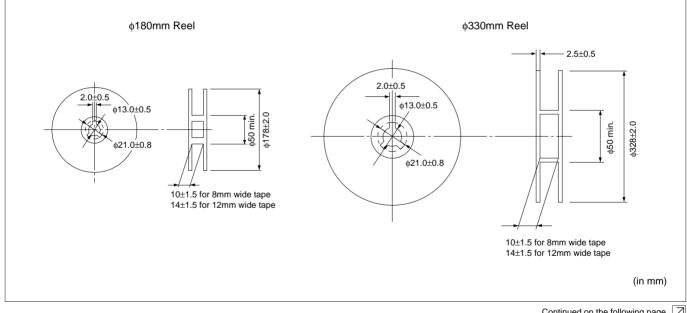
Specifications and Test Methods

Continued from the preceding page.

No.	Ite	m	Specifications				Test Method		
		Appearance	No defects or	abnormalities			Apply 200% of the rated voltage for 1,000±12 hours at maxi-		
18		Capacitance Change	R7 : Within ±	12.5%			mum operating temperature $\pm 3^{\circ}$ C. Let sit for 48 \pm 4 hours at room temperature, then measure.		
	High Temperature Load	D.F.	Char. R7	25V min. 0.05 max.	16V, 10V 0.05 max.	6.3V 0.075 max.	 The charge/discharge current is less than 50mA. Initial measurement. 		
	2000	I.R.	More than 1,000M Ω or 50 $\Omega \cdot F$ (Whichever is smaller)				Apply 200% of the rated DC voltage for one hour at the maximum operating temperature ±3℃.		
		Dielectric Strength	No failure				Remove and let sit for 48±4 hours at room temperature. Perform initial measurement.		

 Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
 • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering. C03E.pdf 06.3.6

Package

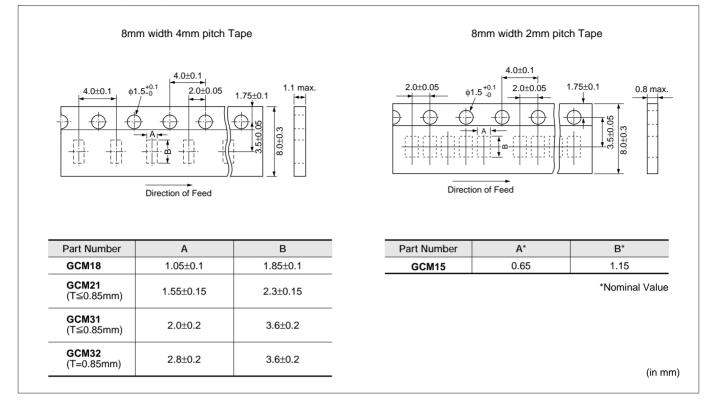

Minimum Quantity Guide

	Dimensions (mm)		Quantity (pcs.)						
Part Number			ø180mm reel		ø330mm reel		Dulk Case	Dulk Dog	
Fait Number	L	w	т	Paper Tape Packaging Code: D	Embossed Tape Packaging Code: L	Paper Tape Packaging Code: J	Embossed Tape Packaging Code: K	Bulk Case Packaging Code: C	Bulk Bag Packaging Code: B
GCM15	1.0	0.5	0.5	10,000	-	50,000	-	50,000	1,000
GCM18	1.6	0.8	0.8	4,000	-	10,000	-	15,000 ¹⁾	1,000
			0.6	4,000	-	10,000	-	10,000	1,000
GCM21	2.0	1.25	0.85	4,000	-	10,000	-	-	1,000
			1.25	-	3,000	-	10,000	5,000	1,000
	3.2	1.6	0.85	4,000	-	10,000	-	-	1,000
GCM31			1.15	-	3,000	-	10,000	-	1,000
			1.6	-	2,000	-	6,000	-	1,000
	3.2	2.5	1.15	-	3,000	-	10,000	-	1,000
GCM32			1.35	-	2,000	-	8,000	-	1,000
			1.6/1.8 2.0/2.5	-	1,000	-	4,000	-	1,000
LLC18	0.8	1.6	0.6	-	4,000	-	10,000	-	1,000
LLC21	1.25	2.0	0.6	-	4,000	-	10,000	-	1,000
LLGZI	1.25	2.0	0.85	-	3,000	-	10,000	-	1,000
LLC31	1.6	3.2	0.7	-	4,000	-	10,000	-	1,000
	1.0	3.2	1.15	-	3,000	-	10,000	-	1,000

