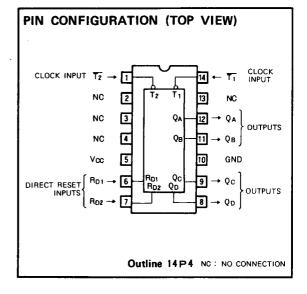
DIVIDE-BY-TWELVE COUNTER

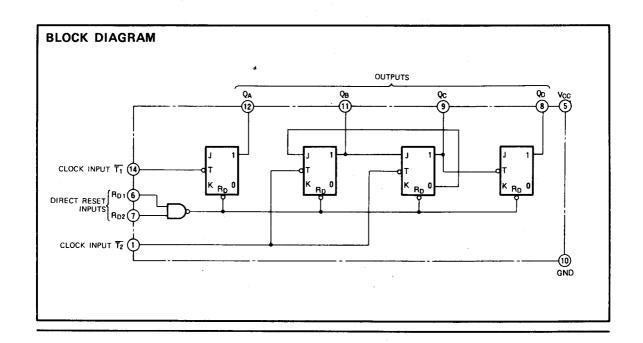
DESCRIPTION

The M74LS92P is a semiconductor integrated circuit containing an asynchronous divide-by-twelve counter function with direct reset inputs.

FEATURES

- Direct reset input provided
- Usable independently as binary and divide-by-six counter
- High-speed counting (f_{max} = 80MHz typical)
- Wide operating temperature range (T_a = −20~+75°C)


APPLICATION


General purpose, for use in industrial and consumer equipment.

FUNCTIONAL DESCRIPTION

This device is composed of independent binary and divide-by-6 counters. Clock input $\overline{T_1}$ and output Q_A are employed for use as a binary counter while clock input $\overline{T_2}$ and Q_B , Q_C and Q_D are employed for use as a divide-by-6 counter. When employed as a divide-by-12 counter, Q_A and $\overline{T_2}$ are connected and by making $\overline{T_1}$ the input, the output appears in outputs Q_A , Q_B , Q_C and Q_D in accordance with the function table. The code appearing in the output is not pure binary code. Counting is performed when $\overline{T_1}$ and $\overline{T_2}$ are changed from high to low.

The binary and divide-by-6 counters can be reset simultaneously by setting direct reset inputs $R_{D\,1}$ and $R_{D\,2}$ high. For use as a counter, either $R_{D\,1}$ or $R_{D\,2}$ or both set low.

DIVIDE-BY-TWELVE COUNTER

FUNCTION TABLE (Note 1)

Ŧ	R _{D1}	R _{D2}	QA	Qв	Qc	QD		
Х	Н	н	L	L	L	L		
1	L	Н	Count					
↓	н	L	Count					
ı l	L	L	Count					

Note 1 ↓ : Transition from high to low

X : Irrelevant

Count number	QΔ	QB	Qc	QD
0	L	L	L	L
1	Н	L	L	L
2	L	н	L	L
3	Н	н	L	L
4	L	L	Н	L
5	Н	L	н	L
6	L	L	L	Н
7	Н	اد	L	Н
8	L	Ξ	L	н
9	I	I	L	Н
10	L	L	Н	н
11	I	L	н	н

(1) Valid when Q_A and $\overline{T_2}$ are connected and $\overline{T_1}$ is made the input

ABSOLUTE MAXIMUM RATINGS

 $(T_a = -20 \sim +75^{\circ}C$, unless otherwise noted)

Symbol	Parameter	Conditions	Limits	Unit
Vcc	Supply voltage		-0.5-+7	V
	Input voltage	Inputs T ₁ , T ₂	-0.5~+5.5	V
VI		Inputs R _{D1} , R _{D2}	-0.5~+15	V
Vo	Output voltage	High-level state	-0.5~ Vcc	V
Topr	Operating free-air ambient temperature range		-20~+75	°C
Tstg	Storage temperature range		−65 ~ +150	°c

RECOMMENDED OPERATING CONDTIONS ($T_a = -20 - +75^{\circ}C$, unless otherwise noted)

Symbol	Parameter			Unit		
	T GI GI III		Min	Тур	Max	Unit
Voc	Supply voltage		4.75	5	5.25	V
Іон	High-level output current	V _{0H} ≥2.7V	0		-400	μА
		V ₀ L≦0.4V	0		4	mA
lor	Low-level output current	V _{0L} ≤0.5V	0		+	mA

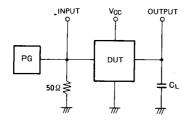
ELECTRICAL CHARACTERISTICS ($Ta = -20 \sim +75^{\circ}C$, unless otherwise noted)

Symbol	Parameter Test conditi		adition.	Limits				
Symbol	rarame	ster	l est cor	naitions	Min	Typ +	Ma×	Unit
VIH	High-level input voltage	ge		2			V	
VIL	Low-level input voltage						0.8	V
Vic	Input clamp voltage		V _{CC} =4.75V, I _{IC} =-	- 18mA			-1.5	V
Vон	High-level output voltage		$V_{CC}=4.75V$, $V_{I}=0.8V$ $V_{I}=2V$, $I_{OH}=-400\mu A$		2.7 3.4			٧
			V _{CC} =4.75V	I _{OL} = 4 mA (Note 2)		0.25	0.4	V
V _{OL}	Low-level output voltage		$V_1 = 0.8V, V_1 = 2V$	I _{OL} =8mA (Note 2)		0.35	0.5	V
	High-level input current	R _{D1} , R _{D2}		1			20	
		T ₁	V _{CC} =5.25V, V _I =2.7V				40 80	μΑ
		T ₂						
ł iH		T ₁					0.2	
		$\frac{1}{T_2}$ $V_{CC} = 5.25V, V_1 = 5.5V$	5 v			0.4	mA	
		R _{D1} , R _{D2}	V _{CC} =5.25V, V _I =10	V			0.1	mA
	Low-level input current R_{D1} , R_{T1}	R _{D1} , R _{D2}					-0.4	
l₁∟		T ₁	V _{CC} =5.25V, V _I =0.4V			-2.4	mA	
		T ₂					-3.2	
los	Short-circuit output current (rent (Note 3) V _{CC} =5.25V, V _O =0V		20		100	mΑ	
Lcc	Supply current V _{CC} =5.25V (Note 4)				9	15	mA	

* All typical values are at V_{CC}= 5V, Ta = 25°C.

