
								F	REVISION	ONS										
LTR					[DESCF	RIPTIO	١					DA	TE (YF	R-MO-E	DA)		APPR	OVED	
А		Add footnote <u>4</u> / in 1.5. Add footnote <u>2</u> / and make chang table Irrp				ange to	I _{DCHO}				03-0	3-06-17		R	R. MONNIN					
REV SHEET REV																				
	15	16	17	18	19	20	21	22	23											
SHEET REV		16	17	18 RE\		20		22	23 A		A	A	A	A	A	A	A			
SHEET REV SHEET		16	17		/	20	21 A	22		4	A 5	A 6	A 7	A 8	A 9	A 10	A 11	12	13	14
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A			17	RE\ SHE PRE RIC	PARED) BY ICER	Α		Α	4	5	6 EFEN	7 SE SI	8 JPPL	9 Y CE	10	11 COL	.UMB		14
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STA	NDAF	RD CUIT	17	REV SHE PRE RIC	/ / EET PARED) BY ICER BY	A 1		Α	4	5	6 EFEN	7 SE SI COL	8 JPPL UMBI	9 Y CE JS, O	10	11 COL 43216	.UMB		14
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STA MICRO DRA THIS DRAWII FOR L	NDAF OCIRC AWIN	RD CUIT G		REN SHE PRE RIC CHE RA.	PARED	D BY ICER BY PITHAC	A 1		Α	MIC	DI DI CROC RDEN	EFEN	FE SI COLUMN TO THE SE SI	JPPL UMBU o://ww	y CE JS, O vw.ds	NTER HIO 4 ccc.dla	COL 43216 a.mil	LUMB S	US	14
SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STA MICRO DRA THIS DRAWII FOR L	NDAF OCIRC AWIN NG IS A JSE BY A RTMEN NCIES (RD CUIT G VAILAE ALL ITS DF THE	BLE	REV SHE PRE RIC CHE RA.	PAREC CK OFF	D BY ICER BY PITHAC D BY D MON	A 1	2	Α	MIC HAI PUI	DIE CROC RDEN LSE \	EFEN: CIRCUNED, WIDT	FE SI COLUMN TO THE SITE OF TH	JPPL UMBU :://ww LINE/ H SPI DDUI	y CE Js, o w.ds AR, R EED, ATC	NTER	COL 43216 a.mil	UMB S N JTPU SEU	US	14

1. SCOPE

- 1.1 <u>Scope</u>. This drawing documents two product assurance class levels consisting of high reliability (device classes Q and M) and space application (device class V). A choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). When available, a choice of Radiation Hardness Assurance (RHA) levels are reflected in the PIN.
 - 1.2 PIN. The PIN is as shown in the following example:

- 1.2.1 RHA designator. Device classes Q and V RHA marked devices meet the MIL-PRF-38535 specified RHA levels and are marked with the appropriate RHA designator. Device class M RHA marked devices meet the MIL-PRF-38535, appendix A specified RHA levels and are marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device.
 - 1.2.2 <u>Device type(s)</u>. The device type(s) identify the circuit function as follows:

<u>Device type</u> <u>Generic number</u>		<u>Circuit function</u>
01	IS-1825ASRH	Radiation hardened, DI dual output pulse width modulator with SEU protection

1.2.3 <u>Device class designator</u>. The device class designator is a single letter identifying the product assurance level as follows:

Device class

M

Vendor self-certification to the requirements for MIL-STD-883 compliant, non-JAN class level B microcircuits in accordance with MIL-PRF-38535, appendix A

Certification and qualification to MIL-PRF-38535

1.2.4 Case outline(s). The case outline(s) are as designated in MIL-STD-1835 and as follows:

Outline letter	tline letter Descriptive designator		Package style
E	CDIP2-T16	16	Dual-in-line
Χ	CDFP4-F20	20	Flat pack

1.2.5 <u>Lead finish</u>. The lead finish is as specified in MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-02511
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 2

Q or V

1.3	Absolute	maximum	ratings.	1/2/3/

Supply voltage (V _S)	35 V dc
Power dissipation (P _D)	714 mW
Junction temperature (T _J)	+175°C maximum
Lead temperature (soldering, 10 seconds)	+260°C maximum
Storage temperature range	-65°C to +150°C
Thermal resistance, junction-to-case (θ _{JC}):	
Case E	18°C/W
Case X	15°C/W
Thermal resistance, junction-to-ambient (θ_{JA}):	
Case E	
Case X	80°C/W

1.4 Recommended operating conditions. 2/3/

Supply voltage (V _S)	12 V to 20 V
Ambient operating temperature range (T _A)	-50°C to +125°C

1.5 Radiation features:

Maximum total dose available (dose rate = 50 - 300 rad (Si) / s):

· · · · · · · · · · · · · · · · · · ·	_
Device classes M, Q, or V	3 x 10 ⁵ Rads 4/
Dose-rate latch-up	-
Single event latch-up	
Single event upset	
Oligic event apoet	

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those listed in the issue of the Department of Defense Index of Specifications and Standards (DoDISS) and supplement thereto, cited in the solicitation.