1) 68000pF/0.1 μF of R7 50V are not available by bulk case.

■ Tape Carrier Packaging

1. Dimensions of Reel



Package

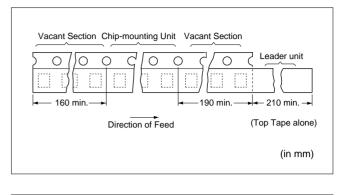
Continued from the preceding page.

2. Dimensions of Paper Tape

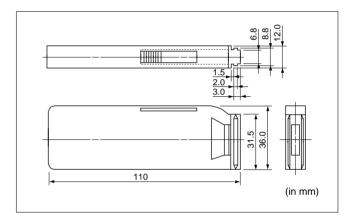
3. Dimensions of Embossed Tape

	8mm wid	dth 4mm pitch Tape		
	4.0±0.1 \$1.5*0 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓		τh	nk)
F	Part Number	А	В	
L	LC18	1.0±0.1	1.8±0.1	
 G	LC18 GCM21, LLC21 T=1.25mm)	1.0±0.1 1.45±0.2	1.8±0.1 2.25±0.2	
	GCM21, LLC21			
	GCM21, LLC21 T=1.25mm) GCM31, LLC31	1.45±0.2	2.25±0.2	

Continued on the following page. \square


Package

Continued from the preceding page.


- 4. Taping Method
 - Tapes for capacitors are wound clockwise. The sprocket holes are to the right as the tape is pulled toward the user.
 - (2) Part of the leader and part of the empty tape should be attached to the end of the tape as follows.
 - (3) The top tape and base tape are not attached at the end of the tape for a minimum of 5 pitches.
 - (4) Missing capacitors number within 0.1% of the number per reel or 1 pc, whichever is greater, and are not continuous.
 - (5) The top tape and bottom tape should not protrude beyond the edges of the tape and should not cover sprocked holes.
 - (6) Cumulative tolerance of sprocket holes, 10 pitches : ± 0.3 mm.
 - (7) Peeling off force : 0.1 to 0.6N* in the direction shown below.

Dimensions of Bulk Case Packaging

The bulk case uses antistatic materials. Please contact Murata for details.

ANote • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
 • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
 06.3.6

■ △Caution (Storage and Operating Condition)

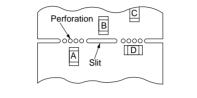
Chip monolithic ceramic capacitors (chips) can experience degradation of termination solderability when subjected to high temperature or humidity, or if exposed to sulfur or chlorine gases.

Storage environment must be at an ambient temperature of 5-40 degrees C and an ambient humidity of 20-70%RH. Use chip within 6 months. If 6 months or more have elapsed, check solderability before use. Use of Sn-Zn based solder will deteriorate reliability of MLCC. Please contact Murata for the use of Sn-Zn based solder in advance.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

ANote • This PDF catalog is downloaded from the website of Murata Manufacturing co., Itd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
 • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

■ △Caution (Soldering and Mounting)


1. Mounting Position

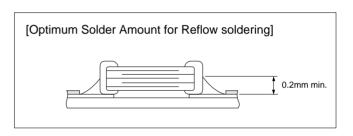
Choose a mounting position that minimizes the stress imposed on the chip during flexing or bending of the board.

