ARPAX

APG/UPG/IPG
 Magnetic Circuit Protectors

The APG/UPG magnetic circuit protector provides low-cost power switching, reliable circuit protection and accurate circuit control in one complete package. It is intended for use in data processing and broadcast equipment, vending and amusement machines, military and marine applications, and wherever precision operation is required.

Designed using a current sensitive hydraulic magnetic principle, the APG/ UPG adapts itself to many applications and environments. Temperature compensations which affect fuses and other thermal devices are not a concern. Nuisance tripping is minimized. The APG/UPG is available in a wide variety of configurations with a choice of delays and ratings. In addition, it is available in either DC, $50 / 60 \mathrm{~Hz}$ or 400 Hz versions.

Available in single or multi-pole variations, the APG/UPG comes with a variety of actuators. To enhance frontpanel aesthetics, toggle or rocker actuated handles and caps are available in a variety of attractive colors.

Multi-pole circuit protectors can be furnished with either single or multiple actuators. In addition, a unique sealed, single handle toggle version for harsh or military environments is available in single or multi-pole configurations.

The UPG circuit protector is recognized under UL Standard 1077, file numbers E66410 and E33504 as a supplementary protector. It is also certified by CSA under CSA STD. C22.2-No. 235, file number LR26229 as a supplementary protector. The APG is qualified to MIL-PRF-55629.

APG/UPG circuit protectors are available in one through four pole assemblies with a variety of pole arrangements, terminal styles, and accessories to meet your specifications, including APG/UPG adapter plate option to allow mounting in APL/UPL cutout.

Single Pole

APG 6-1*

Adapter Plate** P/N 120-700-1260

Single Pole, Mounting Detail

Notes: Tolerance $\pm .015$ [.38] unless noted. Dimensions in Brackets [] are millimeters.

* * Allows mounting in APL/UPL cutout.

MULTI-POLE CIRCUIT PROTECTORS

Two Pole Protectors

An assembly consisting of two single pole units, having their trip mechanisms internally coupled, and with a single toggle handle, forms the APG/UPG-11. It is also possible to provide a handle per pole, which is referred to as UPGH11. Individual poles may differ in ratings, delays and internal connections. An auxiliary switch may be included in either or both poles if they are of the series trip type. Screw-type terminals can be provided, in which case the designation would be APG/UPG-66.

Two Pole

UPG11

Optional, handle may be in pole 1 instead of pole 2)

Two Pole*

UPGH11

Two Pole

Panel Mounting Detail: Tolerance $\pm .005$ [.13] unless noted

[^0]| 116 | Multi-Pole Circuit Protectors |
| :--- | :--- |
| | |

Three Pole and Four Pole Protectors pole version.

* See single pole mounting detai
for hole sizes and locations.

Four Pole

Four Pole*

The three pole structure consists of three single pole units assembled with an internal mechanical interlock which actuates all units simultaneously. A single toggle handle operates all three poles, or a handle per pole is available. The four pole structure consists of four single pole units assembled with an internal mechanical interlock which actuates all units simultaneously. A double toggle handle operates all four poles, or a handle per pole is available. The individual poles need not have identical characteristics and any series trip pole may have an auxiliary switch. If screw-type terminals are required, the breaker designation will be APG/UPG-666 for a three pole version and APG/UPG-6666 for a four

Protector poles are numbered consecutively when viewed from the terminal side, with the ON position up, starting with Pole \#1 on the left side and proceeding to the right.

Three Pole

Mounting
Detail

Four Pole

Mounting
 Detail

Four Pole*

APGHX/UPGHX PROTECTORS

APGHX/UPGHX
Rocker actuated APGHX/UPGHX provides one rocker handle for each pole of a multi-pole circuit protector.

Number of Poles	Dimension "A"
2 Pole	$1.510 \pm .005$
	$[38.35 \pm .13]$
3 Pole	$2.265 \pm .005$
	$[57.53 \pm .13]$

Panel Mounting Detail: Tolerance
$\pm .005$ [.13] unless noted.

APGX/UPGX
Rocker actuated APGX / UPGX provides one rocker handle per circuit protector.

Single Pole

One, Two \& Three Pole

Two Pole

(Optional, handle may be in pole 2 instead of pole 1)

Panel Mounting Detail: Tolerance $\pm .005$ [.13]
unless noted

APGN/UPGN PROTECTORS

Bat Handle/Panel Seal (APGN/UPGN)
The APGN is designated to provide circuit protection in harsh and military environments. Waterproof panel integrity is provided by an " 0 " ring bushing seal and silicon rubber gland within the bushing/handle assembly. Single, two or three pole versions are available with two and three pole versions featuring a single operating handle and mounting bushing.

