SECTION 3
MC68HC705C8 FUNCTIONAL DATA

The MC68HC705C8 microcontroller (MCU) is a member of the M68HC05 Fam-
ily of low-cost, single-chip microcontrollers.

The HCMOS technology used on the MC68HC705C8 combines smaller size
and higher speeds with the low power and high noise immunity of CMOS.

An additional advantage of CMOS is that circuitry is fully static. CMOS micro-
controllers may be operated at any clock rate less than the guaranteed maxi-
mum. This feature may be used to conserve power since power consumption
increases with higher clock frequencies. Static operation may also be ad-
vantageous during product development.

Two software-controlled power-saving modes, WAIT and STOP, are available
to conserve additional power. These modes make the MC68HC705C8 espe-
cially attractive for automotive and battery-driven applications.

3.1 MCU DESCRIPTION
The hardware and software highlights of the MC68HC705C8 are as follows:

Hardware Features

HCMOS Technology

8-Bit Architecture

Power-Saving Stop, Wait, and Data Retention Modes
24 Bidirectional I/0 Lines

7 Input-Only Lines

2 Timer I/Q Pins

2.1 MHz Internal Operating Frequency, 5 Volts; 1.0 MHz, 3 Volts
Internal 16-Bit Timer

Serial Communications Interface (SCI) System

Serial Peripheral Interface (SPI) System

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-1

B bL3b7248 014978L LO2 W

3-2

Ultraviolet (UV) light EPROM or One-Time Programmable ROM {OTPROM)
Selectable Memory Configurations

Computer Operating Properly (COP) Watchdog System
Clock Monitor

On-Chip Bootstrap Firmware for Programming
Software-Programmable External Interrupt Sensitivity
External Pin, Timer, SCI, and SPI Interrupts

Master Reset and Power-On Reset

Single 3- to 6-Volt Supply {2-Volt Data Retention Mode)
On-Chip Oscillator

40-Pin Dual-in-Line Package or

44-Lead PLCC (Plastic Leaded Chip Carrier) Package

Software Features
e Upward Software Compatible with the M146805 CMOS Family
o Efficient Instruction Set

Versatile Interrupt Handling

¢ True Bit Manipulation

e Addressing Modes with Indexed Addressing for Tables

¢ Memory-Mapped I/0

¢ Two Power-Saving Standby Modes

Figure 3-1 shows the MC68HC705C8 MCU block diagram.

The central processor unit (CPU) contains the 8-bit arithmetic logic unit,
accumulator, index register, condition code register, stack pointer, program
counter, and CPU control logic.

Major peripheral functions are provided on-chip. On-chip memory systems
include bootstrap read-only memory (ROM), programmable ROM (EPROM
or OTPROM), and random-access memory (RAM).

On-chip I/0 devices include an asynchronous serial communications interface
(SCl), a separate serial peripheral interface (SPi), and a 16-bit programmable
timer system.

Self-monitoring circuitry is included on-chip to protect against system errors.
A computer operating properly (COP) watchdog system protects against soft-
ware failures. A clock monitor system generates a system reset if the clock
is lost or runs too slow. An illegal opcode detection circuit provides a non-
maskable interrupt if an illegal opcode is detected.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

M 5367248 0149787 549 WA

| PA7
<€ PAS
€ PAS
> PA
€3 PA3
<> PA2

EPROM
Vpp—»1 FROGRAMMING [PROGRAM
PP CONTROL REGISTER
€ PAl

EPROM/OTPROM — 7744 BYTES
(144 BYTES CONFIGURABLE) >
€ PAC
t > PB7

DATA DIRECTION A
PORT A

OPTION | @) [<>PBe
REGISTER 3 > PBS5
; g E <> PB4
RAM — 176 BYTES : : S|& Pes
(UP TO 304 BYTES) CZk: 5| e pee
L= <> PBY
f<—» PBO
<> PC7
BOOT ROM — 240 BYTES h) o pos
3 > PC5
S % > PC4
TESET o> ARITHMETIC ﬂ:‘\;/ < <> PC3
RESET < L LOGIC UNIT | 2= poa
iAQ »> (ALU) < : S e <>
a > PC
M6BHCO5 CPU pCo
CPUREGISTERS A
<—J ="
% l< PO
[ofofefofof« J1T StackromTer | -
[oTeT e} PROGRAM COUNTER] <), SPl MS(;:SKI D = ; g;
CONDITION CODES 3 -
DnnonnBEE oo le—al & <> b2
A 00 - [PD{
9SS T oscuarton |- OMOE | o <® scl RD! | <— PDO
0502 -« BY2 —
BAUD RATE
GENERATOR
COP WATCHDOG <
| AND
CLOCK MONITOR <
C _<"_—> > TCMP
Vpp —> TIMER SYSTEM
POWER >
Vgg —» <— TCAP
Figure 3-1. MC68HC705C8 Microcontroller Block Diagram
MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-3

B L3b7248 0149788 u44L W

3.2 PINS AND CONNECTIONS

The following paragraphs discuss the MCU pin assignments, pin functions,
and basic connections.

Because the MC68HC705C8 is a CMOS device, unused input pins must be
terminated to avoid oscillation, noise, and added supply current. The pre-
ferred method of terminating pins that can be configured for input or output
is with individual pullup or pulldown resistors for each unused pin.

Pin assignments are shown in Figure 3-2. Mechanical data and ordering
information can be found in BR594/D, the MC68HC705C8 Technical Summary,
available separately.

3.2.1 Pin Functions

3-4

Vpp and Vgs

Power is supplied to the MCU using these two pins. Vpp is power and
Vgs is ground. The MCU can operate from a single 5-volt (nominal) power

supply.

Vpp

The Vpp pin is used when programming the one-time programmable ROM
(OTPROM) or EPROM. Programming voltage (14.75 Vdc) is applied to this
pin when programming the PROM. Normally, this pin is connected to Vpp.

CAUTION
Do not connect Vpp pin to Vgg (GND). It will damage the MCU.

IRQ (Maskable Interrupt Request)

IRQ is a software programmable option which provides two different choices
of interrupt triggering sensitivity. These options are 1) negative edge-sen-
sitive triggering only, or 2) both negative edge-sensitive and level-sensitive
triggering.

In the latter case, either a negative edge or a low level input to the IRQ pin
will produce an interrupt. The MCU completes the current instruction be-
fore it responds to the interrupt request. When the IRQ pin goes low, a

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

M L3L57248 0149789 311 WA

PAS
PA4
PA3
PA2
PA1
PAO
PBO
PB1
PB2
PB3
PB4

MOTOROLA

RESET
ra
Vep
PA7
PAG
PAS
A4
PA3
PA2
PA1
PAO
PBO
PB1
PB2
PB3
PB4
PBS
PBS
PB7

® N D ;B W -

s
RDREBRYBUBVL82EIRLLILES

1 PD7

1 ToMP

1 PD5RS
[1 PD4/SCK
1 PD3MOSI
1 PD2MISO
1 PD1/TDO
1 POORDI
1 PCO

] PC1

1 pC2

44-Lead PLCC Package

Figure 3-2. Pin Assignments

ME8HC05 MICROCONTROLLER APPLICATIONS GUIDE

M L3k7248 0149790 033 A

small synchronization delay occurs, and a logic one is latched internally
to signify an interrupt has been requested. When the MCU completes its
current instruction, the interrupt latch is tested. If the interrupt latch con-
tains a logic one and the interrupt mask bit (I bit) in the condition code
register is clear, the MCU then begins the interrupt sequence.

If the option is selected to include level-sensitive triggering, then the IRQ
input requires an external resistor to Vpp for “wired-OR" operation. See
3.4.7 Interrupts for more detail concerning interrupts.

RESET

The RESET pin is an active-low bidirectional control signal. As an input,
the RESET pin initializes the MCU to a known startup state. As an open-
drain output, the RESET pin indicates an internal MCU failure detected by
the computer operating properly (COP) watchdog timer or clock monitor
circuitry.

This RESET pin is significantly different from the RESET signal used on
other Motorola MB8HCO5 Family devices. Refer to 3.4.4 Resets and 3.4.7
Interrupts before designing circuitry to generate or monitor the RESET
signal.

TCAP

The TCAP pin provides the input to the input-capture feature for the on-
chip programmable timer system. Refer to input-capture register in 3.8
PROGRAMMABLE TIMER.

TCMP

The TCMP pin provides an output for the output-compare feature of the
on-chip timer system. Refer to output-compare register in 3.8 PROGRAMM-
ABLE TIMER.

0SC1,08C2

The MC68HC705C8 can accept either a crystal, ceramic resonator, or ex-
ternal input to control the internal oscillator. The internal processor clock
is derived by dividing the oscillator frequency (fggc) by two.

The circuit shown in Figure 3-3(a) is recommended when using a crystal.
The internal oscillator is designed to interface with an AT-cut parallel res-
onant quartz crystal or a ceramic resonator up to 4 MHz. The crystal and
components should be mounted as close as possible to the input pins to
minimize output distortion and startup stabilization time.

3-6 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

M L3k7248 0149791 T7T I

STOP

SR

MC68HC705C8

0SC1 05¢2
10 Meg

XTAL

1 25pF J.25pF

1

(a) Crystal/Ceramic Resonator Oscillator Connections

STOP

-

MC68HC705C8

0sC1 ‘.LOSCZ
UNCONNECTED

 EXTERNAL
~~ CMOS CLOCK

{b) External Clock Source Connections

Figure 3-3. Oscillator Connections

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-7

M b3L7248 0L49792 90 MR

A ceramic resonator may be used in place of the crystal in cost-sensitive
applications. The circuit in Figure 3-3(a) is recommended when using a
ceramic resonator or a crystal. The manufacturer of the particular ceramic
resonator being considered should be consulted for specific information.

An external clock may be applied to the OSC1 input with the OSC2 pin not
connected, as shown in Figure 3-3(b).

PA7-PAO

These eight 1/O lines comprise port A. Each port A pin can be software
programmed to act as an input or output.

PB7-PB0O

These eight lines comprise port B. Each port B pin can be software pro-
grammed to act as an input or output.

PC7-PCoO

These eight lines comprise port C. Each port C pin can be software pro-
grammed to act as an input or output.

PD5-PDO, PD7

These seven lines comprise port D. During power-on or reset, these seven
pins are configured as inputs. When the SPI system is enabled, four of
these lines, MISQ/PD2, MOSI/PD3, SCK/PD4, and SS/PD5, are used by the
SPI system. When the SCI receiver is enabled, the PDO/RDI pin becomes
the receive data input to the SCI. When the SCI transmitter is enabled, the
PD1/TDO pin becomes the transmit data output for the SCI.

3.2.2 Typical Basic Connections

3-8

There are MCU basic connections that can be used as the starting point for
any application to minimize the time required to create a prototype system.

Figure 3-4 is the schematic diagram for a simple MC68HC705C8 system. This
circuit can be used as the basis for any MC68HC705C8 application. In most

cases, the circuitry for the power supply and oscillator can be used as shown
in this diagram. All unused inputs are terminated in an appropriate manner.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

B L367248 0449793 442 IE

MCBBHCT05C8 Vop

D PAO F—AN—4
PA1 F—A——¢
>

T L 4 VDD PA2 _W——i
SYSTEM _L]_0-1 WF PA3 AR

POWER PA4 F—AN—
PAS |——AA——4
I VSS PA6 _m——4

Y
—
£

—0—0—0—0—0—0—0©

PA7 f—AN—

PBO [—AA——4¢
10M PB1 —AAN—4
*—W 0sc2 PB2 —AA—¢

o—l'l—o ii ——AN—4
| 180 PBS —AN——4

T Wl o -

PCO —AAN—4
Voo Vop POl —AA—4
PC2 f——AN—
N 47K PC3 F—AA——t
PC4 ——AN——t
RESET ? RESET PC5 ——A\—¢
——AN—

GND PCe
| PC7 —AW—

0sC1

PULLUP RESISTORS RECOMMENDED FOR UNUSED INPUTS

—0—0—0—0—0—0—&

— PDO/RDI f——AN—4¢

PD1TD0 F——AA——4

Vo

- PD2MISO ——AA——4

PDIMOS ——AA——4
- - ——t

*—AAN—— RO PDMS%

PDSSS F—AA——

PD7 F—AW—¢

TCAP |—AA—-
TCMP —

Vep

Figure 3-4. Typical Basic Connections

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-9

M L3k7248 0149794 789 IR

3.3 ON-CHIP MEMORY

The MC68HC705C8 memory includes 176 to 304 bytes of random-access
memory (RAM), 240 bytes of read-only memory (ROM), and 7600 to 7744
bytes of programmable memory (EPROM or OTPROM).

3.3.1 Memory Types

RAM means that any word in the memory may be accessed without having
to go through all the other words to get to it. RAM is a volatile form of
memory in that all the memory content is lost when the power is removed
from the chip. RAM contents may be retained by keeping at least 2 volts on
VpD. Power requirements in this standby mode are very small.

ROM is very similar to RAM except, unlike RAM, it is not possible to change
the contents of ROM after it is manufactured. This type memory is useful
only for storage of information or programs.

The special bootstrap mode atlows programs to be downloaded through the
on-chip serial communications interface (SCl) into internal RAM to be exe-
cuted. The bootloaded program is used for a variety of tasks such as loading
calibration values into internal EPROM or performing diagnostics on a fin-
ished module.

The MC68HC705C8 on-chip ROM is called the bootloader ROM. This ROM
controls the loading process of the special bootstrap mode.

Erasable programmable ROM (EPROM} is nonvolatile memory that can be
programmed in the field by the user. Nonvolatile memories retain their con-
tents even when no power is applied. Once it has been programmed, the
EPROM cannot be written into, but it can be read from as many times as
necessary. However, EPROM can be erased by ultraviolet light and repro-
grammed.

OTPROM is the same as EPROM except it can be programmed only once
and cannot be erased.

3.3.2 Memory Map

The MC68HC705C8 MCU contains four selectable memory configurations as
shown in Figure 3-5. The memory configurations are accessed via the option

3-10 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

M L3b7248 0149795 L15 W

$0000 ——

PORT A DATA REGISTER
1o PORT B DATA REGISTER
S001F 92BYTES PORT C DATA REGISTER
$0020 "o TTTrr _Gb;l]s_ED_ m PORT D FIXED INPUT REGISTER
: 't eBEs | PORT A DATA DIRECTION REG.
$002F) USER PROM | --==---~ i PORT B DATA DIRECTION REG.
E 48 BY H 32%"#5 ' PORT C DATA DIRECTION REG.
i i ' UNUSED
| RAMO-0 #11 RAMOSt *1 UNUSED
SOMF _L______._ [s UNUSED
soos0~ | T SPI CONTROL REGISTER
nAu SPISTATUS REGISTER
176 BYTES SPIDATA /0 REGISTER
SCIBAUD RATE REGISTER
sooBF________ .t __ __] SCICONTROL REGISTER 1
$00G0) SCI CONTROL REGISTER 2
sfgchés SCI STATUS REGISTER
$00FF L SCIDATA REGISTER
W0 enenout | | TRERSTAE AT
) 1
i 9 BYTES | i S6BYTES INPUT CAPTURE REG. (HIGH)
$015F lL RAM1=0 * IL i_ RAMi=1 * i INPUT CAPTURE REG. (LOW)
L T - OUTPUT COMPARE REG. (HIGH)
OUTPUT COMPARE REG. (LOW)
TIMER COUNT REGISTER (HIGH)
TIMER COUNT REGISTER (LOW)
USER PROM ALT. COUNT REGISTER (HIGH)
7584 BYTES ALT. COUNT REGISTER {LOW)
EPROM PROGRAM REGISTER
COP RESET REGISTER
COP CONTROL REGISTER
S1EFF UNUSED
$IF00~

BOOT ROM

223 BYTES SPI VECTOR (HIGH)

SPIVECTOR (LOW)
$WFDE__ | SCI VECTOR (HIGH
Sirgp— | OPTIONREGISTER | sl VECTOR((LOW))

TIMER VECTOR (HIGH)

BT om TINER VECTOR (LOW)

16 BYTES IRQ VECTOR (HIGH)
$1FEF — IRQ VECTOR (LOW)
$tFF3___ | UNUSED4BYTES SWIVECTOR (HIGH)
$1FF4 USER PROM SWIVECTOR (LOW)

VECTORS RESET VECTOR (HIGH BYTE)
S1FFF— 12BYTES RESET VECTOR (LOW BYTE)

* Refer t0 3.10.4 OPTION REGISTER for an explanation of software-selectable memory confiqurations.

MOTOROLA

Figure 3-5. MC68HC705C8 Memory Map

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

M L3k7248 014979k 551 EH

EEEEEERREE

|

SEEEEE

30
$12
$13
$14
$15
$16
$17
$18
$19
$1A
$B
$iC
$10
$1E
$1F

$1FF4
$1FF5
$1FF6
$1FF7
$1FF8
$1FF9
$1FFA
$1FFB
$1FFC
$1FFD
$1FFE
$1FFF

3-1

register ($1FDF) RAMO and RAM1 bits. During reset, the RAMO and RAM1
control bits are forced to 0. RAMO and RAM1 bit states determine the amount
of RAM and PROM, which can be selected as follows:

RAMO RAM1 RAM Bytes PROM Bytes
0 0 176 7744
1 0 208 7696
0 1 272 7648
1 1 304 7600

3.4 CENTRAL PROCESSOR UNIT

The MC68HC705C8 CPU is responsible for executing all software instructions
in their programmed sequence for a specific application.

The CPU block diagram is shown in Figure 3-6.

|| SR
CONTROL (ALU)
M68HC05 CPU
CPU REGISTERS
lofofoJofo]1[t] stackpoiNTER]
Lelo]o] PROGRAM COUNTER]
CONDITION CODES ARCDCAR

Figure 3-6. M68HC05 CPU Block Diagram

3.4.1 Registers

3-12

The CPU contains five registers as shown in Figure 3-7. Registers in the CPU
are memories inside the microprocessor (not part of the memory map).

Accumulator (A)
The accumulator is an 8-bit general-purpose register used to hold oper-
ands, results of the arithmetic calculations, and data manipulations. It is
also directly accessible to the CPU for nonarithmetic operations. The ac-
cumulator is used during the execution of a program when the contents

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

B 6367248 0149797 498 W

7 0

I I ' A(‘:CUM{JLATOR l A
| " INDEXREGISTER | X
12 7 5 0
0 o|o|o|o”1|1| STACK POINTER Isp
15 12 0
| 0 [0 l 0 | ' PROGRAM COUNTER ' | PC
7 4 3 2 1 0
CONDITION CODE REGISTER |1|1]1b'|ln'z'c| ccR
| |—CARRY
ZERO
NEGATIVE
[INTERRUPT MASK

HALF-CARRY (FROM BIT 3)
Figure 3-7. Programming Madel

of some memory location are loaded into the accumulator. Also, the store
instruction causes the contents of the accumulator to be stored at some
prescribed memory location.

7 0
] T T T T L] v
[ACCUMULATOR —l A

Index Register {X)
The index register is used for indexed modes of addressing or may be
used as an auxiliary accumulator. This 8-bit register can be loaded either
directly or from memory, have its contents stored in memory, or its con-
tents can be compared to memory.

In indexed instructions, the X register provides an 8-bit value that is added
to an instruction-provided value to create an effective address. The instruc-
tion-provided value can be 0, 1, or 2 bytes long.

7 0
1 T T 1 T T
INDEX REGISTER X

L i L L 2

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 313

B 367248 0145798 3Jc4 WM

Condition Code Register (CCR)

The condition code register contains five status indicators that reflect the
results of arithmetic and other operations of the CPU. The five flags are
half-carry (H), negative (N}, zero (Z), overflow (V), and carry/borrow (C).

7 403 2 1 0
CONDITION CODE REGISTER [1] 1 | 1 [H i

T

Nz o ccn

| I— CARRY
ZERO

NEGATIVE
{1 INTERRUPT MASK
HALF-CARRY (FROM BIT 3)

Half-Carry Bit (H) — The half-carry flag is used for binary-coded decimal
(BCD) arithmetic operations and is affected by the ADD or ADC addition
instructions. The H bit is set to a one when a carry occurs between bits 3
and 4.

Interrupt Mask Bit (I) — The interrupt mask bit disables all maskable in-
terrupt sources when the | bit is set. Clearing this bit enables the interrupts.
When any interrupt occurs, the | bit is automatically set after the registers
are stacked but before the interrupt vector is fetched.

If an external interrupt occurs while the | bit is set, the interrupt is latched
and processed after the | bit is cleared; therefore, no interrupts from the
{RQ pin are lost because of the | bit being set.

After an interrupt has been serviced, a return from interrupt (RTI) instruction
causes the registers to be restored to their previous values. Normaliy, the
| bit would be zero after an RTl was executed. After any reset, | is set and
can only be cleared by a software instruction.