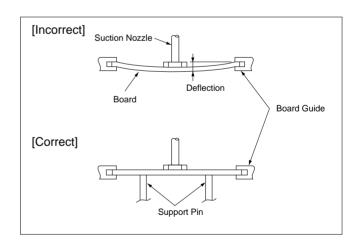
[Component direction]

Locate chip horizontal to the direction in which stress acts.

[Chip Mounting Close to Board Separation Point]

Chip arrangement Worst A-C- (B, D) Best


- 2. Solder (Paste Printing)
- Overly thick application of solder paste results in excessive fillet height solder.


This makes the chip more susceptible to mechanical and thermal stress on the board and may cause cracked chips.

- Too little solder paste results in a lack of adhesive strength on the outer electrode, which may result in chips breaking loose from the PCB.
- Make sure the solder has been applied smoothly to the end surface to a height of 0.2mm min.

3. Chip Placing

- An excessively low bottom dead point of the suction nozzle imposes great force on the chip during mounting, causing cracked chips. So adjust the suction nozzle's bottom dead point by correcting warp in the board. Normally, the suction bottom dead point must be set on the upper surface of the board. Nozzle pressure for chip mounting must be a 1 to 3N static load.
- Dirt particles and dust accumulated between the suction nozzle and the cylinder inner wall prevent the nozzle from moving smoothly. This imposes great force on the chip during mounting, causing cracked chips. And the locating claw, when worn out, imposes uneven forces on the chip when positioning, causing cracked chips. The suction nozzle and the locating claw must be maintained, checked and replaced periodically.

Caution

Continued from the preceding page.

- 4. Reflow Soldering
- Sudden heating of the chip results in distortion due to excessive expansion and construction forces within the chip causing cracked chips. So when preheating, keep temperature differential, ΔT, within the range shown in Table 1. The smaller the ΔT, the less stress on the chip.
- When components are immersed in solvent after mounting, be sure to maintain the temperature difference (ΔT) between the component and solvent within the range shown in the above table.

Table 1

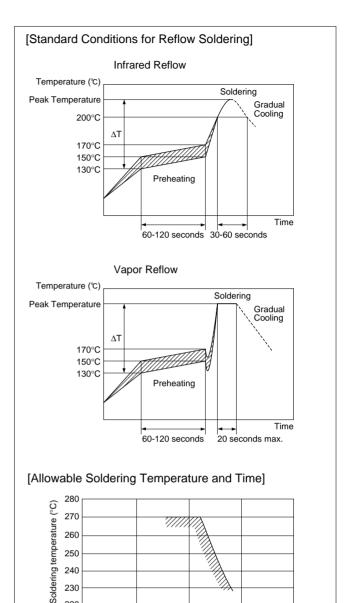
Part Number	Temperature Differential	
GCM15/18/21/31, LLC18/21/31	∆T≦190°C	
GCM32	∆T≦130°C	

Recommended Conditions

	Pb-Sn S	Lead Free Solder	
	Infrared Reflow	Vapor Reflow	Lead Free Solder
Peak Temperature	230-250°C	230-240°C	240-260°C
Atmosphere	Air	Air	Air or N2

Pb-Sn Solder: Sn-37Pb

Lead Free Solder: Sn-3.0Ag-0.5Cu


Inverting the PCB

Make sure not to impose an abnormal mechanical shock on the PCB.

5. Leaded Component Insertion

If the PCB is flexed when leaded components (such as transformers and ICs) are being mounted, chips may crack and solder joints may break.

Before mounting leaded components, support the PCB using backup pins or special jigs to prevent warping.

In case of repeated soldering, the accumulated Soldering time must be within the range shown above.

60

Soldering time (sec.)

30

220 L

Continued on the following page.

120

90

Continued from the preceding page.