Single Pole

(Optional handle may be in pole 2 instead of pole 1)

Three Pole

Three Pole*

Optional Handle
detail tolerance
$\pm .005$ [.13] unless noted.
*See single pole mounting detail for hole sizes and locations.

Two Pole*

120	APGN/UPGN Protectors

APG / UPG HANDLES AND ACTUATORS

Standard Handle Location
(Applies to 2 Pole Only)

Toggle Handles

APG/UPG

APGN/UPGN

APGX/UPGX
Bat Handle/
Panel Seal

Rocker

Toggle Handles
The APG/UPG circuit protector is available with toggle handles in six different colors. For attractive panel appearance, color caps are also available. Handles may be specified in black, white, yellow, red, blue and green. For multi-pole units, specify handle per unit or handle per pole.

Color Caps
For attractive panel appearance the following color caps are available for use on APG/UPG protectors.

Red	$762-300-8046$
Green	$762-300-8043$
White	$762-300-8040$
Gray	$762-300-8041$
Blue	$762-300-8042$
Yellow	$762-300-8044$
Orange	$762-300-8045$
Brown	$762-300-8047$
Black	$762-300-8048$

IPG MAGNETIC CIRCUIT PROTECTORS

The IPG circuit protectors provide the advantages of magnetic "stand alone" protection and compliance with UL, CSA, SEV, VDE and IEC standards.

They are UL Recognized per UL STD. 1077 as supplementary protectors, CSA Certified per CSA C22.2-No. 235 as supplementary protectors, VDE approved and CE compliant to VDE 0642 (EN60934). Additionally, they conform to the spacing requirements of VDE 0730, 0804, 0805 and 0806, and IEC 950 for use in office machines and data processing equipment.

IPG circuit protectors have current ratings from .020 to 50 amperes, $250 \mathrm{Vac}, 65 \mathrm{Vdc}$, and an auxiliary switch is available with either gold or silver contacts. They feature one through four pole configurations, with one handle per pole. A choice of handle actuation colors, terminals and hardware are available and international markings are standard. And, with an adapter plate, they will fit in panels cut for Airpax APL and UPL type protectors.

Note:
Main terminals are stationary male push-on type .250 [6.35] wide x .031 [.787] thick x .312 [7.92] long or $8-32 \times .187$ [4.75] screw type (30A). 10-32 x . 187 [4.75] screw type (>30A).

Single Pole
Two Pole

Four Pole

Panel mounting detail: Tolerance $\pm .005$ [.13] unless noted

APG / UPG /IPG CONFIGURATIONS

Series and Switch Only

Shunt and Dual Coil

Tapped Coil

Series Trip

The most popular configuration for magnetic protectors is the series trip where the sensing coil and contacts are in series with the load being protected. The handle position conveniently indicates circuit status. In addition to providing conventional overcurrent protection, it's simultaneously used as an on-off switch.

Shunt Trip

The shunt trip is designed for controlling two separate loads with one assembly. The control is established by providing overload protection for the critical load. When the current through this load becomes excessive and reaches the trip point, the protector will open and remove power from both loads simultaneously. The total current rating of both loads must not exceed the maximum contact rating.

APG / UPG / IPG CONFIGURATIONS (CONT'D)

Relay Trip

This permits the overload sensing coil to be placed in a circuit which is electrically isolated from the trip contacts. The coil may be actuated by sensors monitoring pressure, flow, temperature, speed, etc. Other typical applications include crowbar, interlock and emergency/rapid shutdown circuitry. Trip may be accomplished by voltage or current, which must be removed after trip.

Auxiliary Switch

This is furnished as an integral part of a series pole in single or multipole assemblies. Isolated electrically from the protector's circuit, the switch works in unison with the power contacts and provides indication at a remote location of the protector's on-off status.

Voltage Trip

Sometimes called "dump circuits" or "panic trip circuits," these units make it possible to open main power contacts with lower power inputs from one or more sources. This configuration is becoming increasingly more important for sensitive circuitry and denser packaging in automation systems. Available in series, shunt, or relay configurations.