SPECIFICATION

DEPARTMENT OF DEFENSE

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

- 1/ Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.
- 2/ Unless otherwise noted, all voltages are referenced to GND.
- 3/ The limits for the parameters specified herein shall apply over the full specified V_{CC} range and ambient temperature range of -50°C to +125°C unless otherwise noted.
- These parts may be dose rate sensitive in a space environment and may demonstrate enhanced low dose rate effects. Radiation end point limits for the noted parameters are guaranteed only for the conditions specified in MIL-STD-883, method 1019, condition A.
- <u>5</u>/ Guaranteed by process or design.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-02511
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL A	SHEET 3

STANDARDS

DEPARTMENT OF DEFENSE

MIL-STD-883 - Test Method Standard Microcircuits.

MIL-STD-1835 - Interface Standard Electronic Component Case Outlines.

HANDBOOKS

DEPARTMENT OF DEFENSE

MIL-HDBK-103 - List of Standard Microcircuit Drawings.

MIL-HDBK-780 - Standard Microcircuit Drawings.

(Unless otherwise indicated, copies of the specification, standards, and handbooks are available from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

- 3.1 <u>Item requirements</u>. The individual item requirements for device classes Q and V shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. The individual item requirements for device class M shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein.
 - 3.1.1 Microcircuit die. For the requirements for microcircuit die, see appendix A to this document.
- 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein for device classes Q and V or MIL-PRF-38535, appendix A and herein for device class M.
 - 3.2.1 Case outlines. The case outlines shall be in accordance with 1.2.4 herein.
 - 3.2.2 Terminal connections. The terminal connections shall be as specified on figure 1.
 - 3.2.3 Logic diagram. The logic diagram shall be as specified on figure 2.
 - 3.2.4 Radiation exposure circuit. The radiation exposure circuit shall be as specified on figure 3.
- 3.3 <u>Electrical performance characteristics and post irradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and post irradiation parameter limits are as specified in table I and shall apply over the full ambient operating temperature range.
- 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table IIA. The electrical tests for each subgroup are defined in table I.
- 3.5 <u>Marking</u>. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked as listed in MIL-HDBK-103. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device. For RHA product using this option, the RHA designator shall still be marked. Marking for device classes Q and V shall be in accordance with MIL-PRF-38535. Marking for device class M shall be in accordance with MIL-PRF-38535, appendix A.
- 3.5.1 <u>Certification/compliance mark</u>. The certification mark for device classes Q and V shall be a "QML" or "Q" as required in MIL-PRF-38535. The compliance mark for device class M shall be a "C" as required in MIL-PRF-38535, appendix A.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-02511
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 4

Test	Symbol	-50°C	conditions $\underline{1}/\underline{2}/$ $\leq T_A \leq +125^{\circ}C$ therwise specified	Device type	Group A subgroups	Lim	mits	Uni
			· 			Min	Max	†
Reference section								
Output voltage	V _{REF}			01	1	5.00	5.20	V
					2,3	4.920	5.28	-
			M,D,P,L,R,F	-	1	4.920	5.28	-
ine regulation	V _{LINE}	12 V < V _C < 2	20 V	01	1	-15	15	m۷
ŭ	LINE	14 * * * 0 * =	10 v		2,3	-20	20	_
		1	M,D,P,L,R,F		1	-20	20	
_oad regulation	V _{LOAD}	1 mA < I _{OUT}	< 10 mA	01	1	-25	25	m۷
					2,3	-50	50	1
			M,D,P,L,R,F	-	1	-50	50	
Total output variation	V _{OM}	V _C = 12 V, 20	0 V,	01	1	5.00	5.20	V
Variation		I _L = 1 mA, 10) mA		2,3	4.92	5.28	
			M,D,P,L,R,F	-	1	4.92	5.28	
Short circuit current	I _{SC}	V _{REF} = 0 V		01	1	30		m/
					2,3	20		-
			M,D,P,L,R,F	4	1	20		-

See footnotes at end of table.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000	SIZE A		5962-02511
		REVISION LEVEL A	SHEET 5