Negative {(N) — The N bit is set to one when the result of the last arithmetic,
logical, or data manipulation is negative (bit 7 of the MSB in the result is
a logic one).

The N bit has other uses. By assigning an often-tested fiag bit to the MSB
of a register or memory location, you can test this bit simply by loading
the accumulator with the contents of that location.

3-14 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

B 6367248 0149799 260 MR

Zero {Z}) — The Z bit is set to one when the result of the last arithmetic,

logical, or data manipulation is zero.

Carry/Borrow (C) — The C bit is used to indicate whether or not there was
a carry from an addition or a borrow as a result of a subtraction. Shift and
rotate instructions operate with and through the carry bit to facilitate mul-
tiple word shift operations. This bit is also affected during bit test and

branch instructions.

The following illustration is an example of the way condition code bits are

affected by arithmetic operations.

Assume Initial Values in Accumulator and Condition Codes:

ACCUMULATOR CONDITION CODES
7 0 H I N Z C
Before | ' + 1 1 1 1 1 1|($FF) L1]1|1|01 1 oo]
Execute the Following Instruction:
---- AB 02 ADD #2 Add 2 to Accumulator
ACCUMULATOR GCONDITION CODES
7 0 H | N Z C
AfterID 0o 0 0 6 0 0 1|(so1) L[1|1|1 1 0 0 1]

Condition Codes and Accumulator Reflect the Results of the Add Instruction:

H- Set because there was a carry from bit 3 to bit 4 of the accumulator.

! - No change.

N- Clear because result is not negative (bit 7 of accumulator is 0).

Z- Clear because result is not zero.

C- Set because there was a carry out of bit 7 of the accumulator.

The H bit is not useful after this operation because the accumulator was not

a valid BCD value before the operation.

MOTOROLA

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

3-15

B L3b7248 0149400 &40c W

Program Counter (PC)
The program counter is a 13-bit register that contains the address of the
next instruction or instruction operand to be fetched by the processor.

12 0

T T

15
T T L T o T T T T T
I 0 I 0 I 0 | PROGRAM COUNTER PC

Normally, the program counter advances one memory location at a time
as instructions and instruction operands are fetched.

Jump, branch, and interrupt operations cause the program counter to be
loaded with a memory address other than that of the next sequential lo-
cation.

Stack Pointer (SP)
The stack pointer is a 13-bit register that contains the address of the next
free location on the stack. During an MCU reset or the reset stack pointer
(RSP} instruction, the stack pointer is set to location $00FF. The stack pointer
is then decremented as data is pushed onto the stack and incremented as
data is pulled from the stack.

12 7 5 0
|0]0|0I0l0”1|1L STACKPOINT'EF!' SP

When accessing memory, the seven MSBs of the SP are permanently set
to 0000011. These seven bits are appended to the six LSB bits to produce
an address within the range of $00FF to $00CO. Subroutines and interrupts
may use up to 64 (decimal) locations. If 64 locations are exceeded, the
stack pointer wraps around and loses the previously stored information.
A subroutine call occupies two locations on the stack; an interrupt uses
five locations.

3-16 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

B 53L7248 0149801 749 EN

3.4.2 Arithmetic/Logic Unit (ALU)

The arithmetic/logic unit (ALU) is used to perform the arithmetic and logical
operations defined by the instruction set.

The various binary arithmetic operations circuits decode the instruction in
the instruction register and set up the ALU for the desired function. Most
binary arithmetic is based on the addition algorithm, and subtraction is car-
ried out as negative addition. Multiplication is not performed as a discrete
instruction but as a chain of addition and shift operations within the ALU
under control of CPU control logic. The multiply instruction (MUL) requires
11 internal processor cycles to complete this chain of operations.

3.4.3 CPU Control

The CPU control circuitry sequences the logic elements of the ALU to carry
out the required operations.

3.4.4 Resets

Reset is used to force the MCU system to a known starting address. Peripheral

systems and many control and status bits are also forced to a known state
as a result of reset.

The following four conditions can cause reset in the MC68HC705C8 MCU:
1) External, active-low input signal on the RESET pin.
2) Internal power-on reset {POR) condition.

3) Internal computer operating properly (COP) watchdog system reset
condition.

4) Internal clock monitor reset condition.

3.4.4.1 POWER-ON RESET. The power-on reset occurs when a positive transition
is detected on Vpp. The power-on reset is used strictly for power turn-on
conditions and should not be used to detect any drops in the power supply
voltage. There is no provision for a power-down reset.

The power-on circuitry provides for a 4064 cycle delay from the time that the
oscillator becomes active. If the external RESET pin is low at the end of the

4064 delay timeout, the processor remains in the reset condition until RESET
goes high.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 317

B L3b7248 0149802 LAS N

The following internal actions occur as the result of any MCU reset:
1) All data direction registers are cleared to zero {input).
2) Stack pointer configured to $00FF.
3) I bit in the condition code register to logic one.
4) External interrupt latch cleared.

5) SCl disabled (serial control bits TE =0 and RE =0). Other SCI bits cleared
by reset include: TIE, TCIE, RIE, ILIE, RWU, SBK, RDRF, IDLE, OR, NF,
and FE.

6) Serial status bits TDRE and TC set.
7} SCI prescaler and rate control bits SCP0, SCP1 cleared.

8) SPI disable (serial output enable control bit SPE =0). Other SPI bits
cleared by reset include: SPIE, MSTR, SPIF, WCOL, and MODF.

9) All serial interrupt enable bits cleared (SPIE, TIE, and TCIE).
10) SPI system configured as slave (MSTR=0).

11) Timer prescaler reset to zero state.
Timer counter configured to $FFFC.
Timer output compare {TCMP) bit reset to zero.
All timer interrupt enable bits cleared (ICIE, OCIE, and TOIE) to disable
timer interrupts.
The OLVL timer bit is also cleared by reset.

12) STOP latch cleared.
13) WAIT latch cleared.

14) Internal address bus forced to restart vector (on exit from reset, upper
byte of program counter is loaded from $1FFE, and lower byte of
program counter is loaded from $1FFF).

3.4.4.2 COMPUTER OPERATING PROPERLY (COP) WATCHDOG TIMER RESET. The

3-18

COP watchdog timer system is intended to detect software errors. When the
COP is being used, software is responsible for keeping a free-running watch-
dog timer from timing out. If the watchdog timer times out, it is an indication
that software is no longer being executed in the intended sequence; thus, a
system reset is initiated.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

M L367248 0149803 511 WA

Since the COP timer relies on the internal bus clock in order to detect a
software failure, a clock monitor is also included to guard against a failure
of the clock. When the COP timer is enabled, the clock monitor should also
be enabled since the COP timer cannot detect failures of the internal bus
clock.

The COP control register ($1E), as shown below, is used to control the COP
watchdog timer and clock monitor functions.

5 4 3 2 1 BO

]| o [coer|f cme Jcore] e T emo] $1E COPCR
[
0

I [I [I
0l 0 0 0 0 | RESET CONDITION

l |

C SELECT COP TIMEOUT PERIOD

COP WATCHDOG TIMER ENABLE
CLOCK MONITOR ENABLE
COP SYSTEM FLAG

p——y
o
—_—
ol—jJol &

[1]- Cleared on external or POR reset, set on COP or clock monitor fail resets.

COPF — Computer Operating Properly Flag
1=COP or clock monitor reset has occurred
0=No COP or clock monitor reset has occurred
Reading the COP control register clears COPF.

CME — Clock Monitor Enable
1=Clock monitor enabled
0=_Clock monitor disabled
CME is readable and writable at any time.

COPE — Computer Operating Properly Enable
1=COP timeout enabied
0=COP timeout disabled

CM1, CM0 — Computer Operating Properly Mode
These two bits are used to select the COP watchdog timeout period
(see Table 3-1).

The actual timeout period is dependent on the system bus clock frequency,

but, for reference purposes, Table 3-1 shows the relationship between the
CM1 and CMO select bits and the COP timeout period for various system

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-19

B L3L72484 0149804 458 WA

Table 3-1. COP Timeout Period versus CM1 and CM0

E/215| XTAL=4.0 MHz XTAL=3.5796 XTAL=2.0 MHz XTAL=1.0 MHz
CM1 | CM0 | Div. E=2.0 MHz E=1.7897 MHZ E=1.0 MHz E=0.5 MHz
By Timeout Timeout Timeout Timeout
0 0 1 16.38 ms 18.31 ms 32.77 ms 65.54 ms
¢ 1 4 65.54 ms 73.24 ms 131.07 ms 262.14 ms
1 0 16 262.14 ms 292.95 ms 524.29 ms 1.048 s
1 1 64 1.048 s 1172 s 2.097 s 4194 s

clock frequencies (“E" stands for the system bus clock). The default reset
condition of the COP mode bits (CM1 and CM0) is cleared, which corresponds
to the shortest timeout period.

The COP reset register ($1D) is used to keep the COP watchdog timer from
timing out.

Bit 7 6 5 4 3 2 1 Bit 0

| 10 coprr

The sequence required to reset the COP watchdog timer is:
1) Write $55 to the COP reset register at location $1D.
2) Write $AA to the same address location.

Both write operations must occur in the correct order prior to timeout, but
any number of instructions may be executed between the two write opera-
tions. The elapsed time between adjacent software reset sequences must
never be greater than the COP timeout period.

Upon detection of a timeout condition, the COP watchdog timer (if enabled
by COPE = 1) will cause a system reset to be generated. This reset is issued
to the external system via the bidirectional RESET pin for four bus cycles.

3.4.4.3 CLOCK MONITOR RESET. When a clock failure is detected by the clock

3-20

monitor (and CME = 1), a system reset will be generated.

When CME is set, the clock monitor detects the absence of the internal bus
clock for more than a certain period of time. When CME is cleared, the clock
monitor is disabled. The timeout period is dependent on processing param-
eters and will be between 5 and 100 us. Thus, a bus clock rate of 200 kHz or
more will never cause a clock monitor failure, and a bus clock rate of 10 kHz
or less will definitely cause a clock monitor reset.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

B L3b7248 0149805 394 MW

A clock monitor reset is issued to the external system via the bidirectional

RESET pin for four bus cycles. The clock monitor does not have a separate
reset vector.

Special considerations are needed when using the STOP instruction with the
clock monitor. Since the STOP instruction causes the clocks to be halted, the
clock monitor will generate a reset sequence (if enabled by CME = 1) at the
time the STOP instruction is entered.

3.4.5 Addressing Modes

The power of any computer lies in its ability to access memory. The ad-
dressing modes of the CPU provide that capability. The addressing modes
define the manner in which an instruction is to obtain the data required for
its execution. Because of different addressing modes, an instruction may
access the operand in one of up to six different ways. In this manner, the
addressing modes expand the basic 62 M68HCO5 Family instructions into
210 distinct opcodes.

The M68HCO05 addressing modes that are used to reference memaory are
inherent, immediate, extended, direct, indexed (no offset, 8-bit offset, and
16-bit offset), and relative. One- and two-byte direct addressing instructions
access all data bytes in most applications. Extended addressing uses three-
byte instructions to reach data anywhere in memory space. The various
addressing modes make it possible to locate data tables, code conversion
tables, and scaling tables anywhere in the memory space. Short indexed
accesses are single-byte instructions; whereas, the longest instructions (three
bytes) permit accessing tables anywhere in memory.

A general description and examples of the various modes of addressing are
provided in the following paragraphs. The term effective address (EA) is used
to indicate the memory address where the argument for an instruction is
fetched or stored. More details on addressing modes and a description of
each instruction is available in Appendix A.

The information provided in the program assembly examples uses several

symbols to identify the various types of numbers that occur in a program.
These symbols include:

1. A blank or no symbol indicates a decimal number.

2. A$immediately preceding a number indicates it is a hexadecimal num-
ber; e.g., $24 is 24 in hexadecimal or the equivalent of 36 in decimal.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 321

I L3L57248 0149806 220 N

3. A # indicates immediate operand and the number is found in the lo-
cation following the opcode. A variety of symbols and expressions can
be used following the character # sign. Since not all assemblers use
the same syntax rules and special characters, refer to the documentation
for the particular assembler that will be used.

Prefix Definition

None Decimal

$ Hexadecimal
(ct Octal

% Binary

’ Single ASCII Character

For each addressing mode, an example instruction is explained in detail.
These explanations describe what happens in the CPU during each processor
clock cycle of the instruction. Numbers in square brackets [| refer to a specific
CPU clock cycle.

3.4.5.1 INHERENT ADDRESSING MODE. In inherent addressing mode, all infor-
mation required for the operation is already inherently known to the CPU,
and no external operand from memory or from the program is needed. The
operands (if any) are only the index register and accumulator. These are
always one byte instructions.

Example Program Listing:

0200 4c INCA Increment accumulator

Execution Sequence:
$0200 $4C 11, (21, [3]

Explanation:
[1] CPU reads opcode $4C — increment accumulator
[2], [3] CPU reads accumulator value, adds one to it, stores the new value
in the accumulator, and adjusts condition code flag bits as neces-
sary.

3-22 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

B E367248 0149807 1L7 N

The following is a list of all M68HCO5 instructions that can use the inherent
addressing mode.

Instruction Mnemonic
Arithmetic Shift Left ASLA, ASLX
Arithmetic Shift Right ASRA, ASRX
Clear Carry Bit CLC
Clear Interrupt Mask Bit CLI
Clear CLRA, CLRX
Complement COMA, COMX
Decrement DECA, DECX
Increment INCA, INCX
Logical Shift Left LSLA, LSLX
Logical Shift Right LSRA, LSRX
Multiply MUL
Negate NEGA, NEGX
No Operation NOP
Rotate Left thru Carry ROLA, ROLX
Rotate Right thru Carry RORA, RORX
Reset Stack Pointer RSP
Return from Interrupt RTI
Return from Subroutine RTS
Set Carry Bit SEC
Set Interrupt Mask Bit SEl
Enable IRQ, Stop Oscillator STOP
Software Interrupt Swi
Transfer Accumulator to Index Register TAX
Test for Negative or Zero TSTA, TSTX
Transfer Index Register to Accumulator TXA
Enable Interrupt, Halt Processor WAIT

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-23

M L3L?7248 0L49808 0OT3 M

3.4.5.2 IMMEDIATE ADDRESSING MODE. Inthe immediate addressing mode, the
operand is contained in the byte immediately following the opcode. This
mode is used to hold a value or constant which is known at the time the
program is written and which is not changed during program execution.
These are two-byte instructions, one for the opcode and one for the imme-
diate data byte.

Example Program Listing:

0200 a6 02 LDA #$02 Load accumulator w/ immediate value

Execution Sequence:
$0200 $A6 [1]
$0201 $02 (2]

Explanation:
f1] CPU reads opcode $A6 — load accumulator with the value immediately
following the opcode.
[2] CPU then reads the immediate data $02 from location $0201 and loads
$02 into the accumulator.

The following is a list of all M68BHCO5 instructions that can use the immediate
addressing mode.

Instruction Mnemonic

Add with Carry ADC
Add ADD
Logical AND AND
Bit Test Memory with Accumulator BIT

Compare Accumulator with Memory CMP
Compare Index Register with Memory CPX
Exclusive OR Memory with Accumulator EOR
Load Accumulator from Memory LDA
Load Index Register from Memory LDX
Inclusive OR ORA
Subtract with Carry SBC
Subtract SUB

3-24 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

M 6357248 0145809 T3T WA

3.4.5.3 EXTENDED ADDRESSING MODE. In the extended addressing mode, the
address of the operand is contained in the two bytes following the opcode.
Extended addressing references any location in the MCU memory space
including I/0, RAM, ROM, and EPROM. Extended addressing mode instruc-
tions are three bytes, one for the opcode and two for the address of the
operand.

Example Program Listing:
0200 c6 06 e5 LDA S06ES Load accumulator from extended addr

Execution Sequence:
$0200 $Ce6 [1]
$0201 %06 [2]
$0202 $E5 (3] and [4]

Explanation:

[1] CPU reads opcode $C6 — load accumulator using extended addressing
mode.

[2] CPU then reads $06 from location $0201. This $06 is interpreted as the
high-order half of an address.

[3] CPU then reads $E5 from location $0202. This $E5 is interpreted as the
low-order half of an address.

[4] CPU internally appends $06 to the $E5 read to form the complete ad-
dress {$06E5). The CPU then reads whatever value is contained in the
location $06E5 into the accumulator.

The following is a list of all M68HCO5 instructions that can use the extended
addressing mode.

Instruction Mnemonic

Add with Carry ADC
Add ADD
Logical AND AND
Bit Test Memory with Accumulator BIT

Compare Acumulator with Memory CMP
Compare Index Register with Memory CPX
Exclusive OR Memory with Accumulator EOR
Jump JMP
Jump to Subroutine JSR
Load Accumulator from Memory LDA
Load Index Register from Memory LDX
Inclusive OR ORA
Subtract with Carry SBC
Store Accumulator in Memory STA
Store Index Register in Memory STX
Subtract SuB

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-25

B L3:t7248 0LY49810 751 WA

3.4.5.4 DIRECT ADDRESSING MODE. The direct addressing mode is similar to

3-26

the extended addressing mode except the upper byte of the operand address
is assumed to be $00. Thus, only the lower byte of the operand address needs
to be inciuded in the instruction. Direct addressing allows you to efficiently
address the lowest 256 bytes in memory. This area of memory is called the
direct page and includes on-chip RAM and /O registers. Direct addressing
is efficient in both memory and time. Direct addressing mode instructions
are usually two bytes, one for the opcode and one for the low-order byte of
the operand address.

Example Program Listing:
0200 b6 50 LDA $50 Load accumulator from direct address

Execution Sequence:
$0200 $B6 [1]
$0201 $50 [2] and [3]

Explanation:

[1] CPU reads opcode $B6 — load accumulator using direct addressing
mode.

[2] CPU then reads $50 from location $0201. This $50 is interpreted as the
low-order half of an address. In direct addressing mode, the high-order
half of the address is assumed to be $00.

[3] CPU internally appends $00 to the $50 read in the second cycle to form
the complete address ($0050). The CPU then reads whatever value is
contained in the location $0050 into the accumulator.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

B L3L7248 0149811 L98 EM

The following is a list of all M68HCO05 instructions that can use the direct
addressing mode.

MOTOROLA

Instruction
Add with Carry
Add
Logical AND
Arithmetic Shift Left
Arithmetic Shift Right
Clear Bit in Memory
Bit Test Memory with Accumulator
Branch if Bit n is Clear
Branch if Bit n is Set
Set Bit in Memory
Clear
Compare Accumulator with Memory
Complement
Compare Index Register with Memory
Decrement
Exclusive OR Memory with Accumulator
Increment
Jump
Jump to Subroutine
Load Accumulator from Memory
Load Index Register from Memory
Logical Shift Left
Logical Shift Right
Negate
Inclusive OR
Rotate Left thru Carry
Rotate Right thru Carry
Subtract with Carry
Store Accumulator in Memory
Store Index Register in Memory
Subtract
Test for Negative or Zero

Mnemonic
ADC
ADD
AND
ASL
ASR
BCLR
BIT
BRCLR
BRSET
BSET
CLR
CMP
COM
CPX
DEC
EOR
INC
JMP
JSR
LDA
LDX
LSL
LSR
NEG
ORA
ROL
ROR
SBC
STA
STX
SuB
TST

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

M b367248 0L49812 524 WE

3-27

3.4.5.5 INDEXED ADDRESSING MODE. in the indexed addressing mode, the ef-

fective address is variable and depends upon two factors: 1) the current
contents of the index (X) register and 2) the offset contained in the byte(s)
foliowing the opcode. Three types of indexed addressing exist in the MCU:
no offset, 8-bit offset, and 16-bit offset. A good assembler should use the

indexed addressing mode that requires the least number of bytes to express
the offset.

3.45.5.1 Indexed, No Offset. In the indexed, no-offset addressing mode, the ef-

3-28

fective address of the instruction is contained in the 8-bit index register. Thus,
this addressing mode can access the first 256 memory locations. These in-
structions are only one byte.

Example Program Listing:
0200 fé6 LDA X Load accumulator from location
peinted to by index reg (no offset)
Execution Sequence:
$0200 $F6 [1], [2], [3]

Explanation:
[1] CPU reads opcode $F6 — load accumulator using indexed, no offset,
addressing mode.

[2] CPU forms a complete address by adding $0000 to the contents of the
index register.

[3] CPU then reads the contents of the addressed location into the accu-
mulator.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

M bL367248 0149813 460 WH

The following is a list of all M6BHCO5 instructions that can use the indexed,
no-offset addressing mode.