Relay and Dual Coil

Auxiliary Switch

-1 REC 4
-1 REG 4
Quick Connect
Terminals

Series with Auxiliary Switch
All auxiliary switch terminals
.020[.51] thick
Standard auxiliary switch is REC 4.

-1 REC 5
-1 REG 5
Quick Connect
Terminals

Breaker in OFF position

Note:
Main terminals are stationary male push-on type .250 [6.35] wide, x 031 [.787] thick, x
.312 [7.92] long or 8-32 x [4.75] screw type (30A), 10-32 x . 187 [4.75] screw type (>30A).

Note:
Tolerance $\pm .015$ [.38] unless noted. Dimensions in Brackets [] are millimeters.

APG / UPG / IPG OPERATING CHARACTERISTICS

Nominal DCR and Impedance

Current Ratings in Amperes	DC Delays				50/60Hz Delays				400Hz Delays	
	Resistance in Ohms				Impedance in Ohms				Impedance in Ohms	
	50	59	$\begin{aligned} & 51-52 \\ & 53 \end{aligned}$	$\begin{aligned} & \text { Dual Coil } \\ & 51-52 \\ & 53 \end{aligned}$	60	69	600 61-62 71-72-73	64-65-66 Dual Coil 61-62	40-49	$\begin{aligned} & 41-42 \\ & 43 \end{aligned}$

.05	162.	540.	460.	640.	174.	419.	582.	691.	1975.	1195.
.10	35.4	105.	155.	150	42.5	103.4	119.0	160.	495.	284.
.50	1.2	4.2	4.5	5.6	1.9	4.	4.1	6.2	22.	12.
1.	.236	1.02	1.2	1.41	.41	.955	1.08	1.56	5.01	2.72
5.	.021	.048	.059	.070	.030	.045	.048	.068	.240	.140
10.	.0060	.0121	.0140	.0160	.0075	.0105	.0134	.0174	.0520	.0283
15.	.0040	.0067	.0092	.0100	.0038	.0068	.0070	.0120	.0260	.0140
20.	.0032	.0047	.0052	.0070	.0024	.0049	.0050	.0069	.0140	.0088
30.	.0021	.0036	.0036	.0040	.0022	.0032	.0035	.0037	.0079	.0043
50.	.0020	.0024	.0026	.0023	.0020	.0020	.0025	.0030	.0036	.0028

Notes: DCR and impedance based on 100% rated current applied and stablized a minimum of one hour.
Tolerance: .02 amperes to 2.5 amperes, $\pm 20 \% ; 2.6$ amperes to 20 amperes, $\pm 25 \% ; 21$ amperes to 50 amperes, $\pm 50 \%$. Consult factory for special values and for coil impedance of delays not shown.

Percentage Overload vs. Trip Time in Seconds

Delay	100%	125% (Note A)	150%	200%	400%	600%	800%

40	No Trip	May Trip	. 040 Max .	. 035 Max .	. 030 Max .	. 025 Max .	. 020 Max .	. 018 Max.
41	No Trip	May Trip	.5-8	.15-1.9	. $02-.4$. $006-.25$. 004 - . 1	. 004 - . 05
42	No Trip	May Trip	5-70	2.2-25	. $40-5$. 012 - 2	. 006 - . 2	. $006-.15$
49	No Trip	. 150 Max .	. 100 Max .	. 032 Max .	. 020 Max .			
43 \& 400	No Trip	May Trip	35-350	12-120	1.5-20	. $1-4$. $01-.250$. $009-.100$
50	No Trip	May Trip	. 032 Max .	. 024 Max.	. 020 Max .	. 018 Max .	. 016 Max .	. 015 Max .
51	No Trip	5-6.5	. 3-3	. $1-1.2$. 031 - 5	. $011-.25$. 004 - . 1	. 004 - . 08
52	No Trip	2-60	1.8-30	1-10	.15-2	.04-1	. 008 - . 5	. 006 - . 1
59	No Trip	. 100 Max .	. 070 Max	. 032 Max .	. 020 Max .	. 020 Max.	. 020 Max .	. 020 Max .
53 \& 500	No Trip	80-700	40-400	15-150	2-20	.7-10	.1-3	. $010-.100$
60	No Trip	May Trip	. 040 Max .	. 035 Max .	. 030 Max .	. 025 Max .	. 020 Max .	. 018 Max .
61	No Trip	. $7-12$. $35-7$	130-3	. $030-1$. 015 - . 3	. $01-.15$. 008 - . 1
62	No Trip	10-120	6-60	2-20	. 2-3	. 02 - 2	. 015 - . 8	. $01-.25$
64	No Trip	.7-10	. $35-6$.15-3	. $05-6$. 025 - . 3	. $020-.22$. $015-.15$
65	No Trip	7-90	3-40	1-12	. 2 -3	. 08 - 1	. $03-.7$. 016 - . 3
66	No Trip	50-700	30-400	10-150	1.5-20	. 4 - 10	. $05-3$. 02 - 2
69	No Trip	. 120 Max .	. 100 Max .	. 050 Max .	. 022 Max.	. 017 Max .	. 017 Max.	. 017 Max .
600	No Trip	80-700	45-400	15-150	2-20	.2-4	. 025 - 1	. $01-.2$