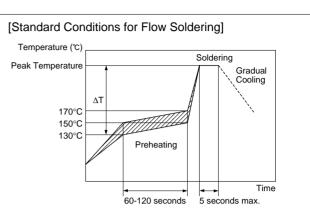
- 6. Flow Soldering
- Sudden heating of the chip results in thermal distortion causing cracked chips. And an excessively long soldering time or high soldering temperature results in leaching of the outer electrodes, causing poor adhesion or a reduction in capacitance value due to loss of contact between electrodes and end termination.
- When preheating, keep temperature differential between solder temperature and chip surface temperature, ΔT, within the range shown in Table 2. The smaller the ΔT, the less stress on the chip.

When components are immersed in solvent after mounting, be sure to maintain the temperature difference between the component and solvent within the range shown in Table 2.

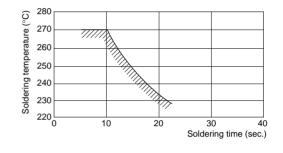
Don't apply flow soldering to chips not listed in Table 2.

Table 2

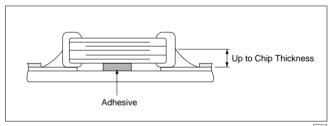
Part Number	Temperature Differential
GCM18/21/31, LLC21/31	∆T≦150°C


Recommended Conditions

	Pb-Sn Solder	Lead Free Solder	
Peak Temperature	240-250°C	250-260°C	
Atmosphere	Air	N2	


Pb-Sn Solder: Sn-37Pb

Lead Free Solder: Sn-3.0Ag-0.5Cu


Optimum Solder Amount for Flow Soldering

[Allowable Soldering Temperature and Time]

In case of repeated soldering, the accumulated Soldering time must be within the range shown above.

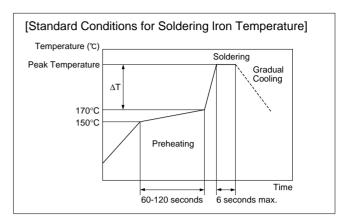
Continued from the preceding page.

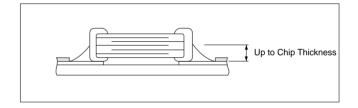
7. Correction with a Soldering Iron

(1) For Chip Type Capacitors

Sudden heating of the chip results in distortion due to a high internal temperature differential, causing cracked chips. When preheating, keep temperature differential, ΔT, within the range shown in Table 3. The smaller the ΔT, the less stress on the chip.

Table 3


Part Number	Temperature Differential	Peak Temperature	Atmosphere
GCM15/18/21/31 LLC18/21/31	∆T≦190℃	300°C max. 3 seconds max. / termination	Air
GCM32	∆T≦130℃	270°C max. 3 seconds max. / termination	Air


*Applicable for both Pb-Sn and Lead Free Solder.

Pb-Sn Solder: Sn-37Pb

Lead Free Solder: Sn-3.0Ag-0.5Cu

 Optimum Solder Amount when Corrections Are Made Using a Soldering Iron

8. Washing

• Excessive output of ultrasonic oscillation during cleaning causes PCBs to resonate, resulting in cracked chips or broken solder. Take note not to vibrate PCBs.

Failure to follow the above cautions may result, worst case, in a short circuit and fuming when the products is used

■ ①Caution (Handling)

1. Inspection

Thrusting force of the test probe can flex the PCB, resulting in cracked chips or open solder joints. Provide support pins on the back side of the PCB to prevent warping or flexing.

2. Board Separation (or depanelization)

- (1) Board flexing at the time of separation causes cracked chips or broken solder.
- (2) Severity of stresses imposed on the chip at the time of board break is in the order of: Pushback<Slitter<V Slot<Perforator.

- (3) Board separation must be performed using special jigs, not with hands.
- 3. Reel and Bulk Case

In the handling of reel and case, please be careful and do not drop it.

Do not use chips from a case which has been dropped.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND FUMING WHEN THE PRODUCTS IS USED.

ANote • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
 • This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
 06.3.6

Notice

■ Notice (Soldering and Mounting)

1. PCB Design

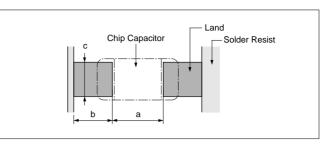
(1) Notice for Pattern Forms

Unlike leaded components, chip components are susceptible to flexing stresses since they are mounted directly on the substrate.