Note 2: Testing of output Q_A should be conducted with input $\overline{T_2}$ connected to output Q_A ,

Note 3: All measurements should be done quickly and not more than one output should be shorted at a time.

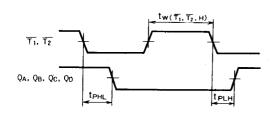

Note 4: I_{CC} is measured with $\overline{T_1}$ and $\overline{T_2}$ at 0V after R_{D1} and R_{D2} have been set to 0V from 4.5V.

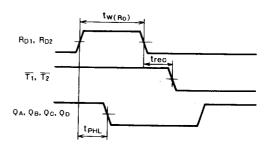
DIVIDE-BY-TWELVE COUNTER

SWITCHING CHARACTERISTICS (V_{CC}=5V, T_a=25°C, unless otherwise noted)

Symbol	Parameter	Parameter Test conditions	Limits			1
	1 di dilietei		Min	Тур	Max	Unit
f _{max}	Maximum clock frequency, from input $\overline{T_1}$ to output Q_A		32	80		MHz
fmax	Maximum clock frequency, from input $\overline{T_2}$ to output Ω_B		16	30		MHz
tplH	Low-to-high-level, high-to-low-level output			7	16	ns
tpHL	propagation fime, from input T_1 to output Q_A			8	18	ns
t _{PLH}	Low-to-high-level, high-to-low-level output			25	48	ns
t _{PHL}	propagation time, from input $\overline{T_1}$ to output Q_D			25	50	ns
t _{PLH}	Low-to-high-level, high-to-low-level output			7	16	ns
t _{PHL}	propagation time, from input $\overline{T_2}$ to output QB			8	21	ns
t _{PLH}	Low-to-high-level, high-to-low-level output	C _L =15pF (Note 4)		8	16	ns
t _{PHL}	propagation fime, from input $\overline{T_2}$ to output Q_C			10	21	ns
t _{PLH}	Low-to-high-level, high-to-low-level output			15	32	ns
tehL	propagation time, from input T2 to output QD			15	35	ns
t _{PHL}	High-to-low-level output propagation time, from inputs R _{D1} . R _{D2} to outputs Q _A . Q _B . Q _C . Q _D			17	40	ns

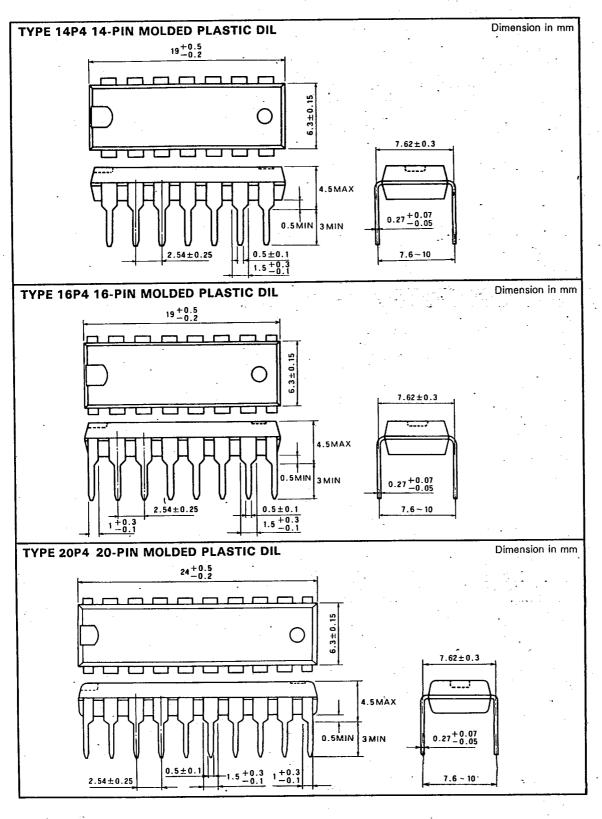
Note 4: Measurement circuit




- (1) The pulse generator (PG) has the following characteristics: PRR = 1MNz, t_r = 6ns, t_f = 6ns, t_w = 500ns, V_P = 3 $V_{P,P}$, Z_O = 50 Ω .
- (2) C_L includes probe and jig capacitance

TIMING REQUIREMENTS (VCC=5V, Ta = 25°C, unless otherwise noted)

Symbol	Parameter Test conditions	Task and distant		Limits		
		rest conditions	Min	Тур	Max	Unit
tw(TiH)	Clock input T ₁ high pulse width		15	6		ns
tw(T₂H)	Clock input T ₂ high pulse width		30	17		ns
tw(Ro)	Direct reset R _{D1} , R _{D2} pulse width		15	5		ns
tr	Clock pulse rise time			500	100	ns
tf	Clock pulse fall time			200	100	ns
trec(R _D)	Recovery time R _{D1} , R _{D2} to T ₁ , T ₂		25	8	1	ns


TIMING DIAGRAM (Reference level = 1.3V)

MITSUBISHI LSTTLs **PACKAGE OUTLINES**

MITSUBISHI {DGTL LOGIC} D7E D 6249827 0013561 3