Instruction Mnemonic

Add with Carry ADC
Add ADD
Logical AND AND
Arithmetic Shift Left ASL

Arithmetic Shift Right ASR
Bit Test Memory with Accumulator BIT

Clear CLR

Compare Accumulator with Memory CMP
Complement COM
Compare Index Register with Memory CPX
Decrement DEC
Exclusive OR Memory with Accumulator EOR
Increment INC

Jump JMP
Jump to Subroutine JSR

Load Accumulator from Memaory LDA
Load Index Register from Memory LDX
Logical Shift Left LSL

Logical Shift Right LSR

Negate NEG
Inclusive OR ORA
Rotate Left thru Carry ROL
Rotate Right thru Carry ROR
Subtract with Carry SBC
Store Accumulator in Memory STA
Store Index Register in Memory STX
Subtract SUB
Test for Negative or Zero TST

MOTOROLA M68HC0S5 MICROCONTROLLER APPLICATIONS GUIDE 3-29

B 367248 D149814 377 M

3.4.5.5.2 Indexed, 8-Bit Offset. In the indexed, 8-bit offset addressing mode, the

3-30

effective address is obtained by adding the contents of the byte following
the opcode to the contents of the index register. This mode of addressing is
useful for selecting the kth element in a ‘n’ element table. To use this mode,
the table must begin in the lowest 256 memory locations, and may extend
through the first 511 memory locations (1FE is the last location which the
instruction may access). Indexed 8-bit offset addressing can be used for ROM,
RAM, or I/0. This is a two-byte instruction with the offset contained in the
byte following the opcode. The content of the index register (X) is not changed.
The offset byte supplied in the instruction is an unsigned 8-bit integer.

Example Program Listing:

0200 e6 05 LDA $5,% Load accumulator from location
pointed to by index reg (X) + $05

Execution Sequence:
$0200 $E6 [1]
$0201 $05 (2], [3], [4]

Explanation:

[1] CPU reads opcode $E6 — load accumulator using indexed, 8-bit offset
addressing mode.

[2] CPU then reads $05 from location $0201. This $05 is interpreted as the
low-order half of a base address. The high-order half of the base ad-
dress is assumed to be $00.

[3] CPU will add the value in the index register to the base address $0005.
The results of this addition is the address that the CPU will use in the
foad accumulator operation.

[4] The CPU will then read the value from this address and load this value
into the accumulator.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

I L367248 01498125 233 W

The following is a list of all M68HCO5 instructions that can use the indexed,
8-bit offset addressing mode.

Instruction Mnemonic

Add with Carry ADC
Add ADD
Logical AND AND
Arithmetic Shift Left ASL
Arithmetic Shift Right ASR
Bit Test Memory with Accumulator BIT

Clear CLR

Compare Accumulator with Memory CMP
Complement COM
Compare Index Register with Memory CPX
Decrement DEC
Exclusive OR Memory with Accumulator EOR
Increment INC

Jump JMP
Jump to Subroutine JSR

l.oad Accumulator from Memory LDA
Load Index Register from Memory LDX
Logical Shift Left LSL

Logical Shift Right LSR

Negate NEG
Inclusive OR ORA
Rotate Left thru Carry ROL
Rotate Right thru Carry ROR
Subtract with Carry SBC
Store Accumulator in Memory STA
Store Index Register in Memory STX
Subtract SUB
Test for Negative or Zero TST

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-31

M L3b7244 014981k 17T IN

3.4.5.5.3 Indexed, 16-Bit Offset. In the indexed, 16-bit offset addressing mode,

3-32

the effective address is the sum of the contents of the 8-bit index register
and the two bytes following the opcode. The content of the index register is
not changed. These instructions are three bytes, one for the opcode and two
for a 16-bit offset.

Example Program Listing:
0200 d6 07 00 LDA $0700,X Load accumulator from location
pointed to by index reg (X) + $0700
Execution Sequence:
$0200 $D6 [1]
$0201 $07 (2]
$0202 $00 [3], [4], (5]

Explanation:

[1] CPU reads opcode $D6 — load accumulator using indexed, 16-bit offset
addressing mode.

[2] CPU then reads $07 from location $0201. This $07 is interpreted as the
high-order half of a base address.

[3] CPU then reads $00 from location $0202. This $00 is interpreted as the
low-order half of a base address.

[4] CPU will add the value in the index register to the base address $0700.
The results of this addition is the address that the CPU will use in the
load accumulator operation.

[5] The CPU will then read the value from this address and load this value
into the accumulator.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

M L3kL7248 0L49817 00 WA

The following is a list of all MBBHCO5 instructions that can use the indexed,
16-bit offset addressing mode.

Instruction Mnemonic

Add with Carry ADC
Add ADD
Logical AND AND
Bit Test Memory with Accumulator BIT

Compare Accumulator with Memory CMP
Compare Index Register with Memory CPX
Exclusive OR Memory with Accumuilator EOR
Jump JMP
Jump to Subroutine JSR
Load Accumulator from Memory LDA
Load Index Register from Memory LDX
Inclusive OR ORA
Subtract with Carry SBC
Store Accumulator in Memory STA
Store Index Register In Memory STX
Subtract SUB

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-33

B (367248 0L49818 TuZ M

3.4.5.6 RELATIVE ADDRESSING MODE. The relative addressing mode is used

3-34

only for branch instructions. Branch instructions, other than the branching
versions of bit-manipulation instructions, generate two machine-code bytes:
one for the opcode and one for the relative offset. Because it is desirable to
branch in either direction, the offset byte is a signed twos-complement offset
with a range of —127 to +128 bytes (with respect to the address of the
instruction immediately following the branch instruction). If the branch con-
dition is true, the contents of the 8-bit signed byte following the opcode
{offset) are added to the contents of the program counter to form the effective
branch address; otherwise, control proceeds to the instruction immediately
following the branch instruction.

A programmer specifies the destination of a branch as an absolute address
(or label which refers to an absolute address). The Motorola assembler cal-
culates the 8-bit signed relative offset, which is placed after the branch opcode
in memory.

Example Program Listing:

0200 27 rr BEQ DEST Branch to DEST if 2=1
(branch if equal or zero)

Execution Sequence:
$0200 $27 [1]
$0201 $rr [2], [3]

Explanation:
[1] CPU reads opcode $27 — branch if Z=1, (relative addressing mode).
[2] CPU reads the offset, $rr.
[3] CPU internally tests the state of the Z bit and causes a branch if Z is
set.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

I L3L57248 0149819 989 MR

The following is a list of all M68HCO5 instructions that can use the relative
addressing mode.

Instruction Mnemonic
Branch if Carry Clear BCC
Branch is Carry Set BCS
Branch if Equal BEQ
Branch if Half-Carry Clear BHCC
Branch if Half-Carry Set BHCS
Branch if Higher BHI
Branch if Higher or Same BHS
Branch if Interrupt Line is High BIH
Branch if Interrupt Line is Low BIL
Branch if Lower BLO
Branch if Lower or Same BLS
Branch if Interrupt Mask is Clear BMC
Branch if Minus BMI
Branch if interrupt Mask Bit is Set BMS
Branch if Not Equal BNE
Branch if Plus BPL
Branch Always BRA
Branch if Bit n is Clear BRCLR
Branch if Bit n is Set BRSET
Branch Never BRN
Branch to Subroutine BSR

3.45.7 BIT TEST AND BRANCH INSTRUCTIONS. These instructions use direct
addressing mode to specify the location being tested and relative addressing
to specify the branch destination. This applications guide treats these in-
structions as direct addressing mode instructions. Some older Motorola doc-

uments call the addressing mode of these instructions BTB for bit test and
branch.

3.4.5.8 INSTRUCTIONS ORGANIZED BY TYPE. Tables 3-2 through 3-5 show the
MC68HCO5 instruction set displayed by instruction type.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-35

B L3t7248 01489820 LTO WA

L € aa 9 4 a3 S l a4 9 € aj g 4 [¢}:] — - - ysr aunnoigng o} dwnp

v € 2a € 4 o3 4 L OE| € € 20 4 4 o9 - - — | 4l Jeuonipuodun dwnp
(asedwo) |e21607) v

g € sa 14 4 53 € l BE] 4 [S € 4 S8 4 4 sv 119 Uim Asowap 1sa] Ng
Aloway] yum

g € €a ¥ 4 €3 € L €4 14 € £ € 4 £8 4 14 €V | XdO X 21edWO07) SROWYILY
Aows i\ yim

S € 1a 4 Z 13 € L 14 14 € [Re) € 4 [§:] 4 4 v | dWO v 8iedwon onawyy
8 v | z | 83| ¢ L e | 8 £ v

S € a 8 14 9} 4 8g 4 [4 8V | HO3 AIOWB YO BAISN|IXT

g £ va 14 [4 v3 € L v4d 14 € Y2 € 4 va 4 [4 vV | V4O V yum AIOWSN HO

9 € ¥a 14 4 3 € L 74 14 £ 128} € 4 va < 4 vV | ANV v 01 Alowsiy aNY
MOLI0g YUM

S € za 12 4 23 € l £ |4 € [4e] £ [4 g 4 [4 ¢v | 78S W01y AIOWa 10engng

G € 0a 4 4 03 € l 04 14 € 02 € 4 089 4 z ov | ans Atowsay 1engng
v 01 Auep

§ € 6d 14 4 63 € L 64 14 £ 62 € 4 69 [4 4 6V | oQv pue Alowspy ppy

§ € :[e] 14 [4 83 € L a4 4 € a2 £ 4 49 [4 11 av | aav v 01 Alowa ppy

9 € 4a S 4 43 v 3 EE] S € 40 14 4 49 — - - X1S Asowapy ur x 81019

9 € £a g [4 3 4 l (£} § € L2 14 [4 L9 - - - V1S Aowd ut v 21018

g € Eld 14 [4 33 € 1 34 4 € El) € [4 3g [4 4 3v | X@1 | AMowap woyy X peo

§ € ad 4 z 93 € l 94 4 € 92 € [4 99 4 4 9v | vai | Aowsepy woy v peot

S39AD | s8IAg | apod |sappA)| soiAg | apoa |sappAn| seiAg | apos | sajpAn| seirg | apoo |sajpAn | seiAg | apoa |sejpAn| seiAg | apoo -wougy uonsuny
| do | # # | do | # # | -do # # | do | # # | do | # # | -do ;
(¥espo ug-9i) {1esyO 1ug-8) (3340 ON)
paxapuj paxapuy| paxapuj pPapuelx3 wela aepeuiw

sapowy Buisseippy

suononisuj Alowa|y/183s16ay 'z-¢ a|qel

MOTOROLA

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

3-36

B b3L72486 0149821 537 M

- | = — - =1 - - =1-=-1-1]1-1 - L L | N Aldiniy
0197 i0
§ Z as 14 1 qas 14 4 ae € 3 as € 1 ar | 1SL annebap 10j 158
9 4 L9 S 3 LL S 4 L& € 3 J&] £ I a4 ySy | by s snswiy
9 4 ¥9 S L vL S z ve € L] £ L vy | 4S1 Wby Yys (e2160q
9 4 89 S L 8L S 4 j:13 € l 89 € L 14 s ya7 yiys jedbon
9 4 99 S L 9L S z 9¢€ £ L 95 € L 9 | HOH }Aued nuyl by slejoy
9 4 69 g 1 64 S 14 6€ € L 69 € l 6y | 104 |AueD niyy ye sieroy
(3uawajdwo) s,z)
9 4 09 G l 0L S 4 [£ L 0S € L oF | D3N a1eban
9 z €9 S I €L S 4 %3 € I €S € L ey | WOD wawadwo)
9 < 49 S 3 ET4 S 4 J€ € L 45 € l E14 4710 1e31p
9 4 v9 S L vi S 4 vE € L VS € L vy | 234 uawsidaQ
9 [29 G I oL S Z o€ € L o] € L o4 ONI uswaIduY
sapaAy| saiAg | apoa [sappAn| seiig | apoo |sajpAn| seirg | spod sapAn| sairg | apoa |sa|aAD| saiAg | apod -weup wonsuny
| do | # # | do # # | do | # # | do| # # | do
(39sy0 1g-8) {39510 ON) sy jualByu|
paxopu paxapuy waug {x) yuj v)

sapow buissaippy

suonanIIsuj 3a3M-AJIPOIN/PRAY "€-€ d|qel

3-37

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

MOTOROLA

B L3L72484 0L49822 473 WM

Table 3-4. Branch Instructions

Relative Addressing Mode
Function Mnemonic # #
Opcode | Bytes | Cycles
Branch Always BRA 20 2 3
Branch Never BRN 21 2 3
Branch IFF Higher BHI 22 2 3
Branch IFF Lower or Same BLS 23 2 3
Branch IFF Carry Clear BCC 24 2 3
Brfg:;éF;sHégi;r or Same BHS 2 2 3
Branch IFF Carry Set BCS 25 2 3
" (game s BCS) BLo | % | 2 | 3
Branch IFF Not Equal BNE 26 2 3
Branch IFF Equal BEQ 27 2 3
Branch IFF Half-Carry Clear BHCC 28 2 3
Branch IFF Half-Carry Set BHCS 29 2 3
Branch IFF Plus BPL 2A 2 3
Branch IFF Minus BMI 2B 2 3
Branch IFF Interrupt Mask Bit is Clear BMC 2C 2 3
Branch IFF interrupt Mask Bit is Set BMS 2D 2 3
Branch IFF Interrupt Line is Low BIL 2E 2 3
Branch IFF Interrupt Line is High BIH 2F 2 3
Branch to Subroutine BSR AD 2 6
3-38 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

B L3kL7248 0149823 30T WA

MOTOROLA

Table 3-5. Control Instructions

Inherent
Function Mnemonic # #
Opcode | Bytes | Cycles

Transfer A to X TAX 97 1 2
Transfer X to A TXA 9F 1 2
Set Carry Bit SEC 99 1 2
Clear Carry Bit CLC 98 1 2
Set Interrupt Mask Bit SEl 9B 1 2
Clear Interrupt Mask Bit CLI 9A 1 2
Software Interrupt SWiI 83 1 10
Return from Subroutine RTS 81 1 6
Return from Interrupt RT! 80 1 9
Reset Stack Pointer RSP 9C 1 2
No-Operation NOP 9D 1 2
Stop STOP 8E 1 2
Wait WAIT 8F 1 2

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

B L3L7244 0l49824 24k EN

3-39

3.4.6 Instruction Set Summary

3-40

Computers use an operation code or opcode to give instructions to the CPU.
The instruction set for a specific CPU is the set of all opcodes that the CPU
knows how to execute. The CPU in the MC68HC705C8 MCU can understand
62 basic instructions, some of which have several variations that require
separate opcodes. The M68HCO5 instruction set includes 210 unique instruc-

tion opcodes.

The following table is an alphabetical listing of the M68HCO5 instructions
available to the user. In listing all the factors necessary to program, the table
uses the following symbols:

ONZ—I

Condition Code Symblols

Half Carry (Bit 4)
Interrupt Mask (Bit 3)
Negate (Sign Bit 2)
Zero {Bit 1)
Carry/Borrow (Bit 0}

Boolean

Contents of (i.e., (M)
means the contents
of memory location
M)

is loaded with, ‘gets’

AND

Operators

+
@

X

MPU Registers

Accumulator

Accumulator

Condition Code Reg.

Index Register

Any memory location
(one byte)

Addressing Modes

Inherent

Immediate
Direct {for bit

test instructions)
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

Relative

PC
PCH
pPCL
SP
REL

(Abbreviation)

INH
IMM
DIR

EXT
IX
X1
IX2
REL

Test and Set if True,
(cleared otherwise)

Not Affected

Load CC from Stack

Cleared

Set

{inclusive) OR
Exclusive OR
NOT
Negation

(twos complement)
Multiplication

Program Counter
PC High Byte
PC Low Byte
Stack Pointer
Relative Address

Operands

none

ii

dd

dd r
hh Il
none
ff

ee
rr

ff

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

B L3b7248 01494825 1462 IR

MOTOROLA

INSTRUCTION ADDRESSING MODES, AND EXECUTION TIMES (Sheet 10f 4)

Sou Bool Addressing | Machine Coding
ree i oolean (hexadecimal) Condition Code,
Formis) Operation Expression Mode for Bytes | Cycles
Operand | gpcade {Operand Hl1|N]|zZ]c
ADC (opr} Add with Carry ACCA¢4ACCA+M+C IMM A9 i 2 2 s|—|zlele
DIR 89 dd 2 3
EXT Cc9 bh I 3 4
1X2 D3 ee ff 3 5
1X1 E9 ff 2 4
IX F9 1 3
ADD (opr) Add ACCA § ACCA+M IMM AB i 2 2 HuB3EE
DIR BB dd 2 3
EXT cB hh Ii 3 4
1X2 DB ee ff 3 5
1X1 EB ff 2 4
IX FB 1 3
AND {opr) Logical AND ACCA 4 ACCAO M IMM Ad ii 2 2 |—[—leslal—
DIR B4 dd 2 3
EXT C4 hh it 3 4
1X2 D4 ee ff 3 5
X1 E4 ft 2 4
1X Fa 1 3
ASL (opr) Arithmetic Shift Left DIR 38 dd 2 5 |—|— slels
ASLA D —— INH(A) 48 1 3
ASLX [J*[TITITTTI 0 [iNHiX) 58 1 3
ASL {opr) C b7 b0 1X1 68 ff 2 6
ASL {opr) X 78 1 5
ASR {(opr) Arithmetic Shift Right DIR 37 dd 2 5 1—1—|e|2|2
ASRA —_ . INH(A) 47 1 3
ASRX qmo{] INH{X) 57 1 3
ASR (opr) b7 o C 1X1 67 ff 2 6
ASR (opr) X 77 1 5
BCC (rel} Branch if Carry Clear ?C-0 REL 24 r 2 3 |—1—|—]-|—-
BCLR n, {opr) | Clear Bit n in Memory Mnr 40 DIRtb0} n dd 2 5 |—|—l—|—l—
DIR(b1) 13 dd 2 5
DIRIb2) 15 dd 2 5
DIR(D3) 17 dd 2 5
DIR(b4) 19 dd 2 5
DIR(b5) 18 dd 2 5
DIR(b6) 1D dd 2 5
DIR(b7} 1F dd 2 5
BCS {rel) Branch if Carry Set ?7C-1 REL 25 " 2 3 |—1—)—I—|—
BEQ (rel) Branch if Equal 2Z-1 REL 27 r 2 3 |—|—l—|-]—
BHCC (rel} Branch if Half Carry Clear ?H-0 REL 28 re 2 3 |—1—|—|—|-
BHCS {rel) Branch if Half Carry Set ?7H-1 REL 29 rr 2 I e el el Bl
BHI (ret) Branch if Higher ?2(C+2)-0 REL 22 rr 2 3 [—|—I~l—|-
BHS (rel) Branch if Higher or Same ?2C-0 REL 24 rr 2 3 |=l—]—l—}—
BIH (rel) Branch if IRQ Pin is High ?iRQ Pin-1 REL 2F | or 2 I e ol el el
BIL (rel) Branch if IRQ Pin is Low ?1RQ Pin-0 REL 26 |n 2 3 |=l=l-l-]-
BIT (rei} Bit Test Memory with A ACCAe M IMM A5 ii 2 2 |- s|e|—
DIR B5 dd 2 3
EXT Ccs hh |l 3 4
IX2 D5 ee ff 3 b
1X1 ES ff 2 4
1X F5 1 3
BLO (reb) Branch if Lower ?2C-=1 REL 25 rr 2 3 |—|—=j—l—]—
BLS (rel} Branch if Lower or Same 2{C+X)-1 REL 23 rr 2 3 |—|—]—l—]—
BMC frel) Branch if | Bit is Clear ?21-0 REL 2C rr 2 3 |—=|—=l—|—I—
MOTOROLA Mé68HC05 MICROCONTROLLER APPLICATIONS GUIDE 341