They are also more sensitive to mechanical and thermal stresses than leaded components.

Excess solder fillet height can multiply these stresses and cause chip cracking. When designing substrates, take land patterns and dimensions into consideration to eliminate the possibility of excess solder fillet height. In case of chip size 4.5x3.2mm or bigger size, there is a possibility the chip may crack due to the expansion and shrinkage of the metal board. Please contact to Murata if you want to use the ceramic capacitor on metal board such as Aluminum.

Pattern Forms


	Placing Close to Chassis	Placing of Chip Components and Leaded Components	Placing of Leaded Components after Chip Component	Lateral Mounting
Incorrect	Chassis Solder (Ground) Electrode Pattern	Lead Wire	Soldering Iron Lead Wire	
Correct	Solder Resist	Solder Resist	Solder Resist	Solder Resist

Continued from the preceding page.

(2) Land Dimensions

Excessive amount of solder gives much stress to the components. Appropriate land pattern size can reduce the amount of solder and the mechanical stress to the components. Recommended land pattern dimension for flow and reflow are shown in Table 1 and Table 2 respectively.

Table 1 Flow Soldering Method

Dimensions Part Number	Dimensions (L \times W)	а	b	с
GCM18	1.6×0.8	0.6-1.0	0.8-0.9	0.6-0.8
GCM21	2.0×1.25	1.0-1.2	0.9-1.0	0.8-1.1
GCM31	3.2×1.6	2.2-2.6	1.0-1.1	1.0-1.4
LLC21	1.25×2.0	0.4-0.7	0.5-0.7	1.4—1.8
LLC31	1.6×3.2	0.6-1.0	0.8-0.9	2.6-2.8
				(in mm)

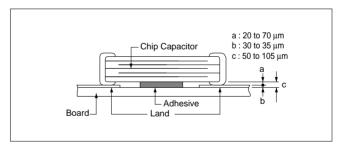
Table 2 Reflow Soldering Method

Dimensions Part Number	Dimensions (L×W)	а	b	с
GCM15	1.0×0.5	0.3-0.5	0.35-0.45	0.4-0.6
GCM18	1.6×0.8	0.6-0.8	0.6-0.7	0.6-0.8
GCM21	2.0×1.25	1.0-1.2	0.6-0.7	0.8-1.1
GCM31	3.2×1.6	2.2-2.4	0.8-0.9	1.0-1.4
GCM32	3.2×2.5	2.0-2.4	1.0-1.2	1.8-2.3
LLC18	0.8×1.6	0.2-0.4	0.3-0.4	1.0-1.4
LLC21	1.25×2.0	0.4-0.6	0.3-0.5	1.4—1.8
LLC31	1.6×3.2	0.6-0.8	0.6-0.7	2.6-2.8

(in mm)

2. Adhesive Application

 Thin or insufficient adhesive causes chips to loosen or become disconnected when flow soldered.


The amount of adhesive must be more than dimension c shown in the drawing below to obtain enough bonding strength.

The chip's electrode thickness and land thickness must be taken into consideration.

- Low viscosity adhesive causes chips to slip after mounting. Adhesive must have a viscosity of 5000Pa ·s (500ps) min. (at 25°C)
- Adhesive Coverage*

Part Number	Adhesive Coverage*
GCM18	0.05mg min.
GCM21	0.1mg min.
GCM31	0.15mg min.

*Nominal Value

Continued on the following page. \square

Mote • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering.
 This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications because there is no space for detailed specifications.

Notice

Continued from the preceding page.

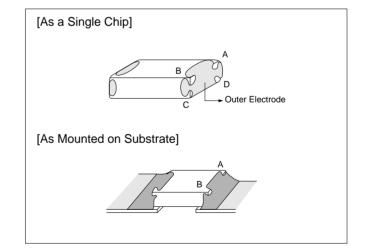
3. Adhesive Curing

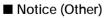
Insufficient curing of the adhesive causes chips to disconnect during flow soldering and causes deteriorated insulation resistance between outer electrodes due to moisture absorption.