	TABI	_E I. <u>Electrical</u>	performano	ce charac	cteristics.	– Continued.			
Test	Symbol	-50°C ≤	tions $\underline{1}/\underline{2}/$ $T_A \le +125^\circ$ erwise spec	С	Device type	Group A subgroups	Lin	nits	Unit
							Min	Max	
Oscillator section									
Initial accuracy	Fo				01	4	340	425	kHz
						5,6	300	425	
			M,D,P,L,R	l,F		4	300	425	
Voltage stability	F _{PSRR}	12 V < V _C < 2	20 V		01	4	-3	3	%
						5,6	-5	5	
			M,D,P,L,R	l,F		4	-3	3	<u> </u>
Total variation	F _{OM}	V _C = 12 V, 20) V		01	4	340	425	kHz
						5,6	300	425	<u>-</u>
			M,D,P,L,R	l,F		4	300	425	-
Clock out high voltage	VCLKH				01	1	4.0		V
						2,3	3.75		
			M,D,P,L,R	l,F		1	3.75		<u>.</u>
Clock out low	V _{CLKL}				01	1,2,3		0.2	V
voltage			M,D,P,L,R	l,F		1		0.2	<u> </u>
Error amplification section	<u> </u> on								
Input offset voltage	Vos	V _{CM} = 3.0 V,	V _O = 3.0 V		01	1,2,3	-10	10	mV
			M,D,P,L,R	l,F		1	-10	10	1
See footnotes at end of t	able.			l				I	
	TANDARD			SIZ				596	62-02511
DEFENSE SUP	IRCUIT DR PLY CENTER JS, OHIO 432	R COLUMBUS			-	REVISION LEVEL	L	SHEE	

Test	Symbol	Test conditions $\underline{1}/\underline{2}/$ $-50^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq +125^{\circ}\text{C}$ unless otherwise specified		Device type	•		Limits	
					 	Min	Max	
Error amplification sec	tion - continue	ed			I I		l .	
Input bias current	I _{IB}	V _{CM} = 3.0 V,	V _O = 3.0 V	01	1,2,3	-2	2	μΑ
			M,D,P,L,R,F		1	-2	2	
Input offset current	los	V _{CM} = 3.0 V,	V _O = 3.0 V	01	1,2,3	-2	2	μΑ
			M,D,P,L,R,F		1	-2	2	_
Open loop gain	Avol	1 V < V _O < 4 V	V	01	4,5,6	60		dB
			M,D,P,L,R,F		4	60		
Common mode rejection ratio	CMRR	1.5 V < V _{CM} <	< 4.0 V	01	4	65		dB
rejection ratio					5,6	45		_
		M,D,P,L,R,F	65		_			
Power supply rejection ratio	PSRR	12 V < V _C < 2	0 V	01	4,5,6	70		dB
•			M,D,P,L,R,F		4	70		
Output sink current	l _{OL}	VE/A OUT = 1.	0 V	01	1,2,3	1		mA
			M,D,P,L,R,F		1	1		_
Output source current	ГОН	VE/A OUT = 4.	0 V	01	1,2,3	-0.5		mA
			M,D,P,L,R,F		1	-0.5		_
Output high voltage	V _{OH1}	I _{E/A} OUT = -0.	5 mA	01	1,2,3	4.0		V
			M,D,P,L,R,F		1	4.0		_
see footnotes at end of	table.			1			1	
	STANDARE SIRCUIT DE			ZE A			5962-	02511
DEFENSE SUF		R COLUMBUS		RE	EVISION LEVEL A		SHEET	

Test	Symbol	mbol Test conditions $\underline{1}/\underline{2}/$ $-50^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq +125^{\circ}\text{C}$ unless otherwise specified		Device type	Group A subgroups	Lin	nits	Unit
						Min	Max	
Error amplification se	ection - continue	d						
Output low voltage	V _{OL1}	I _{E/A OUT} = 1 mA		01	1,2,3		1.0	V
		M,	D,P,L,R,F		1		1.0	
Pulse width modulate	or (PWM) compa	arator section						
Ramp bias current	I _{RAMP}	V _{RAMP} = 0 V		01	1,2,3		-8	μΑ
		M,	,D,P,L,R,F		1		-8	_
Outy cycle range	DC _{max}			01	4,5,6	40		%
		M,	,D,P,L,R,F		4	40		
E/A out zero DC threshold voltage	RAMPoffset	Ramp voltage = 0	0 V	01	1,2,3	0.81		V
		M,	,D,P,L,R,F		1	0.81		
Soft start section								
Charge current	I _{CHG}	Soft start voltage	e = 2.5 V	01	1	8	20	μА
					2,3	8	25	_
		M,	,D,P,L,R,F		1	8	25	
Discharge current	I _{DCHG}	Soft start voltage	e = 2.5 V	01	1,2,3	0.1	0.50	mA
		M,	,D,P,L,R,F		1	0.1	0.50	
ee footnotes at end o	of table.	<u> </u>						
	STANDARD	AWING	SIZ A				5962-	02511
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000			R	EVISION LEVEL A		SHEET	3	

Test	Symbol	Test conditions 1/2/ -50°C ≤ T _A ≤ +125°C unless otherwise specified		Device type	Group A subgroups	Limits		Unit
						Min	Max	
Current limit / Start sequ	uence / Faul	t section		1				1
Restart threshold	V _{RS}			01	1,2,3		0.5	V
			M,D,P,L,R,F		1		0.5	
ILIM bias current	I _{BLIM}	0 < V _{ILIM} < 2	V	01	1,2,3		15	μА
			M,D,P,L,R,F		1		15	-
Current limit threshold	VLIMIT	V _{LIMIT} 01	01	1,2,3	0.85	1.15	V	
			M,D,P,L,R,F		1	0.85	1.15	
Over current threshold	V _{OVER}			01	1,2,3	1.05	1.26	V
			M,D,P,L,R,F		1	1.05	1.26	_
Output section								1
Output low saturation 1	V _{SATL1}	I _{OUT} = 20 m	A	01	1		0.8	V
					2,3		1.0	_
			M,D,P,L,R,F		1		0.8	_
Output low saturation 2	V _{SATL2}	I _{OUT} = 200 n	nA	01	1,2,3		2.2	V
			M,D,P,L,R,F		1		2.2	
See footnotes at end of to	able.	ı						ı