B L3b72u48 0149826 019 WA

INSTRUCTION ADDRESSING MODES, AND EXECUTION TIMES (Sheet 2 of 4)

s Bool Addressing | Machine Coding
ource i oolean ({hexadecimal) Condition Code
Form(s) Operation Expression Mode for Bytes |Cycles
Operand | Opcode [Operand H|lt[N}2Z]C
BMI (rel) Branch if Minus IN-1 REL 28 m 2 3 —=l—]—]-1—
BMS {rel) Branch if | Bit is Set 21 REL 2D " 2 3 |—|—]—{—]—
BNE (rel} Branch if Not Equal ?Z2-0 REL 26 m 2 I (ol Gl el Rl ot
BPL {rel) Branch if Plus ?N-0 REL 2A " 2 3 |=|=|=]—]—
BRA (rel) Branch Always ?71-1 REL 20 " 2 3 |—l-1-1-]—
BRCLR n, (opr} |Branch if Bitn of M -0 ?BitnofM-0 DiR(b0) 01 dd rr 3 5 -1-1-1-1=
(rel} DIR(b1) 03 dd rr 3 5
DIR(b2) 05 dd rr 3 5
DIR(b3) 07 dd rr 3 5
DIR(b4) 09 dd rr 3 5
DIR(b5) 0B dd rr 3 5
DIR(b6) aD ad rr 3 5
DIR(b7) OF dd rr 3 5
BRN {rei) Branch Never ?71-0 REL 21 " 2 3 |-1—1—|—I—
BRSET n, (opr} |Branchif BitnofM 1 ?BitnofM-1 DIR(bO) 00 dd rr 3 5 —1-1-|—is
(rel) DIR{b1) 02 dd rr 3 5
DIR(b2) 04 dd rr 3 5
DIR(b3) 06 dd 3 5
DIR(b4) 08 dd rr 3 5
DIR{b5) 0A dd rr 3 5
DIR(b6) oc dd rr 3 5
DIR(b7) OE dd rr 3 5
BSET n, {opr) Set Bit n in Memory Mn41 DIR(b0) 10 dd 2 S |—l—|-1-|—
DIR(b1} 12 dd 2 5
DIR(b2) 14 dd 2 5
DIR(b3} 16 dd 2 5
DIR(b4} 18 dd 2 5
DIR(b5) 1A dd 2 5
DIR(b6) 1c dd 2 5
DItR(b7} 1E dd 2 5
BSR (rel) Branch to Subroutine PC 4 PC + 0002 REL AD m 2 6 |— —
(SP) ¢ PCL; SP 4 SP- 0001
(SP) 4 PCH; SP 4 SP-- 0001
PC ¢ PC +Rel
CLC Ciear C Bit Cbited INH 98 1 2 —|0
CLI Clear 1 Bit Ibit40 INH 9A 1 2 |—|0]—|—]|—
CLR (opr} Clear M 400 DIR 3F dd 2 5 |—}—|o]|1)—
CLRA A 400 INH(A) 4F 1 3
CLRX X 400 INH(X) SF 1 3
CLR (opr) M4 00 1X1 6F ff 2 6
CLR lopr) M ¢ 00 X 7F 1 5
CMP (opr) Compare A with Memory ACCA-M iMM Al i 2 2 |—|—- zlele
DIR 81 dd 2 3
EXT (o] hh 1 3 4
1X2 D1 ee ff 3 5
X1 E1 f 2 4
1X F1 1 3
COM {opr} 1's Complement M ‘_ﬁ—$FF -M DIR 33 dd 2 5 |—1—|e]|sf?
COMA AGA-SFF-A INH{A) 43 1 3
COMX X 4 X-$FF- X INH(X) 53 1 3
COM (opr) Mo M-SFF-M 1X1 63 ff 2 6
COM (opr} Me¢M-SFF-M 1X 73 1 5
CPX (opr} Compare X with Memory X-M IMM A3 it 2 2 |—]— elele
DIR B3 dd 2 3
EXT c3 hh 1l 3 4
X2 D3 ee ff 3 5
X1 E3 ff 2 4
1X F3 1 3
3-42 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

B L3b7248 0luqs2? TS5 HA

INSTRUCTION ADDRESSING MODES, AND EXECUTION TIMES (Sheet 3 of 4)

Addressing | Machine Coding
Source Operation Boolean Mode for | fhexadecimal) | gyres |Cycles|Condition Code
Form(s) Expression
Operand | Opcode |Operand H|t|N]Z|C
DEC (opr) Decrement MeM-01 DIR 3A dd 2 5 |—|—|si=|—
DECA AdA-01 INH{A} 4A 1 3
DECX DEX (same as DECX) XeX-01 INH{X) 5A 1 3
DEC (opr) MeM-01 I1X1 6A 1f 2 6
DEC (opr} MeM-01 I1X 7A 1 5
EOR lopr) Exclusive OR A with Memory |ACCA ¢ ACCA + M MM A8 ii 2 2 |—|—{sle|—
DIR B8 dd 2 3
EXT Ccs8 hh It 3 4
IX2 D8 ee ff 3 5
1X1 ES ft 2 4
IX F8 1 3
INC {opr) Increment MeM+01 DIR 3C dd 2 5 |1—-|—|elel—
INCA AeA+01 INH(A) ac 1 3
INCX INX {same as INCX} X 4X+01 INH(X) 5C 1 3
INC {opr} MeaM+O1 1X1 6C ff 2 6
INC (opr) MeM+01 IX 7C 1 5
JMP (opr) Jump PC 4 effective address DIR BC dd 2 2 |—-l—l—|—1—
EXT cC hh 1l 3 3
1X2 bC ee ff 3 4
1X1 EC f 2 3
IX FC 1 2
JSR {opr) Jump to Subroutine PC4PC+ni{n-1,2,0r3) | DIR BD dd 2 5 |—]—-|—|—|—
{SP) ¢ PCL; SP ¢ SP 0001} EXT CcD hh I 3 6
(SP) 4 PCH; SP 4 SP-0001} IX2 DD ee ff 3 7
PC ¢ effective address X1 ED ff 2 6
IX FO 1 5
LDA (opr) Load A from Memory ACCA e M MM A6 ii 2 2 j—|—|= sl—
DIR B6 dd 2 3
EXT cé hh i 3 4
1X2 D6 ee ff 3 5
1X1 E6 1f 2 4
IX F6 1 3
LDX (opr) Load X from Memory X4M IMM AE ii 2 2 |—]— slz|—
DIR BE dd 2 3
EXT CE hh 1l 3 4
1X2 DE ee ff 3 5
1X1 EE ft 2 4
I1X FE 1 3
LSL (opr) Logical Shift Left DIR 38 dd 2 5 |—[—|=|2|s
LSLA — INH{A} 48 1 3
LSLX OOTITIITI *© | iNHX 58 1 3
LSL {opr) L7 b0 1X1 68 ff 2 6
LSL (opr) I1X 78 1 5
LSR (opr) Logical Shift Right DIR 34 dd 2 5 |—|—|0|= s
LSRA - . INH(A} 44 1 3
LSRX ve [TTTIITT0e INH(X) 54 1 3
LSR {opr) 12 L0 C X1 64 ff 2 6
LSR {opr) IX 74 1 5
MUL Unsigned Multiply X:AeXeA INH 42 1 1 [o]—|—}—]0
NEG (opr) Negate {2’s Complement) M4 - Mlie 00-M) DIR 30 dd 2 S il bt 3 B3
NEGA Ag-A INH(A) 40 1 3
NEGX X¢ X INH(X) 50 1 3
NEG (opr} Me-M IX1 60 if 2 6
NEG (opr Me-M X 70 1 5
NOP No Operation INH 9D 1 P B Bl B Bl B
ORA (opr} Inclusive OR ACCA 4 ACCA+M MM AA i 2 2 |—|— s|lel—
DIR BA dd 2 3
EXT CA hh Il 3 4
1X2 DA ee ff 3 5
1X1 EA ff 2 4
X FA 1 3
MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-43

M L3b7248 0149428 991 M

INSTRUCTION ADDRESSING MODES, AND EXECUTION TIMES (Sheet 4 of 4)

s Bool Addressing | Machine Coding
ource - 0olean (hexadecimal) les |Condition Code
Formis) Operation Expression I\::)de fo)r e w— Bytes | Cycles T TnTzTe
ROL (opr) Rotate Left through Carry DIR 39 dd 2 5 j—j— slels
ROLA -—_— INH{A} 49 1 3
ROLX DOITTTITTNO | inkexy 59 1 3
ROL (opr) ¢ w7 80 ¢ fixi 69 |# 2| s
ROL (opr 1X 79 1 5
ROR {opr) Rotate Right through Carry DIR 36 dd 2 5 |—|—|e|els
RORA ———— INH(A) 46 1 3
RORX (W [TITTTTT0e00 | INHIX) 56 1 3
ROR (opr) b7 bo € IX1 66 ff 2 [
ROR (opr) 1X 76 1 5
RSP Reset Stack Pointer SP ¢ $00FF INH 9C 1 2 |—|—=]—]—|—
RT! Return from Interrupt SP ¢ SP + 0001; CC 4 (SP) | INH 80 1 9 | (From Stack)
SP 4SP + 0007; ACCA4 (SP) dalalala
SP ¢ SP +0001; X ¢ (SP) A k4 A R R4
SP 4 SP - 0001; PCH 4 (SP)
SP ¢ 5P - 0001; PCL 4 (SP)
RTS Return from Subroutine SP ¢ SP +0001; PCH 4 (SP)| INH 81 1 6 |—|—|—1—|—
SP ¢ SP + 0001, PCL 4 {SP)
SBC {opr) Subtract with Carry ACCA 4 ACCA -M-C IMM A2 i 2 2 |—|—|=i2]2s
DIR B2 dd 2 3
EXT C2 hh |l 3 4
1X2 D2 ee ff 3 5
X1 E2 ff 2 4
X F2 1 3
SEC Set C Bit Chite1t INH 99 1 2 —|—]-]—]1
SEI Set | Bit | bit 4 1 INH 9B 1 2 |—|1]—]—j—
STA {opr} Store A in Memory M ¢ ACCA DIR B7 dd 2 4 |—|— sle—
EXT c7 hh 1l 3 5
1X2 D7 ee ff 3 6
1X1 E7 ff 2 5
IX F7 1 4
STOP Enable IRQ, Stop Oscillator INH 8E 1 2 |—|o]—]|—|—
STX (opr) Store X in Memory MeX DIR BF dd 2 4 |1—|—|=|=|°
EXT CF bh It 3 5
X2 DF ee ff 3 6
X1 EF ff 2 5
1X FF 1 4
SUB (opr} Subtract ACCA4ACCA-M IMM AD ii 2 2 |—]— sl|ele
DIR BO dd 2 3
EXT co hh 1l 3 a
1X2 Do ee ff 3 5
X1 EO ff 2 4
1X . FO 1 3
SWI Software Interrupt PC 4 PC + 0001 INH 83 1 10 [—]i]—|—]—
{SP) 4 PCL; SP ¢ SP - 0001
{SP) 4 PCH; SP 4 SP - 0001
{SP) 4 X; SP 4 SP - 0001
{SP) 4 ACCA; SP ¢ SP - 0001
{SP) 4 CC; SP 4 SP- 0001
Ibit41
PCH ¢4 $xFFC (vector
PCL ¢ $xFFD fetch)
TAX Transfer A to X X ¢ ACCA INH 97 1 2 j—|—|—|—]—
TST lopr) Test for Negative or Zero M-0 DIR 3D dd 2 4 1—|— sl 0
TSTA INH{A} 40 1 3 .
TSTX INH(X) 50 1 3
TST {opr) X1 6D ff 2 5
TST {opr) 1X 70 1 4
TXA Transfer X to A ACCA ¢ X INH 9F 1 2 —|—
WAIT Enable Interrupts, Halt CPU INH 8F 1 2 |—-10]—|—]—
3-44 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

M b3L7248 0149829 428 MR

3.4.7 Interrupts

Systems often require that normal processing be interrupted so that some
external event may be serviced. The MC68HC705C8 may be interrupted by
one of five different methods: any one of four maskable hardware interrupts
(IRQ, SPI, SCI, or timer) and one nonmaskable software interrupt (SWI). In-
terrupts such as timer, SPI, and SCI have several flags which will cause the
interrupt. Generally, interrupt flags are located in read-only status registers;
their equivalent enable bits are located in associated control registers. The
interrupt flags and enable bits are never contained in the same register. If
the enable bit is a logic zero, it blocks the interrupt from occurring but does
not inhibit the flag from being set. Reset clears all enable bits to preclude
interrupts during the reset procedure.

The general sequence for clearing an interrupt is a software sequence of first
accessing the status register while the interrupt flag is set, followed by a read
or write of an associated register. When any of these interrupts occur and
the enable bit is a logic one, normal processing is suspended at the end of
the current instruction execution.

Figure 3-8 shows how interrupts fit into the normal flow of CPU instructions.
Interrupts cause the processor registers to be saved on the stack and the
interrupt mask (I bit) to be set to prevent additional interrupts. The appropriate
interrupt vector then points to the starting address of the interrupt service

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-45

BB L367248 0L49830 54T M

300N SS3HaaY

[ST 1830 (Ug-91) @IAg Z ‘pexapu X wang yla
19840 (18-8) d1Ag | ‘paxapu) X ajeIpaLUL) WIAI
Xl He— salAg {18840 ON) poxapu| X 191518y xapu| X
0000 NS ~— SNONINN ;
AUYNIG 0 youeig pue 1s9] ng qaig JO1B|NWND2Y v
NI 3060340 e £ 1e8[D/9s Ng asd Jusssyuy HNI
TVRIDIAVX3IH il SneIsy 134
> J apUaIX S8 8594 10§ SUONRIADA
MR papuaix3 13 POIN SSIPPY 10} SUOREIARIGQY
puatia
YT 3 = [oa 3 I°E) G EL z AN tIHNT 3 E3 I Z[N RN TJai0 K1 358 G
X185 XIS X1S X18 X158 WXL Lvm w13 ¥ X413 w1) HIg w108 | o
I 5 9 s v z z 5 o B 5 5 3 B 3
oL Xl B4 H (11 £L1X3 £pHI0 H GO z HNI L 13H 58 £ oLeL
xa1 Xa1 xan xat xa1 Xa1 dois 8 013s8 | t13sus
El ¢ i\ S £ el 3
Wi X1 X1 H 41 Xt X Z[HNI LEHNI t F4 REL] 288 £)| L1
o usr usr usr 181 151 X1SL visL 151 SW8 oy108 | ownue | ‘G
S k] 13 14 S £ € € S
oL X X1 H £ Xl X1 ZIHNI LHN! [} EI k4 REL 88 £| 00LL
% dr dINT dwr INI NI XONI VNI ONI wg o1359 | or3sus |
z £ 5 9 £ € 5 € el
Lot Xt X 138 288 £ Lot
P aav aav aav] sy1o8 | anows | g
£ 1 G
oLt Xt X Xl [¥] 258 £ ot0L
v vHO VHO vHO 230 730 148 si3sa | si3aswe | °y
£ v 5 3 G
100t Xt X Xi i 258 £ L0t
o sav oav aav 104 04 SoHa wiog | eylous | ‘%
£ 4 S 9 S
Xt X XI X4 58 £
'y 403 ¥o3 403 181 11 J0Hg viasa | viasus | "3
€ v S 9 S
Lo Xl [34] X1 et 58 £] TS
’ V1S vis vis usv sy [EL] cutog | ewious |
\4 S S 9 S
oLl Xt Xt X Xt osg £ ou0
o val val val oy uoy 3INg glasa | eiasws |
€ i4 i 1 il S
Xi X F 21 88 €|
'y La u8 ug 08 2y | zwoua | G
€ \4 1 £ S,
so10 Xt X1 H 121 X LXI ZHNI LHN) [} E114] E4 iEL 388 €| 0010
Y any any any us1 sl Xus1 vus1 st 208 z13s8 | ziasua | %
€ \4 S 5 il £ i 9 € S
100 Xt 1 Xt X] z Ig\ LEHNI [E] F4 REL] 258 £ 1100
Py Xdd Xdd Xd2 W02 Wod XW03 | VWOD W03 518 woe | g | 'Y
€ v kil 5 9 £ S 3 5
0100 Xl X1 H (13 KNI) 73y BE] n- 0100
s 288 o8s 2as nw IHa tizss | uiasug | %
£ r . S (19 £ 5
Xl EX) 2| 13y 258 H
v dWD dWd dWD N ouwa | owowa | ‘P
£ \4 € S S
0000 X1 X Z| Xt i ZHNI _—lva ——!.D 23y Nfuwm Zjuig £| 0000
P ans ans ans ans ans ans 1y 9aN 93aN X93N v9IN 93N vug ouasa | ouasua | °G
€ \4 v £ (4 6 5 9 14 £ S £ S il
03] it [T} WL 00LL Lot [TT TS 1ol DOOL o [T [T]0) 0010 LL00 0100 1000 0000 M
4 3 _ a 2 8 v 6 g ¢ 3 s € z L 0 |m
Xi] oa ITE] [T WAL NI AN X1 X AN AN uia RET] 358 [T]
Tiowsw/evsibey oRuGy SHNRHPSHPToN Pueig UORSIIUNIN 3

depy 9poadQ 195 uonosnisu| G09HS9A

MOTOROLA

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE

3-46

B 6367248 0149431 446 W

routine (refer to Figure 3-9 and Table 3-6 for vector location). Upon completion
of the interrupt service routine, the RTl instruction (which is normally the last
instruction of the routine) causes the register contents to be recovered from
the stack followed by a return to normal processing.

NOTE

The interrupt mask bit (I bit) will be cleared if, and only if, the cor-
responding bit stored in the stack is zero.

Table 3-6. Vector Address for Interrupts and Reset

Register Flag Interrupts CPU Vector
9 Name P Interrupt Address
N.A NA Reset RESET $1FFE-$1FFF
NA NA Software SwWi $1FFC-$1FFD
NA N:A External Interrupt IRQ $1FFA-$1FFB
Timer Status ICF Input Capture TIMER $1FF8-31FF9
OFC Output Compare
TOF Timer Overflow
SCI Status TDRE Transmit Buffer Empty SCI $1FF6-31FF7
TC Transmit Complete
RDRF Receiver Buffer Full
IDLE Idle Line Detect
OR Overrun
SPI Status SPIF Transfer Complete SPI $1FF4-$1FF5
MODF Mode Fault

Reset and interrupt operations are often discussed together because they
share the common concept of vector fetching to force a new starting point
for further CPU operation. Unlike interrupts, there is no intention to ever
return to whatever the CPU was doing before a reset occurred.

A low on the RESET input pin causes the program to vector to its starting
address specified by the contents of memory location $1FFE and $1FFF. The
| bitin the condition code register is also set. Much of the MCU is configured
{forced) to a known state during reset.

3.4.7.1 SOFTWARE INTERRUPT (SWI). The software interrupt is an executable
instruction. The action of the SWI instruction is similar to the hardware in-
terrupts. The SWi is executed regardiess of the state of the interrupt mask (|
bit) in the condition code register. The interrupt service routine address is
specified by the contents of memory location $1FFC and $1FFD.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-47

M 5367248 0L49832 312 M

CLEARIRG
REQUEST
LATCH

>

f

STACK
PC, X, A CC

v

SET I1-BIT
IN CC REGISTER

Y

LOAD PC FROM VECTOR:
IRQ: $1FFA, $1FFB
TIMER: $1FF8, $1FF9
SCI: $1FF6, $1FF7
SPi: $1FF4, $1FF5

4

FETCH NEXT
INSTRUCTION
A
AT RESTORE REGISTERS -
INSTRUCTION FROM STACK >
? CC,A X.PC
EXECUTE
INSTRUCTION
Figure 3-8. Hardware Interrupt Flowchart
3-48 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

B 5367248 0149833 259 WM

TOWARD LOWER ADDRESSES
(LOWEST STACK ADDRESS IS $00C0)

7 i i 0
L} T T T
1 (1 I 1 I CONDITION CODES—l

ACCUMULATOR 1
1 1

1 4

STACK
A

LU R —— T T
INDEX REGISTER —I

1 i

INTERRUPT

RETURN

ol o l 0 l PROG COUNTER HIGH I

I PROGRAM COUNTER LOW | Y

UNSTACK

TOWARD HIGHER ADDRESSES
{(HIGHEST STACK ADDRESS IS $00FF)

NOTE: When an interrupt occurs, CPU registers are saved
on the stack in the order PCL, PCH, X, A, CC. Ona return
from interrupt registers are recovered from the stack in
reverse order.

Figure 3-9. Interrupt Stacking Order

3.4.7.2 EXTERNAL INTERRUPT. |f the interrupt mask (I bit) of the condition code
register has been cleared and the external interrupt pin (IRQ) has gone low,
then the external interrupt is recognized. When the interrupt is recognized,
the current state of the CPU is pushed onto the stack and the | bit is set. This
masks further interrupts until the present one is serviced. The interrupt serv-

ice routine address is specified by the contents of memory location $1FFA
and $1FFB.

The MC68HC705C8 MCU IRQ pin sensitivity is software programmable. Either
negative edge- and level-sensitive triggering or negative edge-sensitive trig-
gering are available. The MC68HC705C8 MCU uses the option register resid-
ing at location $1FDF to control the IRQ pin sensitivity.

3.4.7.3 TIMER INTERRUPT. There are three different interrupt flags that will cause
a timer interrupt whenever they are set and enabled. These three interrupt
flags are found in the three MSBs of the timer status register (TSR, location

$13), and all three will vector to the same interrupt service routine
($1FF8-$1FF9).

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-49

B t367248 0149834 195 M

All interrupt flags have corresponding enable bits (ICIE, OCIE, and TOIE) in
the timer control register (TCR, location $12). Reset clears all enable bits,
thus preventing an interrupt from occurring during the reset time period. The
actual processor interrupt is generated only if the | bit in the condition code
register is also cleared. The general sequence for clearing an interrupt is a
software sequence of accessing the status register while the flag is set, fol-
lowed by a read or write of the associated control register.