[^1]
APG/UPG/IPG OPERATING CHARACTERISTICS AND DELAY CURVES

Dual Frequency (DC/60Hz)

Delay	$\mathbf{1 0 0 \%}$	135%	150%	$\mathbf{2 0 0 \%}$	$\mathbf{4 0 0 \%}$	$\mathbf{6 0 0 \%}$	$\mathbf{8 0 0 \%}$	
71	No Trip	$.4-14$	$.2-7$	$.1-3$	$.027-1$	$.015-.3$	$.01-.15$	$.008-.1$
72	No Trip	$7-130$	$3-60$	$1.3-20$	$.085-3$	$.02-2$	$.015-.8$	$.01-.26$
73	No Trip	$50-700$	$30-400$	$10-150$	$.8-20$	$.14-4$	$.025-1$	$.01-.26$

Notes: All trip curves and trip currents are specified with the protector mounted in the normal vertical position at ambient temperture of +25 C . Protectors do not carry current prior to application of overload.

Inrush Pulse Tolerance

It can be seen that the 64, 65 and 66 delays have a high inrush capability and for most applications an inertia wheel would not be required. Pulse tolerance is defined as a single pulse of half sine wave peak current amplitude of 8 milliseconds duration that will not trip the circuit breaker.

50/60 Hz Delav Curves (typ)

Delay	Pulse Tolerance
61,62	10 times rated current
$61 F, 62 F$	20 times rated current
$64,65,66$	20 times rated current
$64 F, 65 F, 66 F$	35 times rated current
Note: These limits do not apply to dual coil and tapped coil units.	

 $50,60,49,59$ and 69 provide fast-acting, instantaneous trip and are often used to protect sensitive electronic equipment (not recommended where known inrush exists). Delays $41,51,61$ and 71 have a short delay for general purpose applications. Delays 42,52 and 62 are long enough to start certain types of motors and most transformer and capacitor loads. Delays 43,53 and 63 are long delays for special motor applications at 400 Hz DC and $50 / 60 \mathrm{~Hz}$.

DC Delay Curves (typ)

400Hz Delay Curves (typ)

SPECIFICATIONS

Trip Free
Will trip open on overload, even when forcibly held in the ON position.
Trip Indication
The operating handle moves positively to the OFF position on overload.

Ambient Operation

APG/UPG protectors operate normally in temperatures between $-40^{\circ} \mathrm{C}$ and $+85^{\circ} \mathrm{C}$.

Insulation Resistance
Not less than 100 megohms at 500 Vdc .
Dielectric Strength
APG/UPG/PG protectors withstand 1500 volts, 60 Hz for 60 seconds between all electrically isolated terminals.

Except auxiliary switch terminals shall withstand 600 Volts at 60 Hz .

Endurance

Withstands 10,000 operations at rated voltage and current or withstands 50 operations of 600% AC or 1000% DC rated current at rated voltage followed by 6000 operations at rated voltage and current, in accordance with UL 1077.

Auxiliary Switch Ratings

Silver			
3.0 AMP	$@$	120 Vac	-
1.5 AMP	@	-	32 Vdc
Gold			
.100 AMP	$@$	32 Vac	32 Vdc

Agency Approvals		
Voltage (V)	Rated Current (A) Minimum/Maximum	Interrupting Capacity (A)