SIZE

Α

REVISION LEVEL

Α

5962-02511

9

SHEET

STANDARD

MICROCIRCUIT DRAWING
DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000

Test	Symbol	Test conditions $\underline{1}/\underline{2}/$ -50°C \leq T _A \leq +125°C unless otherwise specified		Device type	Group A subgroups	Lin	mits	Uni
						Min	Max	
Output section – continu	ued.						1	
Output high saturation 1	V _{SATH1}	I _{OUT} = 20 m/	A	01	1,2,3	10		V
Saturation i			M,D,P,L,R,F		1	10		
Output high saturation 2	V _{SATH2}	I _{OUT} = 200 n	nA	01	1,2,3	9		V
			M,D,P,L,R,F		1	9		
Under voltage lockout (UVLO) output low	UVLO _{OLS}	I _O = 20 mA		01	1,2,3		1.2	V
saturation voltage			M,D,P,L,R,F		1		1.2	
Under voltage section					1			
Start threshold voltage	VSTART			01	1,2,3	8.2	8.8	V
			M,D,P,L,R,F		1	8.2	8.8	
Stop threshold voltage	VSTOP	-	<u>I</u>	01	1,2,3	7.6	8.4	V
vollago			M,D,P,L,R,F		1	7.6	8.4	
Under voltage lockout (UVLO) hysteresis	V _H YS			01	1,2,3	0.3	1.2	V
(0 120), 0			M,D,P,L,R,F		1	0.3	1.2	1

See footnotes at end of table.

STANDARD						
MICROCIRCUIT DRAWING						
DEFENSE SUPPLY CENTER COLUMBUS						
COLUMBUS, OHIO 43216-5000						

SIZE A		5962-02511
	REVISION LEVEL A	SHEET 10

TABLE I. Electrical performance characteristics - Continued.

Test	Symbol Test conditions $\underline{1}/\underline{2}/$ $-50^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq +125^{\circ}\text{C}$ unless otherwise specified		Device type	Group A subgroups	Limits		Unit
					Min	Max	
Supply current section	L	I		1			ı
Startup current	I _{SU}	V _{CC} = 8.0 V	01	1,2,3		300	μА
		M,D,P,L,R,F		1		300	
Supply current	ICC	Inverting input, RAMP, and current LIM / SD voltage = 0 V,	01	1,2,3		36	mA
		Non-inverting input voltage = 1.0 V M,D,P,L,R,F		1		36	

- 1/ Unless otherwise specified, $R_T = 3.65 \text{ k}\Omega$, $C_T = 1 \text{n}\text{F}$, $V_C = 12 \text{ V}$. Devices supplied to this drawing meet all levels M, D, P, L, R, and F of irradiation. However, this device is only tested at the "F" (see 1.5 herein). Pre and post irradiation values are identical unless otherwise specified in table I. When performing post irradiation electrical measurements for any RHA level, $T_A = +25^{\circ}\text{C}$.
- 2/ These parts may be dose rate sensitive in a space environment and may demonstrate enhanced low dose rate effects. Radiation end point limits for the noted parameters are guaranteed only for the conditions specified in MIL-STD-883, method 1019, condition A.
- 3.6 <u>Certificate of compliance</u>. For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.6.1 herein). For device class M, a certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6.2 herein). The certificate of compliance submitted to DSCC-VA prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device classes Q and V, the requirements of MIL-PRF-38535 and herein or for device class M, the requirements of MIL-PRF-38535, appendix A and herein.
- 3.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 or for device class M in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing.
- 3.8 <u>Notification of change for device class M.</u> For device class M, notification to DSCC-VA of change of product (see 6.2 herein) involving devices acquired to this drawing is required for any change as defined in MIL-PRF-38535, appendix A.
- 3.9 <u>Verification and review for device class M.</u> For device class M, DSCC, DSCC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.
- 3.10 <u>Microcircuit group assignment for device class M.</u> Device class M devices covered by this drawing shall be in microcircuit group number 90 (see MIL-PRF-38535, appendix A).