3.4.7.4 SERIAL COMMUNICATIONS INTERFACE (SCI) INTERRUPT. An interrupt

in the SCI occurs when one of the interrupt flag bits in the serial commu-
nications status register is set, provided the | bit in the condition code register
is clear and the enable bit in the serial communication control register 2
{location $0F) is enabled. Software in the serial interrupt service routine must
determine the priority and cause of the SCI interrupt by examining the in-
terrupt flags and the status bits located in the serial communications status
register (location $10) The general sequence for clearing an interrupt is a
software sequence of accessing the status register while the flag is set, fol-
lowed by a read or write of the associated control register.

3.4.7.5 SERIAL PERIPHERAL INTERFACE (SPI) INTERRUPT. An interruptin the SPI

occurs when one of the interrupt flag bits in the serial peripheral status
register (location $0B) is set, provided the | bit in the condition code register
is clear and the enable bit in the serial peripheral control register (location
$0A) is enabled. The general sequence for clearing an interrupt is a software
sequence of accessing the status register while the flag is set, followed by
a read or write of the associated control register.

3.5 MICROCONTROLLER INPUT/OUTPUT

3-50

Since inputs to and outputs from the MCU are usually digital {0 to +5 Vdc
at low power), interface logic is often needed to couple the MCU to external
devices. Interface logic can operate in parallel or serial form.

Parallel interfaces allow |/O data transfer eight bits at a time, to parallel ports
on the MCU. Serial interfaces transfer /0 data one bit at a time through a

serial communications interface (SCI) or serial peripheral interface (SPI) that
are parts of the MCU.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

B L3L57248 0149835 021 WM

Data transfers between the MCU and external logic are controlled by the
MCU.

NOTE

Tie all unused inputs and I/O ports to an appropriate logic level,
either VDD or Vss.

3.5.1 Parallel 110

The MC68HC705C8 MCU contains 31 general-purpose parallel /O pins ar-
ranged in four ports. Ports A, B, and C are 8-bit ports in which the direction
of each pin is programmable by software-accessible registers. Each 8-bit port
has an associated 8-bit data direction register (DDR) as shown in Figures
3-10, 3-11, and 3-12.

Bt7 6 5 4 3 2 1 B0
{ 0DRA7 [DDRAG | DDRAS | DDRA4][DDRA3 [DDRA2 [DDRAT [DDRAO] $04 DDRA
1 1 | i | |

[o 0 0 0 0 0 c‘: tlj | aﬁﬁ%%r))mw
S T R N T
[T T T T T 1T 1 %00 PORTA

]
[PORT OUTPUT REGISTER STATES NOT CHANGED 8Y RESET j RESET CONDITION

A A

PA7 PA6 PAS PA4 PA3 PA2 PA1 PAO PN NAMES (REF.)

Figure 3-10. Port A and Data Direction A Registers

Bt7 6 5 4 3 2 1 Bt0
[oora7 [ooree [oores [oore4][oores [oore2 [ooret Jooreo] $05 DDRB
1] 1 [} 1 1

[o 0 0 0 0 0 0 o] aﬁe&ggTNS[))mON
'S N S S N I
] | [0 [T T]so1 PORTB

1 |] ! | | 1

L PORT QUTPUT REGISTER STATES NOT CHANGED BY RESET RESET CONDITION

A

PB7 PB6 PBS PB4 P83 PB2 PB1 PBO PIN NAMES (REF.)

Figure 3-11. Port B and Data Direction B Registers

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-61

B L367248 014983L Ths WN

Bt7 6 5 4 3 2 1 Bit0
[oore7 T obrcs | bbRes] oorcs J] oorcs [oorc2 [poret Jooreo] $06 DDRC
i] 1 1]]]]

B R Bl
] | 1 1l 1 | |] $02 PORTC

| PORT QUTPUT REGISTER STATES NOT CHANGED BY RESET RESET CONDITION

A A A

PC7 PC6 PCS PC4 PC3 PC2 PC1 PCO PIN NAMES (REF)

Figure 3-12. Port C and Data Direction C Registers

Any port A, B, or C pin is configured as an output if its corresponding DDR
bit is set to a logic one. A pin is configured as an input if its corresponding
DDR bit is cleared to a logic zero. At power-on or reset, all DDRs are cleared,
which configure all port A, B, and C pins as inputs. The DDRs are capable of
being written to or being read by the processor. Refer to Figure 3-13 and
Table 3-7. When a port pin is configured as an output, a read of the data
register actually reads the value of the output data latch and not the IO pin.

DATA DIRECTION
2 <> " REGISTER

« BIT

W

F

H LATCHED 1o
gx ¢ ——I»| OUTPUTDATA 4 U] PIN
3 BIT

=0

(&)

uw

Ed

Q

(&)

‘ 13
A

[1] - Output Buffer, enables latched output to drive pin when DDR bit is 1 (output)
[2] - Input Buffer, enabled when DOR bit is 0 (Input).
[3] - iInput Buffer, enabled when DDR bit is 1 (Output).

Figure 3-13. Parallel Port 1/O Circuitry

3-52 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

B L3L724d8 0149837 9Ty W

Table 3-7. /O Pin Functions

RW* DDR 1O Pin Function
0 0 The I:0 pin is in input mode. Data is written into the output data latch.
] 1 Data is written into the output data latch and output to the 1.Q pin.
1 0 The state of the | O pin is read.
1 1 The 'O pin is in output mode. The output data latch is read.

*RW is an internal signal.

3.5.2 Serial 110

Port D (see Figure 3-14) is a 7-bit fixed-direction input port. The SPl and SCI
systems take control of port D pins when these systems are enabled. During
power-on reset or external reset, all seven pins (PD5-PDOQ, PD7) are config-
ured as input ports because all special-function output drivers are disabled.
For example, with the SCI system enabled (RE =TE = 1), PDO and PD1 inputs
will read zero. With the SPI system disabled (SPE = 0), PD5-PD2 will read the
state of the pin at the time of the read operation.

The SCI function uses two of the pins (PD1-PDO) for its receive data input
(RDI) and transmit data output (TDO); the SPI function uses four of the pins
(PD5-PD2) for its serial data input/output (MISO, MOSI), system clock (SCK),
and slave select (SS), respectively.

L1] 1 |] | I] $03 PORTD

L R A S A

PD7 not 5 PD4 PD3 PD2 PD1 PDO
used P'S% SCK MOSI MISO TDO RDI PIN NAMES (REF)

(I B D A

N B
SPi sct

ALTERNATE USE (REF.)

Figure 3-14. Port D Fixed Input Port

3.6 SERIAL COMMUNICATIONS INTERFACE (SCl)

SCl is one of two independent serial /0 subsystems in the MC68HC705CS.
The other serial I/0 system (called SPI) provides for high-speed synchronous
serial communication to peripherals or other MCUs. The SCl is a full-duplex
UART-type asynchronous system that can be used for communication be-
tween the MCU and a CRT terminal or a personal computer, or several widely

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-53

M L3k72ud8 D1u9A838 430 W

3.6.1

3-54

distributed MCUs can use their SCI subsystems to form a serial communi-
cations network.

The SCI uses standard nonreturn-to-zero (NRZ) format (one start bit, eight
or nine data bits, and a stop bit). The most common data format is eight bits.
An on-chip baud rate generator derives standard baud rate frequencies from
the MCU oscillator. The SCI transmitter and receiver are functionally inde-
pendent but use the same data format and baud rate. In this applications
guide, “baud rate” and "bit rate’’ are used synonymously.

SCl Features:

Two-Wire Serial Interface

Standard NRZ {(mark/space) Format

Full-Duplex Operation (independent transmit and receive)
Software Programmable for One of 32 Different Baud Rates
Software-Selectable Word Length (8- or 9-bit words)
Separate Transmitter and Receiver Enable Bits
Communication may be Interrupt Driven

Receiver:
e Receiver Data Register Full Flag
e Error Detect Flags — Framing, Noise, Overrun
® |dle-Line Detect Flag
® Receiver Wakeup Function (idle or address bit)

Transmitter:
e Transmit Data Register Empty Flag
e Transmit Complete Flag (for modem control)
® Break Send

SCI Transmitter

The SCI transmitter block diagram is shown in Figure 3-15. The heart of the
transmitter is the transmit serial shift register near the top of the figure.
Usually, this shift register obtains its data from the write-only transmit buffer.
Data is transferred into the transmit buffer when software writes to the SCi
data register (SCDAT). Whenever data is transferred into the shifter from the
transmit buffer, a zero is loaded into the LSB of the shifter to act as start bit,
and a logic one is loaded into the last bit position to act as a stop bit. In the
case of a preamble, the shifter is loaded with all ones, including the bit
position usually holding the logic zero start bit. A preamble is loaded each
time the transmit enable bit is written from zero to one. In the case of a send

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

B L3L7248 0149839 777 WA

X RITE-ONL
BAUD RATE l SCDAT Tx BUFFER |(_JW___V)“

CLOCK
\
10 (11) - BIT Tx SHIFT REGISTER
> IHl(B]I? 654 3 2 1 OIL}-->— > | FINBUFFER
3
3 W Y
3 &y ul 21 8 L
& 2| =
2 5| 2 K \
8l % 3
5 Z| &
z £
— FORCE PIN DIRECTION (OUT)
TRANSMITTER
CONTROL LOGIC >
A YY
w w &
2le ,=§|,“ Ble|a|d]s|s | |
I SCCR1 SCI CONTROL 1 I LSCSH INTERRUPT STATUS I
¥ {
N
TDRE
—L TIE
T1C
[TCIE
:|, Eﬁ%lﬁl&&%é
I SCCR2 SCI CONTROL 2 }(—)—\
A
A A v
SCI Rx SCI INTERRUPT INTERNAL
REQUESTS REQUEST DATABUS
Figure 3-15. SCI Transmitter Block Diagram
MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-55

B L367248 0L49440 499 W

break command, the shifter is loaded with all zeros, including the last bit
position usually holding the logic one stop bit.

The T8 bit in SCI control register 1 (SCCR1) acts like an extra high-order bit
{ninth bit) of the transmit buffer register. This ninth bit is only used if the M
bit in SCCR1 is set, selecting the 9-bit data character format. The M bit also
controls the length of idle and break characters.

The status flag and interrupt generation logic are shown in Figure 3-15. The
transmit data register empty (TDRE) and transmit complete (TC) status flags
in the SCI status register (SCSR) are automatically set by the transmitter
logic. These two bits can be read at any time by software. The transmit
interrupt enable (TIE) and transmit complete interrupt enable (TCIE) control
bits enable the TDRE and TC flags, respectively, to generate SCI interrupt
requests.

3.6.2 SCI Receiver

3-56

The receiver block diagram is shown in Figure 3-16. SCI received data comes
in on the RDI pin, is buffered, and drives the data recovery block. The data
recovery block is actually a high-speed shifter operating at 16 times the bit
rate; the main receive serial shifter operates at one times the bit rate. This
higher speed sample rate allows the start-bit leading edge to be located more
accurately than a 1x clock would allow. The high-speed clock also allows
several samples to be taken within a bit time so logic can make an intelligent
decision about the logic sense of a bit (even in the presence of noise). The
data recovery block provides the bit level to the main receiver shift register
and also provides a noise flag status indication.

The heart of the receiver is the receive serial shift register. This register is
enabled by the receive enable (RE) bit in the SCI control register 2 (SCCR2).
The M bit from the SCCR1 register determines whether the shifter wiil be 10
or 11 bits. After detecting the stop bit of a character, the received data is
transferred from the shifter to the SCDAT, and the receive data register full
(RDRF) status flag is set. When a character is ready to be transferred to the
receive buffer but the previous character has not yet been read, an overrun
condition occurs. In the overrun condition, data is not transferred, and the
overrun (OR) status flag is set to indicate the error.

There are three receiver-related interrupt sources in the SCI. These flags can
be polled by software or, when enabled, cause an SCl interrupt request. The
receive interrupt enable (RIE) control bit enables the RDRF and OR status

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

B L3b7244 0149841 325

16X
BAUD RATE
CLOCK

+—>{=e]
Y

P00 DATA
PIN BUFFER > RECOVERY

10 {11) - BIT
Rx SHIFT REGISTER

I(s)|7554321oll

START

Y

l sTOP

4 Y MsB ALL ONES
AA
Y Y
M
o) wakewp [
1 LOGIC “ RWU
Y A YYY
w w l& w
&a' =5, 58‘25%%& 1 |
I SCCR1 SCI CONTROL 1 | SCSR INTERRUPT STATUS | SCDAT RxBUFFER
{ VYV { ¥ (READ-ONLY)
N
RADRF
IDLE
ILE
OR
RIE
w =2
%é%ﬁq&éﬂ
I SCCR2 SCI CONTROL 2](—)—\
A
Y
SCI Tx SCI INTERRUPT INTERNAL
REQUESTS REQUEST DATA BUS
Figure 3-16. SCI Receiver Block Diagram
MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-57

B L367248 0Lu498u2 26l N

flags to generate hardware interrupt requests. The idle line interrupt enable
(ILIE) control bit allows the IDLE status flag to generate interrupt requests.

3.6.3 Registers

The SCI system includes five registers (BAUD, SCCR1, SCCR2, SCSR, and
SCDAT) and two external pins (TDO and RDI). When the SCI receiver and/or
transmitter is enabled, the SCI logic takes control of the pin buffers for the
associated port D pin(s). When the SCl is disabled, the TDO and RD! pins act
as general-purpose inputs.

The main function of each of these registers will be discussed. Normally, the
SCCR1, SCCR2, and BAUD registers would be written once to initialize and
then not used again. An example of the software/programming procedure is
shown later in this section.

3.6.3.1 BAUD RATE REGISTER (BAUD). The BAUD register (see Figure 3-17) is

3-58

used to select the baud rate for the SCI system. Both the transmitter and
receiver use the same data format and baud rate, which is derived from the
MCU bus rate clock. The SCP1-SCP0 bits function as a prescaler for the
SCR2-SCRO bits. Together, these five bits provide multiple baud rate com-
binations for a given crystal frequency.

The diagram shown in Figure 3-18 and Tables 3-8 and 3-9 illustrate the divider
chain used to obtain the baud rate clock (transmit clock). For example, using
a 4-MHz crystal, the internal processor clock is 2 MHz.

Bit7 6 5 4 3 2 1 BtO
[T - Tscpi[sceo I -] scre] scri] scro]| $0D BAUD
[] | [[] | I

[SCI RATE SELECT
DIVIDE PRESCALER OUTPUT
BY1,2,4,8,.128
SCI PRESCALER RATE SELECT

DIVIDE INTERNAL PROCESSOR CLOCK
BY1,3,4,0r13

[o 0 0 0 0 0 0 0 | RESET CONDITION

Figure 3-17. Baud Rate Register

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

B L3L72u8 0L49843 178 W

CRYSTAL

FREQUENCY ﬁ

FIXED
+2

INTERNAL
@——— > PROCESSOR

CLOCK

SCP1 - SCPO
PRESCALER
CONTROL
+N

p——o—o—e3» PRESCALER QUTPUT
(Frequency is 16 times
the values in Table 3-4)

SCR2 - SCRO
SCI SELECT
RATE CONTROL
+M
RECEIVER CLOCK
{} 6X BAUD R,?(T;E)
ue! is 16 times
FIXED ih values i Table 35)
+16
l———> TRANSMITTER CLOCK

(1X BAUD RATE)

Figure 3-18. Rate Generator Division

Table 3-8. Prescaler Baud Rate Frequency Output

SCP Bit Clock* Crystal Frequency MHz

1 0 | Divided By | 4194304 4.0 2.4576 2.0 1.8432
0 0 1 131.072 kHz | 125.000 kHz | 76.80 kHz | 62.60 kHz | 57.60 kHz
0 1 3 43.691 kHz | 41.666 kHz | 25.60 kHz | 20.833 kHz | 19.20 kHz
1 0 4 32768 kHz | 31.250 kHz | 19.20 kHz | 15.625 kHz | 14.40 kHz
1 1 13 10.082 kHz 9600 Hz 5.907 kHz 4800 Hz 4430 Hz

*The clock in the “Clock Divided By” column is the internal processor clock.

NOTE: The divided frequencies shown in Table 3-8 represent baud rates which are the highest transmit
baud rate (Tx) that can be obtained by a specific crystal frequency and only using the prescaler
division. Lower baud rates may be obtained by providing a further division using the SCl rate
select bits shown below for same representative prescaler outputs.,

The SCP1-SCPO bits in the baud rate register set the division factor (N in

Figure 3-18) for the baud rate divider. Reset clears these bits, setting the
prescaler to divide-by-one.

The SCR2, SCR1, and SCRO bits are used to set the division factor (M in Figure
3-18) for the baud rate divider. Reset does not affect these bits.

Example:

From Table 3-8, find the crystal frequency used (in this case, 4 MHz). Next,
find 9600 or a binary multiple of 9600. In this example, you would select

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-59

B L3L7248 014984y D34 NN

Table 3-9. Transmit Baud Rate Output

SCR Bits Divided Representative Highest Prescaler Baud Rate Output

2{1]|o By 131.072 kHz | 32.768 kHz 76.80 kHz 19.20 kHz 9600 Hz
ojojo 1 131.072 kHz | 32.768 kHz 76.80 kHz 19.20 kHz 9600 Hz
0jo0]1 2 65.536 kHz | 16.384 kHz 38.40 kHz 9600 Hz 4800 Hz
ofj1}o 4 32.768 kHz 8.192 kHz 19.20 kHz 4800 Hz 2400 Hz
of1]1 8 16.384 kHz 4.096 kHz 9600 Hz 2400 Hz 1200 Hz
1{0{0 16 8.192 kHz 2.048 kHz 4800 Hz 1200 Hz 600 Hz
11011 32 4.096 kHz 1.024 kHz 2400 Hz 600 Hz 300 Hz
11110 64 2.048 kHz 512 Hz 1200 Hz 300 Hz 150 Hz
1111 128 1.024 kHz 256 Hz 600 Hz 150 Hz 75 Hz

NOTE: Table 3-9 illustrates how the SClI select bits can be used to provide lower transmitter baud rate
by further dividing the prescaler output frequency. The five examples are only representative
samples. In all cases, the baud rates shown are transmit baud rates {transmit clock), and the
receive clock is 16 times higher in frequency than the actual baud rate.

the bottom row which corresponds to SCP1:SCP0 = 1:1 (divide-by-thirteen).
Next, find the column in Table 3-5 that corresponds to 9600 Hz. Find the
desired baud rate in this column. In this example, you would select the top
row, which corresponds to SCR2:SCR1:SCR0=0:0:0 (divide-by-one).

3.6.3.2 SERIAL COMMUNICATIONS CONTROL REGISTER ONE (SCCR1). The se-
rial communications control register one (SCCR1) shown in Figure 3-19 in-
cludes three bits associated with the optional 9-bit data format. The WAKE
bit is used to select one of two methods of receiver wakeup. Normal setup
for bit M is 0 for 8-bit words. The other register bits are not used in most
systems. In a typical system, this register would be written to $00 during

initialization.
B17 6 5 4 3 2 1 Bit0
| re | 18] - | M Jfwwe[- | - T -] $0E SCCR1
I [[[| i [|
{ o 0 - 0 0 - - - | RESET CoNDITION
|—WAKEUP METHOD SELECT
0- IDLE LINE 1-ADDRESS MARK
SELECT SCI DATA LENGTH
0-8 BITS 1-9BITS
NINTH TRANSMIT BIT (IF M=1}
NINTH RECEIVE BIT (IF M«1)

Figure 3-19. Serial Communications Control Register One

3-60 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

I L3L57248 0149845 T70 W

3.6.3.3 SERIAL COMMUNICATIONS CONTROL REGISTER TWO (SCCR2). The se-
rial communications control register two (SCCR2) shown in Figure 3-20 is
the main control register for the SCI subsystem. This register can enable/
disable the transmitter or receiver, enable the system interrupts, and provide
the wakeup enable bit and a “send break code” bit. The TIE, TCIE, RIE, and
ILIE bits are local interrupt enable controls, which determine whether SCI
status flags will be polled or generate hardware interrupt requests.

Bit7 6 5 4 3 2 1 Bito

[ne | voe | me | we || ve | rRe | rRwu | sBk | $0F SCCR2
i | { | | |

[o 0 0 0 0 0 | RESET CONDITION

| |
0 0
L |*SEND BREAK

RECEIVER WAKEUP FUNCTION
ENABLE SCI RECEIVER
ENABLE SCI TRANSMITTER
IDLE LINE INTERRUPT ENABLE
RECEIVER INTERRUPT ENABLE
'— TRANSMISSION COMPLETE INTERRUPT ENABLE
L TRANSMITTER INTERRUPT ENABLE

Figure 3-20. Serial Communications Control Register Two

In a typical system:
TE and RE would be written to one to enable the transmitter and receiver
subsystems.
ILIE, RWU, and SBK would seldom be used and would be written to zero.

If interrupts were not being used, TIE, TCIE, and RIE would be written to
zero. If interrupts were used, these three bits would be written to one.