Maximum Rating (V)	Frequency (Hz)	Phase	Minimum Poles	UL/CSA	UL1077/CSA	Maximum Series Fuse
32	DC	-	1	$.05-50$	2500	none
65	DC	-	1	$.05-30$	2000	none
130	DC	-	2	$.05-15$	1000	none
120	$50 / 60$	1	1	$.05-50$	3600	200
$120 / 240$	$50 / 60$	1	2	$.05-50$	1000	none
240	$50 / 60$	$1 \& 3$	1	$.05-10$	5000	40
250	$50 / 60$	$1 \& 3$	1	$.05-50$	1000	none
250	$50 / 60$	$1 \& 3$	1	$.05-50$	3650	80
277	$50 / 60$	1	1	$.05-30$	1000	120
277	$50 / 60$	1	1	$.05-10$	2000	40
125	400	1	1	$.05-30$	2100	80
240	400	$1 \& 3$	1	$.05-20$	1000	none
250	400	$1 \& 3$	1	$.05-30$	3500	125
250	400	$1 \& 3$	1	$.05-30$	$.05-20$	80
277	400	1	1	1000	none	

Note: Series fuse to be a branch-circuit UL approved type K-5 back-up fuse rated at not more than four times the rating of the highest-rated type UPG (15 amperes minimum).

Moisture Resistance
Meets all the requirements of MIL-PRF-55629 when tested in accordance with Method 106 of MIL-Std. 202.

Salt Spray (Corrosion)
Meets requirements of MIL-PRF-55629 when tested in accordance with Method 101 of MIL-Std. 202.
All APG/UPG protectors are constructed with stainless steel springs and plated parts. In addition to meeting normal requirements for moisture and salt spray resistance, the protector meets the fungus resistance requirements of MIL-PRF-55629.

Poles
One through four poles with the UPGH, one through three poles with all other types.

MIL-PRF-55629 (APG)
Single, two and three pole versions, with and without the auxiliary switch option, have been qualified to MIL-PRF-55629.

Construction
Series, shunt, relay, dual coil, tapped coil, voltage trip, no-voltage trip, auxiliary switch, switch only. Various delays and combinations.

Shock
Withstands 100G or more without tripping while carrying full rated current per MIL-Std. 202, Method 213, Test Condition I. Instant trip protectors are tested at 80% of rated current.

Vibration
Withstands 10 G without tripping while carrying full rated current per MIL-Std. 202, Method 204, Test Condition A. Instant trip protectors are tested at 80% of rated current.

Approximate Weight Per Pole

	Ounces	Grams
APG/UPG/IPG	2.2	60.5
APGN/UPGN	3.0	76.2

Recommended Torque Specifications

$6-32$ mounting inserts	$6-8$ inch pounds
M3 mounting inserts	$4-5$ inch pounds
$8-32$ screw terminals	$10-12$ inch pounds
M4 screw terminals	$10-12$ inch pounds
$10-32$ screw terminals	$14-15$ inch pounds
M5 screw terminals	$14-15$ inch pounds
$1 / 2-32$ mounting bushing	$30-35$ inch pounds

APG / UPG DECISION TABLES

How to Order
The ordering code for APG/UPG circuit protectors may be determined by following the steps in the decision tables shown here.

The coding given permits a self-assigning part number but with certain limitations. Units with mixed ratings, combinations of styles, or constructions not listed in the third decision table, require a factory-assigned part number. With these, it is suggested that order entry be by description and/or drawings, and a part number will be established. Additionally, it is standard policy to establish a factory-assigned part number whenever a descriptive drawing exists to provide cross reference, traceability and manufacturing control.

When specifying a circuit protector for AC motor start or high inrush applications, the peak amplitude and surge duration should be specified for factory assistance in rating selection.

For example, the following is the code for a single pole UPG, quickconnect type terminal series unit with auxiliary switch, designed for operation in a $50 / 60 \mathrm{~Hz}$ circuit. It has a short time delay and a rating of 20 amperes. A white handle is specified by the seventh decision table.

To determine the ordering number for your particular APG/UPG unit, simply follow the steps shown. You may use this number to place an order or as a reference for further questions you may have.

Notes:

A It is recommended that power leads be soldered to protectors having quick-connect terminals for current trip ratings above 10 amperes.
B The standard current values for 100% of rated current are listed. Please consult an Airpax office or sales representative for other values.
C UL recognized and CSA certified applications above 30 amperes are restricted to loads having a power factor of 75 minimum and limited to 32 Vdc only. Standard terminals on ratings over 30 amperes are 10-32 screw type.
D Four pole protectors are available only in the APGH/UPGH and APG/UPG types. The APGH/UPGH four pole provides one handle per pole, while the APG/UPG four pole has handles in the center two poles only, for simplified mounting.
E Sub panel mount available in APGX/UPGX configuration only.
F When " A " is specified in the sixth decision in conjunction with APG/UPG6 type, metric screw terminals are supplied.
G If a circuit breaker is marked in this manner, it means 277 V per pole - single phase source. Thus, if a two or three pole unit is marked 277V, all line terminals must be connected to the same phase, assuming the 277V is taken from line to neutral of 3 phase $277 / 480 \mathrm{~V}$ system.