STANDARD
MICROCIRCUIT DRAWING
EEENICE CLIDDLY CENTED COLLIMBLE

DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000

SIZE A		5962-02511
	REVISION LEVEL A	SHEET 11

Device type	01				
Case outlines	E	X			
Terminal number	Termina	al symbol			
1	INV	NC			
2	NON-INV	INV			
3	E/A OUT	NON-INV			
4	CLOCK	E/A OUT			
5	R _T	CLOCK			
6	C _T	R _T			
7	RAMP	СТ			
8	SOFT START	RAMP			
9	ILIM/SD	SOFT START			
10	GND	NC			
11	OUTPUT A	ILIM/SD			
12	POWER GND	GND			
13	Vc	OUTPUT A			
14	OUTPUT B	POWER GND			
15	Vcc	Vc			
16	V _{REF} 5.1 V	V _C			
17		POWER GND			
18		OUTPUT B			
19		Vcc			
20		V _{REF} 5.1 V			

NOTES:

- 1. NC = No connection
- 2. Case X, PGND pins to be connected to each other.
- 3. Case X, V_C pins to be connected to each other.

FIGURE 1. <u>Terminal connections</u>.

	Т	T	
STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-02511
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 12

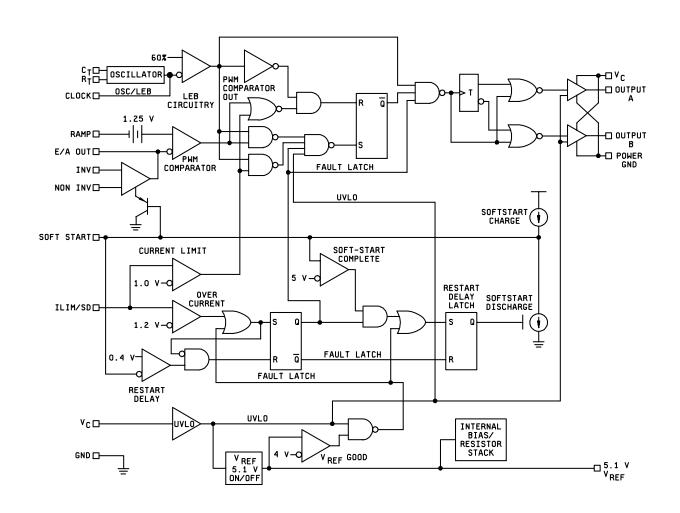


FIGURE 2. Logic diagram.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-02511
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 13

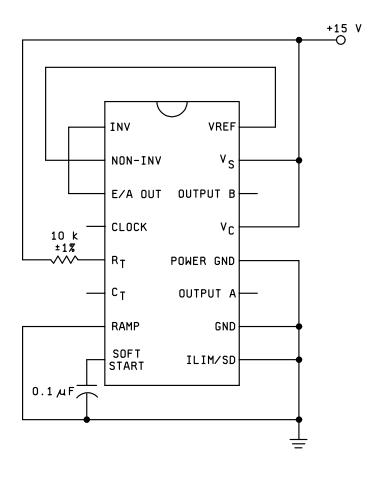


FIGURE 3. Irradiation connections.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000	SIZE A		5962-02511
		REVISION LEVEL	SHEET 14

4. QUALITY ASSURANCE PROVISIONS

- 4.1 <u>Sampling and inspection</u>. For device classes Q and V, sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein. For device class M, sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A.
- 4.2 <u>Screening</u>. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection. For device class M, screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection.

4.2.1 Additional criteria for device class M.

- a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015.
 - (2) $T_A = +125^{\circ}C$, minimum.
- b. Interim and final electrical test parameters shall be as specified in table IIA herein.

4.2.2 Additional criteria for device classes Q and V.

- a. The burn-in test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document revision level control of the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
- b. Interim and final electrical test parameters shall be as specified in table IIA herein.
- c. Additional screening for device class V beyond the requirements of device class Q shall be as specified in MIL-PRF-38535, appendix B.
- 4.3 <u>Qualification inspection for device classes Q and V</u>. Qualification inspection for device classes Q and V shall be in accordance with MIL-PRF-38535. Inspections to be performed shall be those specified in MIL-PRF-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).
- 4.4 <u>Conformance inspection</u>. Technology conformance inspection for classes Q and V shall be in accordance with MIL-PRF-38535 including groups A, B, C, D, and E inspections and as specified herein. Quality conformance inspection for device class M shall be in accordance with MIL-PRF-38535, appendix A and as specified herein. Inspections to be performed for device class M shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.4).

4.4.1 Group A inspection.

- Tests shall be as specified in table IIA herein.
- b. Subgroups 7, 8, 9, 10, and 11 in table I, method 5005 of MIL-STD-883 shall be omitted.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000	SIZE A		5962-02511
		REVISION LEVEL	SHEET 15

TABLE IIA. Electrical test requirements.

Test requirements	Subgroups (in accordance with MIL-STD-883, method 5005, table I)	Subgroups (in accordance with MIL-PRF-38535, table III)	
	Device class M	Device class Q	Device class V
Interim electrical parameters (see 4.2)	1,4	1,4	1,4
Final electrical parameters (see 4.2)	1,2,3,4,5,6 <u>1</u> /	1,2,3,4,5,6 <u>1</u> /	1,2,3, <u>2</u> / <u>3</u> / 4,5,6
Group A test requirements (see 4.4)	1,2,3,4,5,6	1,2,3,4,5,6	1,2,3,4,5,6
Group C end-point electrical parameters (see 4.4)	1,2,3,4,5,6	1,2,3,4,5,6	1,2,3,4,5,6
Group D end-point electrical parameters (see 4.4)	1,4	1,4	1,4
Group E end-point electrical parameters (see 4.4)	1,4	1,4	1,4

^{1/} PDA applies to subgroups 1 and 4.