For example, in a system which does not use interrupts, SCCR2 would be
loaded with $0C during initialization.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-61

B L3L7248 014984k 907 A

3.6.3.4 SERIAL COMMUNICATIONS STATUS REGISTER (SCSR). The SCI status
register (SCSRY) in Figure 3-21 contains two transmitter status flags and five
receiver related status flags. The TDRE and RDRF bits are always used. The
TC and IDLE bits are not commonly used.

Bt7 6 5 4 3 2 1 Bro
| tore | t¢ | rorF | ioE] ORlNFIFE[| $10 SCSR
[I [| | [
[1 1 0 | RESET CONDITION
L I—FRAMING ERROR
NOISE FLAG
OVERRUN
IDLE LINE DETECT
RECEIVE DATA REGISTER FULL
TRANSMISSION COMPLETE
L TRANSMIT DATA REGISTER EMPTY

Figure 3-21. Serial Comunications Status Register

The OR, NF, and FE bits should be monitored and may or may not be used,
depending on the type of SCI system. For errors to be corrected, both the
transmitting and receiving device must have a common method of handling
errors.

There are two major types of communication links associated with the SCI.
An example of a direct connection would be an MCU connected to a personal
computer. In this direct connection link OR, NF, and FE errors are very unlikely
and are typically ignored. The second type of link involves two remote devices
where each is connected to a modem. In this type of link, errors are more
likely and both computers would typically use a protocol that permits re-
transmission when an error is detected.

3-62 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

M L367248 0149847 843 A

3.6.3.5 SERIAL COMMUNICATIONS DATA REGISTER (SCDAT). The SCI SCDAT
data register (see Figure 3-22) has two functions: it is the transmit data
register when written to and the receive data register when read. Both the
transmitter and receiver are double buffered (see Figure 3-23), so back-to-
back characters can be handled easily even if the CPU is delayed in respond-
ing to the completion of an individual character.

Bi7 6 5 4 3 2 1 Bito

L1 1 1 W T § J]811 SCDAT

Figure 3-22. Serial Communications Data Register

PARALLEL DATA
FROM CPU DATABUS TDRE flag set each time new data is
transferred from the TDR bufter to the

i l ¢ i l i i i Transmit serial shit register.

TDR BUFFER SERIAL DATA OUT

K 1‘ ‘ T;:Nirr‘smr‘!m¢ e |—>.
A

A

sTOP START
BT BT
JRANSMITTER
SERWALDATAN_ STOP START

EY
% 1] RECEIVE SHFTER |o]

RDRF flag set each time new data is V Y ¢ A ¢ A ¢ V
transferred from the serial shift register RDR BUFFER
to the RDR buffer. ¢¢¢¢¢¢¢¢
PARALLEL DATA
TO CPU DATABUS
RECEIVER

Figure 3-23. Double Buffering

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-63

B L3L7244 0L49848 78T W

3.6.4 Data Formats

3-64

The standard NRZ data formats used for communications are shown in Figure
3-24. The upper portion of this figure shows the normal 8-bit data format;
the lower portion of the figure shows the 9-bit data format. The 9-bit data
format is selected by setting the M control bit in SCCR1 to 1.
The basic characteristics of the NRZ format are as follows:

1) A high level indicates a logic one and a low level, a logic zero.

2) The idle line is high prior to message transmission/reception.

3) A start bit (logic zero) is transmitted/received as the first bit of data in
a character.

4) Data is transmitted/received LSB first.
5) The last bit in a character (bit 10 or 11) is a high (stop bit).

6) A break is a low (logic zero) for 10 or 11 bit times.

A A

ST
BT BT _Next
START BIT
0 1 2 3 4 5 & 7 &8
LI T I T T T T T TeT 1 [
START STOP
NEXT
Bt BT startarr
[1] - Control bit “M" selects optional ninth data bit.
Figure 3-24. Data Formats
M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

B L367248 0149849 blb I

3.6.5 Hardware Procedures

Some simple hardware setup is required. A universal standard RS232 cable
is used to interconnect the SCI to a CRT terminal or the PC. The user would
usually have to provide an external level shifter buffer (MC145406) to convert

the RS232 (typically £12 volts) to the 0-5 volt logic levels used by the
MC68HC705C8.

3.6.6 Software Procedures

The following paragraphs and flowcharts discuss software procedures. These
flowcharts illustrate how straightforward normal SCI operations are.

3.6.6.1 INITIALIZATION PROCEDURE. The following list reflects the initialization
procedure.

1) Write to BAUD register (SCP1-SCP0, SCR2-SCR0) to set baud rate.

2) Write to SCCR1 (R8, T8, M, WAKE) to set character length and choose
wakeup method.

3) Write to SCCR2 (TIE, TCIE, RIE, ILIE, TE, RE, RWU, SBK) to enable desired
interrupt sources. To turn on the transmitter and receiver, RWU and
SBK would be written to zero during initialization.

The following is a reference list of interrupt enable control bits versus the
interrupt source(s) they enable:

Enable Flags Interrupt Source Names
TIE TDRE Transmit data register empty
TCIE TC Transmit complete
RIE RDRF, OR Receive data register full, overrun
ILIE IDLE Idle line detect
MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-65

B L3L7248 0lu9850 334 M

3.6.6.2 NORMAL TRANSMIT OPERATION. Refer to Figure 3-25, a flowchart of the
normal transmit operation.

FLOWCHART MNEMONIC PROGRAM
START
(susmoorne)
Y > SENDATA BRCLR 7, SCSR, SENDATA
No TORE = 1
2
YES)
WRITEDATA —— STA SCDAT

RETURN FROM
SUBROUTINE ———— RTS

Figure 3-25. SCI Normal Transmit Operation Flowchart

3.6.6.3 NORMAL RECEIVE OPERATION. Refer to Figure 3-26, a flowchart of the
normal receive operation.

FLOWCHART MNEMONIC PROGRAM

ST,
SUBROUTINE

1‘{5'
/

> GETDATA BRCLR 5, SCSR, GETDATA

RDRF =1
?

YES

READ DATA
FROMSCDAT —— LDA SCDAT

RETURN FROM
SUBROUTINE ————— RIS

Figure 3-26. SCI Normal Receive Operation Flowchart

3-66 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

M L3b7248 0L49851 274 Wl

3.6.7 SCI Application Example

Figure 3-27 is an example software program for communication between the
SCI of the MCU and a dumb terminal. The MCU will receive (read) an ASCII
character that was sent by the dumb terminal. The MCU will then translate

the 8-bit binary character representing the ASCII character into two ASCII
characters.

When this translation is completed, the MCU will transmit a <CR>>, line feed,
a $ sign and the two characters that represent the original hexadecimal
equivalent of the received character back to the terminal. The program then
waits for another character.

In practice, the following would occur:
You type a number/character on the keyboard. It goes from the terminal
to the MCU over the SCI receiver. Use the example of the letter “A”.
The program translates “A” to “4” and 1", then sends CR, line feed, §$, 4,
and 1, to the SCI transmitter.

When the transmission is complete, the program goes back to the top for
another keyboard number/character to be sent over the SCl receiver.

Table 3-10 is a chart of the ASCIl-hexadecimal code conversion.

Table 3-10. ASCIl-Hexadecimal Code Conversion

ASCI CHARACTER SET (7-BIT CODE)
Ms
Dig. | o 1 2 3 4 5 8 7
LS
Dig.
0 NUL DLE SP 0 (@ P ’ p
1 SOH DC1 ! 1 A Q a q
2 STX DC2 . 2 B R b r
3 ETX DC3 # 3 C S c s
4 EOT DC4 $ 4 D T d t
5 ENQ | NAK % 5 E U e u
6 ACK | SYN & 6 F v f v
7 BEL ET8 ' 7 G w [¢] w
8 BS CAN (8 H X h X
9 HT | EM) 9 | 1 N i y
A LF SUB * : J r4 j z
B vT ESC + ; K [k {
c FF FS ‘ < L v | |
D CR | @S = M] m }
E SO RS . > N A n ~
F St us / / 0 — [¢] DEL
MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-67

B bL3k7248 0149852 100 WA

KEEEA IR AAK KKK AN KKK K AR AR AR KA AR AT AKX A R R K

* Simple 68HC05 SCI Program Example *
KhkkkhkhkkhhkhhAhhkkhkhkkhhktrhkhkkrhkhhkhhkkdkdkhkkhkkkkkx

000d BRATE EQU $0D -,-,SCP1,SCP0; -, SCR2, SCR1, SCRO
000e SCCR1 EQU SOE R8,T8,-,M;WAKE, -, -, -

000f SCCR2 EQU S$OF TIE, TCIE,RIE,ILIE; TE, RE, RWU, SBK
0011 SCDAT EQU $11 Read - RDR; Write - TDR

0010 SCSR EQU $10 TDRE, TC, RDRF, IDLE; OR, NF, FE, -
00a0 TEMP EQU SAQ One byte temp storage location
00al TEMPHI EQU $Al Upper byte changed to ASCII
00a2 TEMPLO EQU 5a2 Lower byte changed to ASCII
0500 ORG $500 Program will start at $0500
0500 a6 30 INITIAL LDA #%00110000 Begin initialization

0502 b7 0d STA BRATE Baud rate to 4800 @2MHz Xtal
0504 a6 00 LDA #%00000000 Set up SCCR1

0506 b7 Qe STA SCCR1 Store in SCCR1 register
0508 a6 Oc LDA #%00001100 Set up SCCR2

050a b7 0f STA SCCR2 Store in SCCRZ2 register
050c cd 05 43 START JSR GETDATA Checks for receive data

050f b7 a0 STA TEMP Store received ASCII data in temp
0511 a4 0Of AND #50F Convert LSB of ASCII char to hex
0513 aa 30 ORA #530 $3(LSB) = "LSB"

0515 al 39 CMP #$39 3A-3F need to change to 41-46
0517 23 02 BLS ARN1 Branch if 30-39 OK

05192 ab 07 ADD #7 Add offset

051b b7 a2 ARN1 STA TEMPLO Store LSB of hex in TEMPLO
0514 b6 al LDA TEMP Read the original ASCII data
051f 44 LSRA Shift right 4 bits

0520 44 LSRA

0521 44 LSRA

0522 44 LSRA

0523 aa 30 ORA #3530 ASCII for N is $3N (N=0-9)
0525 al 39 CMP #539 3A-3F need to change to 41-46
0527 23 02 BLS ARN2 Branch if 30-39

0529 ab 07 ADD #7 Add offset

052b b7 al ARN2 STA TEMPHI MS nibble of hex to TEMPHI
052d a6 0d LDA #$0D Load hex value for "<CR>"

052f ad 18 BSR SENDATA Carriage return

0531 a6 0a LDA #50a Load hex value for "<LF>"

0533 ad 14 BSR SENDATA Line feed

0535 a6 24 LDA #'$ Load hex value for "“§"

0537 ad 10 BSR SENDATA Print dollar sign

0539 b6 al LDA TEMPHI Get high half of hex value
053b ad 0Oc BSR SENDATA Print

053d b6 a2 LDA TEMPLO Get low half of hex value

053f ad 08 BSR SENDATA Print

0541 20 c9 BRA START Branch back to start

Figure 3-27. SCI Application Example Program (Sheet 1 of 2)

3-68 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

B L3L7248 0Lu9853 047

**x* Get an SCI character, return w/ it in A
0543 0b 10 fd GETDATA BRCLR 5,SCSR,GETDATA RDRF = 1 ?
0546 b6 11 LDA SCDAT OK, get

0548 81 RTS ** Return from GETDATA **

**x Send an SCI character, call sub w/ it in A
0549 0f 10 fd SENDATA BRCLR 7,SCSR,SENDATA TDRE = 1 ?
054¢c b7 11 STA SCDAT OK, send
054e 81 RTS ** Return from SENDATA **

Figure 3-27. SCI Application Example Program (Sheet 2 of 2)

3.7 SYNCHRONOUS SERIAL PERIPHERAL INTERFACE (SPI)

The SPi subsystem inciuded in the MC68HC705C8 allows the MCU to com-
municate with peripheral devices. Peripheral devices can be as simple as an
ordinary TTL shift register or as complex as a complete subsystem such as
an LCD display driver or an A/D converter subsystem. The SPI system is
flexible enough to interface directly with numerous standard product pe-
ripherals from several manufacturers.

SPl is an added feature for those applications that require more inputs and
outputs than there are paralle! /O pins on the MCU. SPI offers a very easy
way to expand the /O function while using a minimum number of MCU pins.
The SPI block diagram is shown in Figure 3-28.

SPI features are as foliows:

Full-Duplex, Three-Wire Synchronous Transfers
Master or Slave Operation

1.05 MHz (maximum) Master Bit Frequency

2.1 MHz (maximum) Slave Bit Frequency

Four Programmable Master Bit Rates
Programmable Clock Polarity and Phase

End of Transmission Interrupt Flag
Write-Collision Flag Protection

An SPI subsystem can operate under software control in either complex or
simple system configurations:

® One Master MCU and Several Slave MCUs

® Several MCUs Interconnected in a Multimaster System

® One Master MCU and One or More Slave Peripherals

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-69

M L3L7248 0L49854 T4A3 mm

INTERNAL PROCESSOR o >ls
CLOCK
i M
DIVIDER MSB LSB M
- - (&
42 44 +16 +32 8-BIT SHIFT REGISTER |€ s 8
READ DATA BUFFER S
o
&
A A §
' CLOCK 8
SELECT SPI CLOCK (MASTER} > o s & —
Y LOGIC > M PD4
hod K=
[73 K72] [
\
AR s
MSTR
-SPI CONTROL <
-
E wlul El3|Ez|g
58 § A B E
AN TN |

| SPI STATUS REGISTER | L SPI CONTROL REGISTER]

> \,——<—>-—'

A
Y Y

SPI INTERRUPT INTERNAL
REQUEST DATA BUS

Figure 3-28. SPI Block Diagram

3-70 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

B bL367248 0149855 91T WE

3.7.1

The majority of all applications use one MCU device as the master. This
master initiates and controls the transfer of data to/from one or more slave
peripheral devices that receive/supply the data being transferred. Slaves can
read data from or transfer data to the master only after the master instructs
an action to occur. This system configuration will be discussed in this ap-
plications guide.

Data Movement

There is no need to specify the direction of data movement for each transfer
because the master simultaneously transmits and receives serial data on
separate pins every transfer. When an SPI transfer occurs, an 8-bit character
is shifted out on one data pin while a different 8-bit character is simultane-
ously shifted in on a second data pin (see Figure 3-29). Another way to think
of this is that an 8-bit shift register in the master and another in the slave
are connected as a circular 16-bit shift register. When a transfer occurs, this
distributed shift register is shifted eight bit positions so the characters in the
master and slave are effectively exchanged.

Many simple slave devices are designed to only receive data from a master
or only supply data to a master. For example, a serial-to-parallel shift register
can act as an 8-bit output port. An MCU configured as a master SPI device
would initiate a transfer to send an 8-bit data value to the shift register. Since
the shift register does not send any data to the master, the master would
simply ignore whatever it received as a result of that transmission.

MOSI

Y

Y

SPi SHIFT REGISTER SPI SHIFT REGISTER

MSO
<

< L—>§ <
RECEIVE BUFFER RECEIVE BUFFER

sk |
MCSBHCT05C8 MCSBHC705C8
MASTER DEVICE SLAVE DEVICE

A
A

A

Y

Figure 3-29. Shift Register Operation

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3N

B bL3L72486 O0l4985L 856 W

3.7.2 Functional Description

Four I/0 pins located at port D are associated with SP| data transfers. They
are the serial clock (SCK-PD4), the master in/slave out (MISO-PD2) data line,
the master out/slave in (MOSI-PD3) data line, and the active-low slave select
(SS-PD5). When the SPI system is not utilized, the four pins (SS, SCK, MISO,
and MOSI) are configured as general-purpose inputs (PD5, PD4, PD3, and
PD2).

In a master configuration, the master start logic receives an input from the
CPU (in the form of a write to the SPI data register) and originates the serial
clock (SCK) based on the internal processor clock. This clock is also used
internally to control the state controller as well as the 8-bit shift register. Data
is parallel loaded into the 8-bit shift register (during the CPU write to SPDR)
and then shifted out serially to the MOSI pin for application to the serial input
line of the slave device(s). At the same time, data is applied serially from a
slave device through the MISO pin to the 8-bit shift register. After the eighth
shift in a transfer, data is parallel transferred to the read buffer where it is
available to the internal data bus during a CPU read cycle. The SPIF status
flag is used by the master and slave devices to indicate when a transfer is
complete.

3.7.3 Pin Descriptions

The four I/0 pins are discussed in the following paragraphs.

3.7.3.1 SERIAL DATA PINS (MISO, MOSI). The master-in slave-out (MISO) and

3-72

master-out slave-in (MOSI) data pins are used for transmitting and receiving
data serially: MSB first, LSB last. When the SPI is configured as a master,
MISO is the master data input line and MOSI is the master data output line.
In the master device, the MSTR control bit (bit 4 of the serial peripheral control
register) is set to a logic one (by the program) to allow the master device to
output data on its MOSI pin. When the SPI is configured as a slave, these
pins reverse roles; MISO becomes the slave data output line and MOSI be-
comes the slave data input line.

The timing diagram of Figure 3-30 shows the relationship between data and
clock (SCK). As shown in Figure 3-30, four possible timing relationships may
be chosen by using control bits CPOL and CPHA. Setting CPOL is equivalent
to putting an inverter in series with the clock signal. CPHA selects one of two
fundamentally different clocking protocols to allow the SPI system to com-
municate with virtually any synchronous serial peripheral device.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

B L3L7248 0149857 792 M

[O R S S T S T S S B T B S
SCK (CPOL = 0) I l

SCK (CPOL=1) . | . . . ' \
SS(SLAVES)_\“.?‘E\Eliliuii/_
EMPLEINPUT—»‘—l—* ’ W l * ‘ * \ * l V ’ * l
oATA QUTPLY 7 X X816 X Bis X B (Era (B2 X

I 1

SAMPLEINPUT—>|-K l*‘*‘*‘%'¢l*‘*\ I
oy — e EEXEEXEXD—

Figure 3-30. Data/Clock Timing Diagram

3.7.3.2 SERIAL CLOCK (SCK). SCK is used to synchronize the movement of data
both in and out of the device through the MOSI and MISO pins. The SCK pin
is an output when the SPI is configured as a master and an input when the
SPl is configured as a slave.

When the SPI is configured as a master, the SCK signal is derived from the
internal MCU bus clock. When the master initiates a transfer, eight clock
cycles are automatically generated on the SCK pin. In both the master and
slave SPI devices, data is shifted on one edge of the SCK signal and sampled
on the opposite edge, where data is stable. Two bits (SPR0 and SPR1) in the
SPCR (location $0A) of the master device select the clock rate. Both master
and slave devices must be programmed to similar timing modes for proper
data transfers, as controlled by the CPOL and CPHA bits in the SPCR.

3.7.3.3 SLAVE SELECT (SS). The SS pin behaves differently on master devices
than on slave devices. On a slave, this pin is used to enable the SPI slave
for a transfer. On a master, the SS pin is normally pulied high externally.

3.7.4 Registers

Three registers in the SPI provide control, status, and data storage functions.
These registers include the serial peripheral control register (location $0A),
serial peripheral status register (location $0B), and serial peripheral data I/O
register (location $0C).

MOTOROLA M&8HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-73

B L3b7248 0149858 LE29 W

3.7.4.1 SERIAL PERIPHERAL CONTROL REGISTER (SPCR). In most systems, this

3-74

register (Figure 3-31) is written only once shortly after reset to initialize the
SPI system.

Bit7 6 5 4 3 2 1 Bit0

{ spE | spE | | msTR || cPoL | crHa | sPr1 | spro | $0A SPCR
[I ! [! I [[
[0 - 0 0 0 0 0 | RESET CONDITION

| |
\—t/SPI MASTER BIT RATE

CLOCK PHASE (BASIC PROTOCOL}
CLOCK POLARITY
MASTER (1) or SLAVE (0) MODE SELECT
SPI SYSTEM ENABLE
'— SP1 INTERRUPT ENABLE

Figure 3-31. Serial Peripheral Control Register

The SPCR bits have the following functions:

SPIE
0=SPI interrupts are disabled (the most common configuration).
1=SPI interrupt requests are enabled if SPIF and/or MODF is set to one.

SPE
0=_SPI system is turned off.
1=SPI system is turned on.

MSTR _
0=SPI is configured as a slave.
1=SPl is configured as a master.

CPOL
0 =Active-high clocks selected, SCK idles low.
1=Active-low clocks selected, SCK idles high.
(This bit is used in conjunction with the clock phase control bit to produce
the desired clock-data relationship between master and slave.)