1	First Decision
Type	
Type	Description
APG	One handle per unit
UPG	One handle per unit UL Recognized and CSA Certified
APGX	One rocker handle per unit
UPGX	One rocker handle per unit UL Recognized and CSA Certified
APGN	Panel seal (one bat handle per unit)
UPGN	Panel seal (one bat handle per unit) UL Recognized and CSA Certified
APGH	One handle per pole
UPGH	One handle per pole ULR Recognized and CSA Certified
APGHX	One rocker handle per pole UPGHXOne rocker handle per pole UL Recognized and CSA Certified

2	Second Decision	
Poles (Note A)		
Quick- Connect Terminals	Screw Terminals	Number of poles
1	6	Single pole unit
11	66	Two pole unit
111	666	Three pole unit
1111	6666	Four pole unit (Note $D)$

132	APG/UPG Decision Tables

IPG DECISION TABLES

How to Order
The ordering code for IPG circuit protectors may be determined by following the steps in the decision tables shown here.

The coding given permits a self-assigning part number but with certain limitations. Units with mixed ratings, combinations of styles, or constructions not listed in the third decision table, require a factoryassigned part number. With these, it is suggested that order entry be by description and/or drawings, and a part number will be established. Additionally, it is standard policy to establish a factory-assigned part number whenever a descriptive drawing exists to provide cross reference, traceability and manufacturing control.

When specifying a circuit protector for AC motor start or high inrush applications, the peak amplitude and surge duration should be specified for factory assistance in rating selection.

For example, the following is the code for a single pole IPG, quickconnect type terminal series unit with auxiliary switch, designed for operation in a $50 / 60 \mathrm{~Hz}$ circuit. It has a short time delay and a rating of 20 amperes. Metric mounting inserts and a white handle are also specified.

To determine the ordering number for your particular IPG unit, simply follow the steps shown. You may use this number to place an order or as a reference for further questions you may have.

Notes:

A It is recommended that power leads be soldered to protectors having push-on terminals for current trip ratings above 10 amperes.
B The standard current values for 100% of rated current are listed in the fifth decision table. Please consult an Airpax office or sales representative for other values.
C All IPG protectors meet normal requirements for moisture and salt spray resistance.
D UL recognized and CSA certified applications above 30 amperes are restricted to loads having a power factor of .75 minimum, and limited to 32 Vdc only. VDE approval above 30 amperes is restricted to 32 Vdc and $120 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$. Standard terminals on ratings over 30 amperes are 10-32 screw type.
E When " A " is specified in the sixth decision in conjunction with IPG-6 type, metric screw terminals are supplied.

1 First Decision Type Std. Handle Color Type Description Black IPG Single pole with one handle per unit (Not available in multi-pole configuration) Black IPGH Multi-pole with handle per pole

Second Decision		
Poles		
Push-On Terminals Screw Terminals 1 6Number of poles		
11	66	Single pole
111	666	Two pole
1111	6666	Three pole

Third Decision		
Internal Configuration		
-0		Switch only (omit 4th and 5th decisions)
$\begin{aligned} & -1 \\ & -1 \text { PREC4 } \end{aligned}$		Series
-1REG4		Auxiliary switch* . 110 quick-connect
		Auxiliary switch* (Gold Contacts) . 110 quick-connect
-18EC5		Auxiliary switch* . 187 quick-connect
		Shunt (up to 30 amperes only)
*Only one auxiliary switch is normally supplied on two and three pole units. Switch is located in the right-hand pole (viewed from terminal end) unless otherwise specified.		

[^0]: Note: Tolerance $\pm .015$ [.38] unless noted. Dimensions in Brackets [] are millimeters

 * See single pole mounting detail for hole sizes and locations.

[^1]: Notes: All trip curves and trip currents are specified with the protector mounted in the normal vertical position at ambient temperature of $+25^{\circ} \mathrm{C}$. Protectors do not carry current prior to application of overload. A: Ratings above 30 amps may deviate from the above limits by approximately 10% (130% for delay 49).