TABLE IIB. Burn-in delta parameters (+25°) and group C delta parameters.

Parameters <u>1</u> /	Symbol	Delta limits
Supply current	Icc	±2.0 mA
Input bias current	I _{IB}	±150 nA

^{1/} These parameters shall be recorded before and after the required burn-in and life test to determine delta limits.

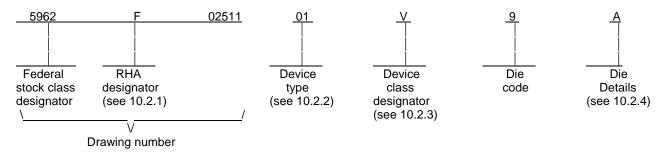
- 4.4.2 Group C inspection. The group C inspection end-point electrical parameters shall be as specified in table IIA herein.
- 4.4.2.1 Additional criteria for device class M. Steady-state life test conditions, method 1005 of MIL-STD-883:
 - a. Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
 - b. $T_A = +125$ °C, minimum.
 - c. Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000	SIZE A		5962-02511
		REVISION LEVEL	SHEET 16

²/ PDA applies to subgroups 1, 4, and Δ 's.

^{3/} Delta limits as specified in table IIB herein shall be required where specified, and the delta values shall be completed with reference to the zero hour electrical parameters (see table I).

- 4.4.2.2 Additional criteria for device classes Q and V. The steady-state life test duration, test condition and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The test circuit shall be maintained under document revision level control by the device manufacturer's TRB in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
 - 4.4.3 Group D inspection. The group D inspection end-point electrical parameters shall be as specified in table IIA herein.
- 4.4.4 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.5 herein). RHA levels for device classes M, Q and V shall be as specified in MIL-PRF-38535. End-point electrical parameters shall be as specified in table IIA herein.
- 4.4.4.1 <u>Total dose irradiation testing</u>. Total dose irradiation testing shall be performed in accordance with MIL-STD-883 method 1019, condition A and as specified herein.
- 4.4.4.1.1 <u>Accelerated aging testing</u>. Accelerated aging testing shall be performed on all devices requiring a RHA level greater than 5k rads (Si). The post-anneal end-point electrical parameter limits shall be as specified in table I herein and shall be the pre-irradiation end-point electrical parameter limits at 25°C. Testing shall be performed at initial qualification and after any design or process changes which may affect the RHA response of the device.
 - 4.5 Methods of inspection. Methods of inspection shall be specified as follows:
- 4.5.1 <u>Voltage and current</u>. Unless otherwise specified, all voltages given are referenced to the microcircuit GND terminal. Currents given are conventional current and positive when flowing into the referenced terminal.
 - 5. PACKAGING
- 5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-PRF-38535 for device classes Q and V or MIL-PRF-38535, appendix A for device class M.
 - 6. NOTES
- 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.
- 6.1.1 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor prepared specification or drawing.
 - 6.1.2 Substitutability. Device class Q devices will replace device class M devices.
- 6.2 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal.
- 6.3 <u>Record of users</u>. Military and industrial users should inform Defense Supply Center Columbus when a system application requires configuration control and which SMD's are applicable to that system. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0544.
- 6.4 <u>Comments</u>. Comments on this drawing should be directed to DSCC-VA, Columbus, Ohio 43216-5000, or telephone (614) 692-0547.
- 6.5 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535 and MIL-HDBK-1331.


STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000	SIZE A		5962-02511
		REVISION LEVEL	SHEET 17

6.6 Sources of supply.				
6.6.1 <u>Sources of supply for device classes Q and V</u> . Sources of supply for device classes Q and V are listed in QML-38535. The vendors listed in QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DSCC-VA and have agreed to this drawing.				
6.6.2 <u>Approved sources of supply for device class M</u> . Appro The vendors listed in MIL-HDBK-103 have agreed to this drawin submitted to and accepted by DSCC-VA.	ved sources of sung and a certificate	pply for class M are listed in e of compliance (see 3.6 he	n MIL-HDBK-103. erein) has been	
dustriated to drid decopied by 2000 v/t.				
STANDARD	SIZE			
MICROCIRCUIT DRAWING	A		5962-02511	
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET	
00L0WD00, 01110 40210-0000			18	

10. SCOPE

10.1 <u>Scope</u>. This appendix establishes minimum requirements for microcircuit die to be supplied under the Qualified Manufacturers List (QML) Program. QML microcircuit die meeting the requirements of MIL-PRF-38535 and the manufacturers approved QML plan for use in monolithic microcircuits, multi-chip modules (MCMs), hybrids, electronic modules, or devices using chip and wire designs in accordance with MIL-PRF-38534 are specified herein. Two product assurance classes consisting of military high reliability (device class Q) and space application (device Class V) are reflected in the Part or Identification Number (PIN). When available a choice of Radiation Hardness Assurance (RHA) levels are reflected in the PIN.