Control curing temperature and time in order to prevent insufficient hardening.

Inverting the PCB

Make sure not to impose an abnormal mechanical shock on the PCB.


4. Flux Application


- An excessive amount of flux generates a large quantity of flux gas, causing deteriorated solderability.
 So apply flux thinly and evenly throughout.
 (A foaming system is generally used for flow soldering.)
- Flux containing too high a percentage of halide may cause corrosion of the outer electrodes unless sufficiently cleaned. Use flux with a halide content of 0.2w% max. But do not use strongly acidic flux.

Wash thoroughly because water-soluble flux causes deteriorated insulation resistance between outer electrodes unless sufficiently cleaned.

5. Flow Soldering

• Set temperature and time to ensure that leaching of the outer electrode does not exceed 25% of the chip end area as a single chip (full length of the edge A-B-C-D shown below) and 25% of the length A-B shown below as mounted on substrate.

1. Resin Coating

When selecting resin materials, select those with low contraction.

2. Circuit Design

The capacitors listed in the previous sections of this catalog are not safety recognized products.

3. Remarks

The above notices are for standard applications and conditions. Contact us when the products are used in special mounting conditions. Select optimum conditions for operation as they determine the reliability of the product after assembly. the data herein are given in typical valuse, not guaranteed ratings.

Note • This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it's specifications are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product sing the product specifications before ordering.
 This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
 O6.3.6

▲ Note:

1. Export Control

No muRata products should be used or sold, through any channels, for use in the design, development, production, utilization, maintenance or operation of, or otherwise contribution to (1) any weapons (Weapons of Mass Destruction (nuclear, chemical or biological weapons or missiles) or conventional weapons) or (2) goods or systems specially designed or intended for military end-use or utilization by military end-users.

For products which are controlled items subject to the "Foreign Exchange and Foreign Trade Law" of Japan, the export license specified by the law is required for export.

- 2. Please contact our sales representatives or product engineers before using the products in this catalog for the applications listed below, which require especially high reliability for the prevention of defects which might directly damage a third party's life, body or property, or when one of our products is intended for use in applications other than those specified in this catalog.
 - 1 Aircraft equipment

(7) Traffic signal equipment

- 2 Aerospace equipment
 4 Power plant equipment
- ③ Undersea equipment
 ⑤ Medical equipment
 - 6 Transportation equipment (vehicles, trains, ships, etc.)
 - 8 Disaster prevention / crime prevention equipment
- ④ Data-processing equipment
 ① Application of similar complexity and/or reliability requirements to the applications listed above
- 3. Product specifications in this catalog are as of November 2005. They are subject to change or our products in it may be discontinued without advance notice. Please check with our sales representatives or product engineers before ordering. If there are any questions, please contact our sales representatives or product engineers.
- 4. Please read rating and ①CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
- 5. This catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.
- 6. Please note that unless otherwise specified, we shall assume no responsibility whatsoever for any conflict or dispute that may occur in connection with the effect of our and/or a third party's intellectual property rights and other related rights in consideration of your use of our products and/or information described or contained in our catalogs. In this connection, no representation shall be made to the effect that any third parties are authorized to use the rights mentioned above under licenses without our consent.
- 7. No ozone depleting substances (ODS) under the Montreal Protocol are used in our manufacturing process.

muRata Murata Manufacturing Co., Ltd.

Head Office 1-10-1, Higashi Kotari, Nagaokakyo-shi, Kyoto 617-8555, Japan Phone: 81-75-951-9111 International Division 3-29-12, Shibuya, Shibuya-ku, Tokyo 150-0002, Japan Phone: 81-3-5469-6123 Fax: 81-3-5469-6155 E-mail: intl@murata.co.jp

http://www.murata.com/