CPHA
The clock phase bit, in conjunction with the CPOL bit, controls the rela-
tionship between the data on the MISO and MOSI pins and the clock pro-
duced or received at the SCK pin. CPHA selects one of two fundamentally

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

B L367248 0149859 565 HE

different clocking protocols to allow the SPI system to communicate with
virtually any synchronous serial peripheral device.

SPR1/SPRO
These two serial peripheral rate bits select one of four bit rates to be used
as SCK if the device is a master; they have no effect in the slave mode.

Internat Processor Frequency if XTAL Frequency if XTAL
SPR1 | SPRO Clock Divided By is 4.0 MHz is 2 MHz
0 0 2 1.0 MHz 500.0 kHz
0 1 4 500.0 kHz 250.0 kHz
1 0 16 125.0 kHz 62.50 kHz
1 1 32 62.5 kHz 31.25 kHz

3.7.4.2 SERIAL PERIPHERAL STATUS REGISTER (SPSR). This read-only register
(Figure 3-32) contains status flags which indicate the completion of an SPI
transfer and the occurrence of certain SPI system errors. The flags are
automatically set by the SPI events; the flags are cleared by automatic soft-
ware sequences and upon reset. In the majority of all systems, only the SPIF
status bit is important.

Bt7 B 5 4 3 2 1 BtO
[spFTwoor] - JmooF[- [- T - [-] $0B SPSR
| I |
[T 0 - 0 - - - -] RESET CONDITION
L LMooe FAULT
WRITE COLLISION

SPI TRANSFER COMPLETE

Figure 3-32. Serial Peripheral Status Register

The bits in this register have the following functions:

SPIF
When set to one, the serial peripheral data transfer flag bit notifies the user
that a data transfer between the MCU and an external peripheral device
has been completed. The transfer of data is initiated by the master device
writing to its serial peripheral data register. SPIF is automatically cleared

by reading SPSR with SPIF set, followed by an access of the SP! data
register.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-75

B L3L7248 OlL498L0 287 M

WCOL
The write-collision status bit notifies the user that an attempt was made
to write to the serial peripheral data register while a data transfer with an
external peripheral device was in progress. The transfer continues unin-
terrupted, and the write will be unsuccessful.

MODF
This flag is set if the SS signal goes to its active-low level while the SPI is
configured as a master (MSTR=1). In normal systems, this would never
be possible. For information on how to use MODF in multimaster systems,
see BR594/D, the MC68HC705C8 Technical Summary.

3.7.4.3 SERIAL PERIPHERAL DATA I/0O REGISTER (SPDR). The SPDR (Figure 3-33)

in the master MCU device is used to transmit data to and receive data from
the slave device. Only a write to this register in a master will initiate trans-
mission/reception of data. The data is then loaded directly into the 8-bit shift
register where eight bits are shifted out on the MOSI pin to the slave while
another eight bits are simultaneously shifted in on the MISO pin to the 8-bit
shift register. At the completion of data transmission, the SPIF status bit is
set. A write or read of the SPDR, after reading SPSR with SPIF set, will clear
SPIF.

Bit7 6 5 4 3 2 1 Bil0

LI 1 1 fI [T T]$oC SPDR

Figure 3-33. Serial Peripheral Data /O Register

3.7.5 SPI Application Example

3-76

The example application and program are similar to the one shown in Section
2, paragraph 2.5, except the SPI function will be added.

A switch is connected to an input pin. When the switch is closed, the program
will send data out to a peripheral device using the SPI function and will cause
an LED connected to an output pin to light for about one second and then
go out.

The peripheral device used in this application is an MC74HC595 serial-to-
parallel shift register. Hardware setup, the SPI control register, and the soft-
ware program will be discussed briefly.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

M 5367248 01498bL1 113 WE

Figure 3-34 shows the hardware connections for the SPI application example.
The SPI signals at the left of the diagram come from the PGMR board (an
M68HCO05 PGMR, available from a Motorola distributor) or directly from the
MC68HC705C8. The shift register outputs (QA-QH of the MC74HC595) will
be monitored with an oscilloscope. In this example, the MISO line is not used.
The shifter is selected by the general-purpose output PC3 (but could have
been driven by any general-purpose output). The SS pin of the MC68HC705C8
is an input in master mode and must be tied high.

Voo

+BY — I

SYSTEM
POWER
0.1 pF

Gnd>j_ —

B8

-
N

v v
2z
/ 20 Do Vss Voo
34T T 0§ = 15 QA
s RES
5 X q ReseT w(1 0B]
2 MOsl _ 14 2 |2 o g
PDIMOSI > SERIAL IN S5 [o 2
S
POASCK | SK 91 suirouk g : gE &
NABLE . 12 s
pey fENABLE o LAT CLK e [3
K 7 QH)
B o outen soH 2
FROM PGMR BOARD
B8 05C8 —= MC74HC505
S~ SERIAL TO PARALLEL
SHIFT REGISTER

Figure 3-34. SPI Application Example Diagram

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-77

B L367248 0l498L2 O5T MW

To initialize the SPI function, the SPCR (SPIE, SPE, —, MSTR, CPOL, CPHA,
SPR1, SPRO) bits need to be written. For this application, the SPCR was
initialized with %01010000 or $50.
SPIE=0 No interrupts involved in this application.
SPE=1 Enable the SPI system.
—=0 Don't care bit.
MSTR=1 MC68HC705C8 is the master.
CPOL=0 Selects clock rest at low value.
CPHA=0 MC74HC595 accepts data at rising clock edge
SPR1=0 Internal processor clock divide by two.
SPRO=0 (Shift rate =500 kHz for a 2-MHz crystal).

The SPCR needs to be initialized once. For each transfer, there is a four-step
sequence:

1) Enable the slave. In this example the PC3 general-purpose output pro-
vides the enable signal to the MC74HC595 peripheral.

2) Write data to SPDR to initiate the transfer.
3) Wait for SPIF. The slave cannot be disabled until the transfer is finished.

4) Disable the slave.

The flowchart and mnemonics for the SPI application example are shown in
Figure 3-35.

Assume this application program has been assembled and downloaded to
an MC68HC705C8. You can test this program by using an oscilloscope con-
nected to the MC74HC595 parallel data outputs (pins 1-7 and 15). The pro-
gram is arranged to increment the 8-bit parallel bit value each time the switch
is pressed. Figure 3-36 is the complete listing for the SPI application example
program.

3.8 PROGRAMMABLE TIMER

3-78

The programmable timer can be used for many purposes, including input
waveform measurements, while simultaneously generating an output wave-
form. The architecture of the main timer is primarily a software driven system.
Software can be written for measuring pulse widths and frequencies, for
controlling timer output signals, or for timing delays.

The programmable timer is based on a 16-bit free-running counter preceded
by a prescaler that divides the internal processor clock by four. A timer

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

M L367248 0149863 T9: I

FLOWCHART MNEMONIC PROGRAM

SET INITLAL CONDITIONS:

PORT C = ALL OUTPUTS

DATA PATTERN 11100000 TO PORT C |
INITIALIZE SP & SET SPIVAL-0 CLR SPIVAL

ILDA #%01010000

STA SPCR

DELAY TO DEBOUNCE

ENABLE 74HC595 BCLR 3,PORTC

SEND DATA VIA SP1 LDA SPIVAL
STA SPDR

INCREMENT "SPiVAL'
INC SPIVAL

HERE BRCLR 7, SPSR, HERE

DISABLE 74HC595 BSET 3,PORTC

TURN ON LED
FOR 1 SECOND
THEN OFF

SWITCH
STILL CLOSED ?

DELAY TO DEBOUNCE

NOTE: Shaded parts of this figure are identical to Figure 2-6. Unshaded instructions were added to
demonstrate the SPI system.

Figure 3-35. SPI Application Example Flowchart

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-79

M L3b67244 0149864 922

iS22 2 2SS S 22222220t R R s R B B S

* Simple 68HCO0S SPI Program Example *
AhkhkAAAkA A A A AKRA A KA KA A A AAhkhkhkhkhhkhkkhkkkkhkhkhrhkhkhkhhkk

0001 PORTB EQU $01 Direct address of port B (sw)
0002 PORTC EQU $02 Direct address of port C (LED)
0005 DDRB EQU 505 Data direction control, port B
0006 DDRC EQU 506 Data direction control, port C
000a SPCR EQU SOA SPIE, SPE, -,MSTR; CPOL, CPHA, SPR1, SPRO
000b SPSR EQU S0B SPIF,WCQOL, -,MODF;~, -, -, -
000c SPDR EQU s50C SPI Data Register
009%e SPIVAL EQU S9E One byte RAM storage location
009f TEMP1 EQU S9F One byte temp storage location
0250 ORG $250 Program will start at $0250
0250 a6 ff INIT LDA #SFF Begin initialization
0252 b7 06 STA DDRC Set port C to act as outputs
* Port B is configured as inputs by default from reset.
0254 a6 e8 LDA #SE8 Red & grn LED & beep off, SPI EN off
0256 b7 02 STA PORTC Turn off red LED

* Some pins of port C (my board) happen to be connected
* to devices which don't apply to this example program.
* The $E8 pattern turns off my stuff & turns off red LED

0258 3f 9%e CLR SPIVAL Start with 0

025a a6 50 LDA #%01010000 SPE, MSTR, norm lo fast clk
025¢c b7 Oa STA SPCR Initialize SPI control reg
025e b6 01 TOP LDA PORTB Read sw at MSB of Port B
0260 2a fc BPL TOP Loop till MSB=1 (Neg trick)
0262 cd 02 86 JSR DLY50 Delay about 50 mS to debounce
0265 17 02 BCLR 3,PORTC Drive select of 74HC595 low
0267 b6 %e LDA SPIVAL Current data to send to SPI
0269 b7 Oc STA SPDR Send SPI data

026b 3c %e INC SPIVAL Add one to current SPI value
026d 0f Ob fd HERE BRCLR 7, SPSR, HERE Wait for SPIF to set
0270 16 02 BSET 3,PORTC Drive select of 74HC595 hi
0272 14 02 BCLR 6,PORTC Turn on LED (bit-6 to zero)
0274 a6 14 LDA #20 Decimal 20 assembles to $14
0276 cd 02 86 DLYLP JSR DLYSO0 Delay 50 mS

0279 4a DECA Loop counter for 20 loops
027a 26 fa BNE DLYLP 20 times (20-19,19-18,.1-0)
027¢c 1c 02 BSET 6,PORTC Turn LED back off

027e 0e 01 fd OFFLP BRSET 7,PORTB,OFFLP Loop here till sw off
0281 cd 02 86 JSR DLYS50 Debounce release

0284 20 48 BRA TOP Look for next sw closure

Figure 3-36. SPI Application Example Program

3-80 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

M L3L72486 01498LS5 8LY IR

overflow function allows software to extend its timing capability beyond the
range of 16 bits. All activities of the timer are referenced to this one free-
running counter so all timer functions have a known relationship to each
other. From the MCU viewpoint, physical time is represented by the count
in this free-running counter and the counter can be read at any time “to tell
what time it is.”

The input-capture function can be used to automatically record (latch) the
time when a selected transition was detected. The output-compare function
can be used to generate output signals or for timing program delays.

3.8.1 Functional Description

The timer features are as follows:

16-Bit Free-Running Counter with Prescaler
Overflow Flag to Extend Timing Range
16-Bit Output-Compare Register

16-Bit Input-Capture Register

Three Interrupt Sources

The block diagram of the timer is shown in Figure 3-37.

The programmable timer capabilities are provided by using ten addressable
8-bit registers and two external pins, output level (TCMP) and edge input
(TCAP). The 10 registers are as follows:

Counter High Register, location $18

Counter Low Register, location $19

Alternate Counter High Register, location $1A

Alternate Counter Low Register, location $1B

Input-Capture High Register, location $14

Input-Capture Low Register, location $15

Output-Compare High Register, location $16

Output-Compare Low Register, location $17

Timer Control Register (TCR), location $12

Timer Status Register (TSR), location $13

Because the timer has a 16-bit architecture, the counter and alternate counter,
input-capture, and output-compare values are represented by two 8-bit reg-
isters. The two 8-bit registers contain the high and low byte of each timer
function value (see Figure 3-38).

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-81

B 5367248 0L498LL ?TS

INTERNAL PROCESSOR
CLOCK

(XTAL +2)
EDGE | waron 15 8 7 0 FDED
SELECT P 16BITINPUT.CAPTURE REGISTER >, |oweEsY
. 4
DETECT <7 T
15 8 7 0
) -]
16-8IT TIMER COUNTER
] [e 1)
: gt o
1> ToMP
| 16-BIT COMPARATOR > coNTRoL —{TEN
[16.BIT OUTPUT-COMPARE REGISTER | PEN
15 8 7 0
/
/
wiw g
w -
o|8|e 813 sl8|e
L1t YYY 11191 L
| TMER CONTROL REGISTER | | TMERSTATUSREGISTER |
0 Y
TIMER
INTERNAL INTERRUPT
DATABUS REQUEST

Figure 3-37. Programmable Timer Block Diagram

3-82 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

B 5357248 0149867 b31 WM

3.8.2

15 8 7 0
L COUNTER HIGH BYTE | [COUNTER LOW BYTE I

READ COUNTER)|

HIGH BYTE

- v'
——E LSBLATCH 1
[1]

READ COUNTER]

LOW BYTE

INTERNAL DATA BUS

(1] - LSB latch is normally transparent, becomes latched when high
byte of counter is read, and becomes transparent again when low byte
of counter is read.

Figure 3-38. 16-Bit Counter Reads

Generally, accessing the low byte of a specific timer function allows full
control of that function; however, an access of the high byte inhibits that
specific timer function until the low byte is also accessed. A read from the
MSB causes the LSB to be latched at the next sequential address.

NOTE

Set the | bit in the condition code register while manipulating both
the high- and low-byte register of a specific timer function. This
prevents interrupts from occurring between the time that the high
and low bytes are accessed.

A description of each register and the external pins is given in the following
paragraphs.

Timer Counter and Alternate Counter Registers

The 16-bit free-running counter or counter register starts from a count of
$0000 as the MCU is coming out of reset and then counts up continuously.
When the maximum count is reached ($FFFF), the counter rolls over to a
count of $0000, sets an overfiow flag, and continues to count up. As long as
the MCU is running in a normal operating mode, there is no way to reset,
change, or interrupt the counting of this counter. This counter, which may
be read at any time to “tell what time it is,” is always a read-only register.

The prescaler gives the timer a resolution of 2.0 us if the MCU crystal is
4 MHz (internal processor clock is 2.0 MHz). Including 0, the counter repeats

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-83

M bL3Lk7248 0L498LS 578 MR

every 65,536 counts ($FFFF=65,535). Because the free-running counter is
preceded by a fixed divide-by-four prescaler, the value in the free-running
counter repeats every 262,144 internal processor clock cycles.

The double-byte free-running counter can be read from either of two locations
$18-$19 or $1A-$1B. These registers are called the counter register and the
counter alternate register, respectively.

NOTE

Normally, a timer read is made from the counter aiternate register
unless the read sequence is intended to clear the timer overflow fiag.

If a read of the free-running counter register first addresses the most signif-
icant byte ($18), it causes the least significant byte ($19) to be transferred to
a buffer. This buffer value remains fixed after the first most-significant-byte
read, even if the user reads the maost significant byte several times. This
buffer is accessed when reading the free-running counter register least sig-
nificant byte ($19), thus completing a read sequence of the total 16-bit counter
value. The same read sequence applies to the counter alternate register. A
read sequence containing only a read of the least significant byte of the free-
running counter ($19) will receive the count value at the time of the read.

NOTE

in reading either the free-running counter or counter altternate reg-
ister, if the most significant byte is read, the least significant byte
must also be read to complete the sequence.

3.8.3 Input-Capture Concept

3-84

The input-capture function is a fundamental element of the MC68HC705C8
timer architecture. Input-capture functions are used to record the time at
which some external event occurred. This is accomplished by latching the
contents of the free-running counter when a selected edge is detected at the
related timer input pin (edge input-TCAP pin). The time at which the event
occurred is saved in the input capture register (16-bit latch). Although it may
take an undetermined variable amount of time to respond to the event, soft-
ware can tell exactly when the event occurred.

By recording the times for successive edges on an incoming signal, software
can determine the period and/or pulse width of the signal. To measure a
period, two successive edges of the same polarity are captured. To measure

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

B L3L7248 0L49869 4Oy HE

a pulse width, two alternate polarity edges are captured. For example, to
measure the pulse width for a high-going pulse, capture the time at a rising

edge and subtract this time from the time captured for the subsequent falling
edge.

When the period or pulse width is known to be less than a full 16-bit counter
overflow period, the measurement is very straightforward. The counter repeats
every 65,536 timer clocks, which is equivalent to 262,144 internal processor
clock cycles. For period or pulse widths that extend over the full 16-bit counter
period, write software to keep track of the overflows of the 16-bit counter.
Examples where measurement of a period or pulse width would be used are
the period of a pendulum swing or the AC line frequency (to distinquish
between 50 and 60 Hz).

Another important use for the input-capture function is to establish a time
reference. In this case , an input-capture function is used in conjunction with
an output-compare function. For example, suppose an application requires
an output signal to be activated a certain number of clock cycles after de-
tecting an input event (edge). The input-capture function would be used to
record the time at which the edge occurred. A number corresponding to the
desired delay would be added to this captured value and stored in the output-
compare register. Since both input captures and output compares are ref-
erenced to the same 16-bit counter, the delay can be controlled to the res-
olution of the free-running counter, independent of software latencies. (An
example of this use would be to fire a spark plug “n’" microseconds after a
timing pulse is sent from the engine flywheel.)

3.8.4 Input-Capture Operation

The input capture function includes a 16-bit latch, input edge detection logic,
and interrupt generation logic. The latch captures the current value of the
free-running counter when a selected edge is detected at the corresponding
timer input pin. The edge detection logic includes a control bit (IEDG), which
enables the user’s software to select the polarity of edge(s) that will be
recognized. The interrupt generation logic includes a status flag to indicate
that an edge has been detected and a local interrupt enable bit to determine
whether or not the corresponding input-capture function will generate a hard-
ware interrupt request. See Figure 3-39.

The two 8-bit registers (locations $14-most significant byte and $15-least
significant byte) comprising the 16-bit input-capture register are read-only
and are used to latch the value of the free-running counter after a defined

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-85

B L3b7244 0149870 126 WA

15 8 7 0

[comermenevie | coumteriowsvie |
15 “‘b = \L 0
TCAP EDGE SELECT LATGH
PN O b 16-BIT INPUT-CAPTURE LATCH |

\

[E05] ¢——] icF | sTatus Fuag

IEDG = 0 for falling edges

IEDG = 1 for rising edges ‘ REQUEST A TMER
INTERRUPT

Figure 3-39. Input-Capture Operation

transition is sensed by the corresponding input-capture edge detector. The
level transition which triggers the counter transfer is defined by the input
edge bit (IEDG in the timer control register).

The free-running counter contents are transferred to the input-capture reg-
ister on each proper signal transition, regardless of whether the input-capture
flag (ICF) is set or clear. There is an uncertainty about the exact value latched
due to the resolution of the counter and synchronization delays. The input-
capture register always contains the free-running counter value, which cor-
responds to the most recent input capture. Reset does not affect the contents
of the input-capture register.

3.8.5 Output-Compare Concept

3-86

The output-compare function is also a fundamental element of the
MC68HC705C8 timer architecture. Output-compare functions are used to pro-
gram an action to occur at a specific time (i.e., when the 16-bit counter reaches
a specific value). The value in the output-compare register is compared with
the value of the free-running counter on every fourth bus cycle. When the
output-compare register matches the counter value, an output is generated,
which sets an output compare status flag and transfers the level of the OLVL
bit to the TCMP output pin (see Figure 3-40).

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

B L3b7248 0149871 DOb2 WE

OLVL =0 1o force TCMP
pin to 0 on valid compare.

18 8 7 0 OLVL =1 to force TCMP
cou I I pin high on valid compare.
| NTER HIGH BYTE COUNTER LOW BYTE
[ow]

—= ? Y TCMP
| 16-BIT COMPARATOR } = PINCONTROL o

™
15 8 7 0

! r

| 16-BIT OUTPUT-COMPARE REGISTER | STATUSFLAG

REQUEST A TIMER
| INTERRUPT

LOCAL INTERRUPT ;
MASK (ENABLE) > LOCE

Figure 3-40. Output-Compare Operation

Change the values in the output-compare register and the output level bit
after each successful comparison to control an output waveform or to es-
tablish a new elapsed timeout.

An interrupt can also accompany a successful output compare if the corre-
sponding interrupt enable bit (OCIE) is set.

One of the easiest uses for an output-compare function is to produce a pulse
of a specific duration. First, a value corresponding to the leading edge of the
pulse is written to the output-compare register. The output compare is con-
figured to automatically set the TCMP output either high or low, depending
on the polarity of the pulse being produced. After this compare occurs, the
output compare is reprogrammed to automatically change the output pin
back to its inactive level at the next compare. A value corresponding to the
width of the pulse is added to the original output-compare register value,
and this result is written to the output-compare register. Since the pin-state
changes occur automatically at specific values of the free-running counter,
the pulse width can be controlled accurately (to the resolution of the free-
running counter) independent of software latencies. By repeating the actions
for generating pulses, you can generate an output signal of a specific fre-
guency and duty cycle.