10.2 PIN. The PIN is as shown in the following example:

10.2.1 <u>RHA designator</u>. Device classes Q and V RHA identified die shall meet the MIL-PRF-38535 specified RHA levels. A dash (-) indicates a non-RHA die.

10.2.2 <u>Device type(s)</u>. The device type(s) shall identify the circuit function as follows:

Device type	Generic number	Circuit function
01	IS-1825ASRH	Radiation hardened DI dual output
		pulse width modulator with SEU protection

10.2.3 Device class designator.

Device class	Device requirements documentation
Q or V	Certification and qualification to the die requirements of MIL-PRF-38535

STANDARD
MICROCIRCUIT DRAWING
DEFENSE SUPPLY CENTER COLUMBUS

	_	_	_	_	_	_
DEFEN	SE	SL	JPPL	Y	CENTER COL	UMBUS
CC	DLU	IMI	BUS	, C	DHIO 43216-50	00

SIZE A		5962-02511
	REVISION LEVEL	SHEET 19

10.2.4. <u>Die Details</u>. The die details designation shall be a unique letter which designates the die's physical dimensions, bonding pad location(s) and related electrical function(s), interface materials, and other assembly related information, for each product and variant supplied to this appendix.

10.2.4.1 Die physical dimensions.

Die type Figure number

01 A-1

10.2.4.2. Die bonding pad locations and electrical functions.

Die type Figure number

01 A-1

10.2.4.3. Interface materials.

Die type Figure number

01 A-1

10.2.4.4. Assembly related information.

Die type Figure number

01 A-1

- 10.3. Absolute maximum ratings. See paragraph 1.3 within the body of this drawing for details.
- 10.4 Recommended operating conditions. See paragraph 1.4 within the body of this drawing for details.
- 20. APPLICABLE DOCUMENTS.
- 20.1 <u>Government specifications, standards, and handbooks</u>. Unless otherwise specified, the following specification, standard, and handbook of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

SPECIFICATION

DEPARTMENT OF DEFENSE

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

STANDARDS

DEPARTMENT OF DEFENSE

MIL-STD-883 - Test Method Standard Microcircuits.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-02511
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 20

HANDBOOK

DEPARTMENT OF DEFENSE

MIL-HDBK-103 - List of Standard Microcircuit Drawings.

(Copies of the specification, standard, and handbook required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity).

20.2. <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.

30. REQUIREMENTS

- 30.1 <u>Item requirements</u>. The individual item requirements for device classes Q and V shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not effect the form, fit or function as described herein.
- 30.2 <u>Design, construction and physical dimensions</u>. The design, construction and physical dimensions shall be as specified in MIL-PRF-38535 and the manufacturer's QM plan, for device classes Q and V and herein.
 - 30.2.1 Die physical dimensions. The die physical dimensions shall be as specified in 10.2.4.1 and on figure A-1.
- 30.2.2 <u>Die bonding pad locations and electrical functions</u>. The die bonding pad locations and electrical functions shall be as specified in 10.2.4.2 and on figure A-1.
 - 30.2.3 Interface materials. The interface materials for the die shall be as specified in 10.2.4.3 and on figure A-1.
 - 30.2.4 Assembly related information. The assembly related information shall be as specified in 10.2.4.4 and figure A-1.
- 30.2.5 <u>Radiation exposure circuit</u>. The radiation exposure circuit shall be as defined within paragraph 3.2.4 of the body of this document.
- 30.3 <u>Electrical performance characteristics and post-irradiation parameter limits</u>. Unless otherwise specified herein, the electrical performance characteristics and post-irradiation parameter limits are as specified in table I of the body of this document.
- 30.4 <u>Electrical test requirements</u>. The wafer probe test requirements shall include functional and parametric testing sufficient to make the packaged die capable of meeting the electrical performance requirements in table I.
- 30.5 <u>Marking</u>. As a minimum, each unique lot of die, loaded in single or multiple stack of carriers, for shipment to a customer, shall be identified with the wafer lot number, the certification mark, the manufacturer's identification and the PIN listed in 10.2 herein. The certification mark shall be a "QML" or "Q" as required by MIL-PRF-38535.
- 30.6 <u>Certification of compliance</u>. For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 60.4 herein). The certificate of compliance submitted to DSCC-VA prior to listing as an approved source of supply for this appendix shall affirm that the manufacturer's product meets, for device classes Q and V, the requirements of MIL-PRF-38535 and the requirements herein.
- 30.7 <u>Certificate of conformance</u>. A certificate of conformance as required for device classes Q and V in MIL-PRF-38535 shall be provided with each lot of microcircuit die delivered to this drawing.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-02511
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 21

40. QUALITY ASSURANCE PROVISIONS

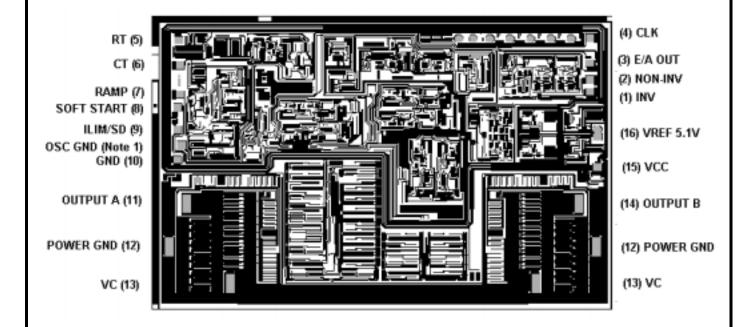
- 40.1 <u>Sampling and inspection</u>. For device classes Q and V, die sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturers Quality Management (QM) plan. The modifications in the QM plan shall not effect the form, fit or function as described herein.
- 40.2 <u>Screening</u>. For device classes Q and V, screening shall be in accordance with MIL-PRF-38535, and as defined in the manufacturer's QM plan. As a minimum it shall consist of:
 - a) Wafer lot acceptance for Class V product using the criteria defined within MIL-STD-883 test method 5007.
 - b) 100% wafer probe (see paragraph 30.4).
 - c) 100% internal visual inspection to the applicable class Q or V criteria defined within MIL-STD-883 test method 2010 or the alternate procedures allowed within MIL-STD-883 test method 5004.

40.3 Conformance inspection.

40.3.1 <u>Group E inspection</u>. Group E inspection is required only for parts intended to be identified as radiation assured (see 30.5 herein). RHA levels for device classes Q and V shall be as specified in MIL-PRF-38535. End point electrical testing of packaged die shall be as specified in table IIA herein. Group E tests and conditions are as specified within paragraphs 4.4.4.1 and 4.4.4.1.1.

50. DIE CARRIER

50.1 <u>Die carrier requirements</u>. The requirements for the die carrier shall be accordance with the manufacturer's QM plan or as specified in the purchase order by the acquiring activity. The die carrier shall provide adequate physical, mechanical and electrostatic protection.


60 NOTES

- 60.1 <u>Intended use</u>. Microcircuit die conforming to this drawing are intended for use in microcircuits built in accordance with MIL-PRF-38535 or MIL-PRF-38534 for government microcircuit applications (original equipment), design applications and logistics purposes.
- 60.2 <u>Comments</u>. Comments on this appendix should be directed to DSCC-VA, Columbus, Ohio, 43216-5000 or telephone (614)-692-0536.
- 60.3 <u>Abbreviations, symbols and definitions</u>. The abbreviations, symbols, and definitions used herein are defined within MIL-PRF-38535 and MIL-STD-1331.
- 60.4 <u>Sources of supply for device classes Q and V</u>. Sources of supply for device classes Q and V are listed in QML-38535. The vendors listed within QML-38535 have submitted a certificate of compliance (see 30.6 herein) to DSCC-VA and have agreed to this drawing.

STANDARD
MICROCIRCUIT DRAWING
TENCE CURRLY CENTER COLUMB

DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000

SIZE A		5962-02511
	REVISION LEVEL	SHEET 22

NOTE: Pad numbers reflect terminal numbers when placed in case outline E (see figure 1).

Die physical dimensions.

Die size: 4318 microns x 5842 microns.

Die thickness: 19 mils \pm 1 mils.

Interface materials.

Top metallization: Al Si Cu 16.0 kÅ ±2 kÅ

Backside metallization: None

Glassivation. Type: PSG

Thickness: 8.0 kÅ ±1.0 kÅ

Substrate: DI (dielectric isolation)

Assembly related information. Substrate potential: Unbiased Special assembly instructions:

Note 1. The oscillator ground (OSC GND) pad must be connected to ground

(GND).

Note 2. POWER GND and V_C each require 2 bond pad connections. Note 3. POWER GND, OUPUT A, and OUTPUT B must be double bonded

for current sharing purposes.

FIGURE A-1. Die bonding pad locations and electrical functions.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-02511
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000		REVISION LEVEL	SHEET 23

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 03-06-17

Approved sources of supply for SMD 5962-02511 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535.

Standard	Vendor	Vendor
microcircuit drawing	CAGE	similar
PIN <u>1</u> /	number	PIN <u>2</u> /
5962F0251101QEC	34371	IS1-1825ASRH-8
5962F0251101QXC	34371	IS9-1825ASRH-8
5962F0251101VEC	34371	IS1-1825ASRH-Q
5962F0251101VXC	34371	IS9-1825ASRH-Q
5962F0251101V9A	34371	IS0-1825ASRH-Q

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the vendor to determine its availability.
- 2/ Caution. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

 Vendor CAGE
 Vendor name

 number
 and address

34371 Intersil Corporation

P.O. Box 883

Melbourne, FL 32902-0883

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.