Another use of the output-compare function is to generate a specific delay.
For example, suppose you want to produce a 1 millisecond delay to time

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-87

B L3L7248 0149472 TT9 W

programming of an EPROM byte. First, go through the initial programming
steps to the point where the programming supply has been enabled (EPGM
bit has been written to one). Now, read the current value of the main timer
counter and add a number corresponding to 1 millisecond (XTAL=2 MHZ,
INT CLK=1 MHz, 1 timer count=4 ps; thus, 1 ms=250 decimal = $FA). Write
this sum to the output-compare register so that an output compare will occur
when the counter gets to this value.

In this example, the actual EPROM programming time started just before the
current time was read from the counter and ended after responding to the
output compare and turning off EPGM. The small delays for setting up the
output compare and the latency for responding to the output compare were
not considered because they only make the EPROM programming time longer
by a few microseconds. As you become a more advanced user of output-
compare functions, you will learn how to correct these details, although it is
often not necessary.

NOTE

This program would have to run from RAM since the EPROM is not
usable during programming.

3.8.6 Output-Compare Operation

3-88

The output-compare register is a 16-bit register composed of two 8-bit reg-
isters at locations $16 (most significant byte) and $17 (least significant byte).
The contents of the output-compare register are compared with the contents
of the free-running counter once during every four internal processor clocks.
If a match is found, the output-compare flag (OCF) bit is set, and the output
level (OLVL) bit is clocked (by the output-compare circuit pulse) to the TCMP

pin.

After a processor write cycle to the most significant byte of the output-
compare register ($16), the output-compare function is inhibited until the
least significant byte ($17) is also written. You must write to both bytes
(locations) if the most significant byte is written first.

Because neither the output-compare flag (OCF bit) or output-compare register
is affected by reset, take care when initializing the output-compare function
with software. The following procedure is recommended:

1) Write to the high byte of the output-compare register to inhibit further
compares until the low byte is written.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

B b3L72486 0149873 935 1

2) Read the timer status register to clear the OCF bit if it is already set.

3) Write to the low byte of the output-compare register to enable the
output-compare function.

The purpose of this procedure is to prevent the OCF bit from being set
between the writes to the high and low halves of the 16-bit output-compare
register. A software example follows:

B7 16 STA OQOCMPHI Inhibit output compare

B6 13 LDA TSR Clear OCF bit if set

BF 17 STX OCMPLO Ready for next compare

3.8.7 Timer Control Register (TCR)

The timer control register (see Figure 3-41) is an 8-bit read/write register
containing five control bits. Three of these bits control interrupts associated
with the three flag bits found in the timer status register. The other two bits
control 1} which edge is significant to the input-capture edge detector (i.e.,
negative or positive) and 2) the next vaiue to be clocked to the TCMP output
pin in response to a successful output compare.

The TCMP pin is forced low during external reset and stays low until a valid
compare changes it to a high.

Bit7 6 5

4 1 Bit0
| e Joce | o | o ||

I

0

2

[o Jioc{ov]| $12 TCR
|
0

| | |
[o 0 0

o|—|o] «

0 | RESET CONDITION

|
Y}
L l\OUTPUT COMPARE LEVEL

INPUT CAPTURE EDGE
O-FALLING 1-RISING

TIMER OVERFLOW INTERRUPT ENABLE
OUTPUT COMPARE INTERRUPT ENABLE
INPUT CAPTURE INTERRUPT ENABLE

Figure 3-41. Timer Control Register

MOTOROCLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-89

B L3t7248 01498674 471 HH

3.8.8 Timer Status Register (TSR)

The timer status register (see Figure 3-42) is an 8-bit register with three read-
only bits that indicate the following status information:

1) A selected transition has occurred at the edge input (TCAP) pin with an
accompanying transfer of the free-running counter contents to the input-
capture register.

2} A match has been found between the free-running counter and the
output-compare register.

3) A free-running counter transition from $FFFF to $0000 has been sensed
(timer overflow).

8t7 6 5 4 3 2 1 Bit0
Lk JocF J1oF { o Il o T o T o1 o] $13 TSR
[[| ! [[[{
[o 0 0 0 0 0 0 0 | RESET CONDITION
TIMER OVERFLOW FLAG
OUTPUT COMPARE FLAG
INPUT CAPTURE FLAG

Figure 3-42. Timer Status Register

iCF
The input-capture flag (ICF) is set when a proper edge has been sensed by
the input-capture detector. It is cleared by a processor access of the timer
status register (with ICF set) followed by accessing the low byte ($15) of
the input-capture register.

OCF
The output-compare flag (OCF) is set when the output-compare register
contents matches the contents of the free-running counter. OCF is cleared
by accessing the timer status register (with OCF set) and then accessing
the low byte ($17) of the output-compare register.

TOF
The timer overflow flag (TOF) bit is set by a transition of the free-running
counter from $FFFF to $0000. It is cleared by accessing the timer status
register (with TOF set) and then accessing the least significant byte ($19)
of the free-running counter.

3-90 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

B L3L7248 0149875 708 WA

NOTE

The counter alternate register contains the same value as the free-
running counter but reading the alternate register does not clear
TOF; therefore, this alternate register should be used to read the
timer counter in all cases except when intending to clear TOF. This
will avoid the possibility of the TOF being unintentionally cleared.

3.8.9 Timer Application Example

Figure 3-43 shows an example program to produce a 10-second delay after
the timer counter is read. In this case, the timer counter and the output-
compare functions are used in the software program.

The two key programming instructions that you should note are 1) the read
and/or write instructions at the alternate counter and output-compare reg-
isters and 2) the addition of 16-bit numbers.

3.9 STOP/WAIT INSTRUCTION EFFECTS

The STOP and WAIT instructions put the MC68HC705C8 MCU into low power-
consumption modes. These instructions also affect the programmable timer,

the SCI, and the SPI systems. A STOP/WAIT flowchart is shown in Figure
3-44,

3.9.1 Low Power-Consumption Modes

The STOP instruction places the MC68HC705C8 in its lowest power-
consumption mode. In the STOP mode, the internal oscillator is turned off,
causing all internal processing to be halted. During the STOP mode, the | bit
in the condition code register is cleared to enable external interrupts. All
other registers and memory remain unaltered, and all /0 lines remain un-
changed. This state continues until an external interrupt (IRQ) or RESET is
sensed, at which time the internal oscillator is turned on. The external in-
terrupt or reset causes the program counter to vector to memory location
$1FFA and $1FFB or $1FFE and $1FFF. These locations contain the starting
address of the interrupt or reset service routine, respectively.

The WAIT instruction also places the MC68HC705C8 in a low power-
consumption mode, but the WAIT mode consumes somewhat more power
than the STOP mode. In the WAIT mode, all CPU processing is stopped:

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-9

B 6367248 0149876 Luy mm

KEAKKRKAKKKAIAAKAKAAKRAKRAKXKA KA AKRA KRR KA AARA KRR A XA K hhhk

* Simple 6B8HCOS5 Timer Program Example *

KA KRR KA A AR A A A AKX A AR AK KA A AR A AAAA A ARk khkhkhdk
0006 DDRC EQU $06 Data direction contrel, port C
0002 PORTC EQU 502 Direct address of port C (LED)
0016 OCMPHI EQU 516 Output compare high reg.
0017 OCMPLO EQU $17 OQutput compare low reg.
0013 TSR EQU 513 ICF,OCF,TOF,0;0,0,0,0
00a0 TENSEC EQU $SAQ Used to count 39 out compares
00al TEMP EQU $Al One byte temp for 16 bit OCMP add
0350 ORG 5350
0350 a6 40 INIT LDA #%01000000 Make DDR bit for LED a one
0352 b7 06 STA DDRC So Red LED pin is an output
0354 a6 40 BEGIN LDA #%01000000 Port C bit 6 is red LED
0356 b8 02 EOR PORTC Toggle red LED on PGMR board
0358 b7 02 STA PORTC Red LED will change every 10 Sec
035a a6 27 LDA #39 10 sec = 38 rev + 9,632 ticks
035¢ b7 a0 STA TENSEC Counter for timer out compares

AR AKA A KA AR AR R KA I AR KA AT I AR KA KRR AR AR AR KRR KR AR A A AR AR AR A AR A KRR A A KNI A K kA h Ak x

* For XTAL=2MHz (Int proc. clk=1MHz) Timer +4 makes 1 count = 4UuS x
* Counter rolls from SFFFF to 0 every 65,536 counts (262.144 mS) *
* 10 Sec + 262.144 mS = 38 revs of timer & 9,632 counts remainder *
* 10 Sec = 2,500,000 counts @ 4uS/count. 38 * 65,536 = 2,490,368 *
* 2,500,000 - 2,490,368 = 9632. 9632 (decimal) = $25A0 *
* *
* To time 10 Sec, read initial count, add 9632 (remainder count) *
* store to out compare reg ("schedule a compare"). When OCF flag =1 *
* clear it & next compare will occur when timer counts 65,536 counts *
* count the first compare plus 38 more compares (full revs). *
AhkhkkhhkhhhkkhhAkkk Ak hhhhkhrhAArkkhhkhkhkhhhdkkdkkhakhbrhhkkhhhhhkhhArkhkkkkkkhkkhkkk
035e a6 a0 LDA #5520 Lower half hex equiv of 9632

0360 bb 17 ADD OCMPLO Low half of a 16 bit add

0362 b7 al STA TEMP Temp. store until OCMPHI is added
0364 a6 25 LDA #$25 Upper half hex equiv of 9632

0366 b9 16 ADC OCMPHI High half of 16 bit add (w/ carry)
0368 b7 16 STA OCMPHI Update OCMP hi

036a b6 al LDA TEMP Get previous saved OCMP low

036c b7 17 STA OCMPLO Update OCMP lo after OCMP hi

%k k& kK Aok ok ke ok ok ok ok ok sk sk ok ok ok ok dk ok ok ok ok sk ok ok ok ok ok ok ok ok sk ok e ok vk ok ok ok ok ok sk sk ke sk ke ok ok ok ok ok ok ok Kk ki ok ok ok ok ok ok
* You add low half first due to possible carry, then add high byte *

* including any carry (ADC). You should update out compare high *
* byte first to aveoid an erroneous compare value (compare lockout *
* after OCMPHI till OCMPLO prevents this potential problem. *

KAKKKK KKK KA KA KA RR AR A AR Ak kA kA kAR A AR A AR AR A A kAR Ak kA kA ARk kkk kA Ak A A hk

036e 0Oc 13 f£fd LoOOP BRCLR 6,TSR,LOOP Checks for out comp. flag

0371 bt 17 LDA OCMPLO To clear OCF flag

0373 3a a0 DEC TENSEC Ten seconds count down
0375 26 £7 BNE LOOP Loop until 10 sec done
0375 20 db BRA BEGIN Repeat so PC6é toggles /10 Sec

Figure 3-43. Timer Application Example Program

3-92 M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

B b3L7248 0149877 580 HE

sSTOP WAIT

\ Y
OSCILLATOR ACTIVE

AN AL CLOGKS. TEOCKSACTVE. .

SET I BITINCC REG CPU CLOCKS STOPPED

EXT
RQ
INTERRUPT
YES

Y Y

TURN ON OSCRLLATOR RESTART
DELAY TQ STABILIZE CPU CLOCK

Y Y

Y

1) FETCH RESET VECTOR or
2) SERVICE INTERRUPT
a SAVE CPU REGS ON STACK
b. SET | BIT N CC REG
¢. VECTOR TO INTERRUPT
SERVICE ROUTINE

Figure 3-44. STOP/WAIT Flowchart

however, the internal clock, the programmable timer, SPI and SCI systems
(if enabled) remain active. During the WAIT mode, the | bit in the condition
code register is cleared to enable all interrupts. All other registers and mem-
ory remain unaltered, and all parallel I/O lines remain unchanged. This state
continues until any interrupt or reset is sensed. At this time, the program
counter is loaded with the interrupt vector at memory location $1FF4-$1FFF,
which contains the starting address of the interrupt or reset service routine.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-93

B L3657248 0149878 417 WM

3.9.2 Effects on On-Chip Peripherals

The STOP instruction causes the oscillator to be turned off, which halts all
internal CPU processing as well as the operation of the programmable timer,
SCl, and SPI. The oscillator starts again when an external interrupt (IRQ) or
RESET occurs.

3.9.2.1 TIMER ACTION DURING STOP MODE. When the MCU enters the STOP

mode, the timer counter stops counting (the internal processor clock is
stopped). It remains at that particular count value until an interrupt or reset
occurs. If the interrupt is an external low on the IRQ pin, the counter resumes
from its stopped value as if nothing had happened. If a reset occurs, the
counter is forced to $FFFC.

3.9.2.2 SCIACTION DURING STOP MODE. When the MCU enters the STOP mode,

the baud rate generator driving the receiver and transmitter is stopped, which
haits all SCI activity.

If the STOP instruction is executed during a transmitter transfer, that transfer
is halted. When the STOP mode is exited, that particular transmission re-
sumes if the exit is the result of a low input to the IRQ pin. Since the STOP
mode interferes with SCI character transmission, make sure that the SClI
transmitter is idle when the STOP instruction is executed.

If the receiver is receiving data when the STOP instruction is executed, re-
ceived data sampling is stopped (baud rate generator stops), and the re-
mainder of the data is lost. The STOP mode should not be used while SCI
characters are being received.

3.9.2.3 SPIACTION DURING STOP MODE. When the MCU enters the STOP mode,

3-94

the bit rate generator driving the SPI stops, halting all master mode SPI
operation. Thus, the master SPI is unable to transmit or receive data. If the
STOP instruction is executed during an SPI transfer, that transfer is halted
until the MCU exits the STOP mode (if the exit resulted from a logic low on
the IRQ pin). If the STOP mode is exited by a reset, then the appropriate
control/status bits are cleared, and the SPI is disabled.

If the device is in the slave mode when the STOP instruction is executed, the
slave SPI will still operate. It can still accept data and clock information in
addition to transmitting its own data back to a master device. At the end of

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

El bL3b7248 0149879 353 W

a transmission with a slave SPI in the STOP mode, no flags are set until a
logic low IRQ input results in an MCU “wake up.”

When the MCU enters the STOP mode, all enabled output drivers (TDO,
TCMP, MISO, MOSI, and SCK ports) remain active. Any sourcing currents

from these outputs will be part of the total supply current required by the
device.

3.9.2.4 WAIT MODE EFFECTS. When the MCU enters the wait mode, the CPU
clock is halted. All CPU action is suspended; however, the timer, SCI, and
SPI systems remain active. An interrupt from the timer, SCI, or SPI {in addition
to a logic low on the IRQ or RESET pins) will cause the processor to resume
normal processing.

The wait mode power consumption depends on how many systems are
active. The power consumption will be greatest when all the systems (timer,
TCMP, SCI, and SPI) are active. The power consumption will be least when
the SCl and SPI systems are disabled (timer operation cannot be disabled in
the wait mode). If a nonreset exit from the wait mode is performed (e.g.,
timer overflow interrupt exit), the state of the remaining systems will be
unchanged. If a reset exit from the wait mode is performed, all systems revert
to the {disabled) reset state.

3.10 OTPROM/EPROM PROGRAMMING

The OTPROM or EPROM programming technique is used to load a user
program into the MC68HC705C8 MCU OTPROM or EPROM. This type of
programming is accomplished via a bootstrap mode of operation.

3.10.1 Erasing

MCB8HC705C8 EPROM MCUs are erased by exposure to a high-intensity
ultraviolet (UV) light with a wavelength of 2537 angstrom. The recommended
dose (UV intensity x exposure time) is 15 Ws/cm2. UV lamps should be used
without shortwave filters, and the EPROM MCU should be postioned about
one inch from the UV lamps.

MC68HC705C8 one-time programmable ROM (OTPROM) MCUs are shipped
in an erased state and are packaged in an opaque plastic package; thus,
erasing operations cannot be performed on OTPROM MCUs.

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-95

B b3b67248 01459880 075 WA

3.10.2 Programming

Programming operations are controlled by software-accessible control bits.
The software program which programs the internal EPROM/OTPROM is lo-
cated in either the on-chip bootstrap ROM or internal RAM.

The first programming method uses a program in the bootstrap ROM to read
information from an external 8K by 8 EPROM and to program this information
into the on-chip EPROM/OTPROM. The external EPROM is connected to I/Q
port pins of the MC68HC705C8. In this programming method, information to
be programmed into the internal EPROM/OTPROM is first programmed into
the external EPROM using an industry-standard PROM programmer.

A second programming method allows user programs developed on a per-
sonal computer to be downloaded to the MC68HC705C8 for programming
into the on-chip EPROM/OTPROM. This method eliminates the extra steps
needed to program a separate 8K by 8 EPROM. A small program that runs
on the personal computer is available through the Motorola FREEWARE bul-
letin board service (BBS) and can be downloaded for the price of the phone
call. This method is explained in Section 4 of this applications guide.

Both methods described for programming the on-chip EPROM/OTPROM ul-
timately use a software program running in the MCU that is being pro-
grammed. The programming software uses the program register (PROG) to
control the EPROM programming process.

3.10.3 Program Register
The program register (see Figure 3-45) is used for PROM programming.

Bt7 6 5 4 3 2 1 B0
o T o T ol o] o Tur] o Jram] $1C PROG
I I i 1 | [[[
[o 0 0 0 0 0 0 0 | RESET CONDITION
LPROGRAMMING POWER
0-OFF 1-ON
LATCH CONTROL
Figure 3-45. Program Register
3-96 MB8HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

B 6367248 0149881 TOL HNE

LAT
Prior to a PROM write operation, set the latch (LAT) bit. This enables the
PROM data and address buses to be latched for programming a PROM
location. Reset clears the LAT bit. When the LAT bit is cleared, PROM data
and address buses are unlatched for normal CPU operations. This bit, which

is both readable and writable, must be cleared to allow PROM read op-
erations.

PGM

When the program (PGM) bit is set, Vpp power is applied to the PROM for
programming mode of operation. Reset clears the PGM bit. This bit, which
is readable, is only writable when the LAT bit is set. If the LAT bitis cleared,
the PGM bit cannot be set.

3.10.4 Option Register

The option register (see Figure 3-46) is used to select memory RAM/ROM
configurations, enable PROM security, and select the MCU IRQ pin sensitivity.

BI7 6 5 4 3 2 1 Bit0

[Ramo TRt] o [o JTsec| - [wa | o | $IFDF OPTION
| | | | | | | |

[o 0 0 0 PROM Moorcla 1 0 | RESET CONDITION

|— SELECT IRQ SENSITIVITY
1-EDGE & LEVEL 0-EDGE ONLY
Motorola USE ONLY (1 or 0)

EPROM SECURITY
BIT IMPLEMENTED IN EPROM/OTPROM

SELECT MEMORY TYPE IN $0100-$015F AREA
0-96 BYTES PROM 1-96 BYTES RAM

— SELECT MEMORY TYPE IN $0020-$004F AREA
0-48 BYTES PROM 1-32 BYTES RAM

Figure 3-46. Option Register

RAMO

The RAMO bit determines the amount and type of memaory in the
$0020-$005F area.

0=48 bytes of PROM ($0020-$005F)

1=232 bytes of RAM {$0030-$005F)
When RAM is selected by RAMO=1, the 16 bytes from $0020-$002F are
unused. This bit is readable and writable at all times, allowing selection of

MOTOROLA M68HC05 MICROCONTROLLER APPLICATIONS GUIDE 3-97

M 5367248 0149882 944 WM

3-98

the desired memory configuration during program execution. Reset clears
the RAMO bit.

RAM1
The RAM1 bit determines the type of memory in the $0100-$015F area.
0=96 bytes of PROM
1=96 bytes of RAM
This bit is readable and writable at all times, allowing selection of the

desired memory configuration during program execution. Reset clears the
RAM1 bit.

SEC
The SEC bit is implemented as a PROM bit. During PROM programming,
the SEC bit is set to enable the security feature (to disable the bootloader).
This bit is normally cleared (security disabled) for an OTPROM device. For
an EPROM device, clearing is accomplished by exposing the EPROM to UV
light until the SEC bit is erased.

Bit 2
Factory use (logic one or logic zero).

IRQ
When the IRQ bit is set (logic one), the IRQ pin is negative edge and level
sensitive. When the IRQ bit is cleared (logic zero), the IRQ pin is negative
edge sensitive. Reset sets the IRQ bit. The IRQ bit can only be written once
following each reset.

M68HC05 MICROCONTROLLER APPLICATIONS GUIDE MOTOROLA

B b3b7248 01498483 B6u HE

