

Intel[®] Pentium[®] M Processor with 2-MB L2 Cache and 400 MHz Front Side Bus

Datasheet

May 2009

Document Number: 302189-009

IINFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel® Pentium® M Processor with 2-MB L2 Cache and 400 MHz Front Side Bus may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

∆Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. See www.intel.com/products/processor_number for details.

Intel, Pentium, Celeron, MMX, Intel SpeedStep and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2004—2009, Intel Corporation. All rights reserved

intel® Contents

1	Intro	oduction	7
	1.1	Terminology	9
	1.2	References	
2	Low	v Power Features	11
	2.1	Clock Control and Low Power States	11
		2.1.1 Normal State	11
		2.1.2 AutoHALT Power-Down State	11
		2.1.3 Stop-Grant State	12
		2.1.4 HALT/Grant Snoop State	12
		2.1.5 Sleep State	13
		2.1.6 Deep Sleep State	
		2.1.7 Deeper Sleep State	14
	2.2	Enhanced Intel SpeedStep® Technology	14
	2.3	Front Side Bus Low Power Enhancements	
	2.4	Processor Power Status Indicator (PSI#) Signal	15
3	Elec	ctrical Specifications	17
	3.1	Power and Ground Pins	17
		3.1.1 FSB Clock (BCLK[1:0]) and Processor Clocking	17
	3.2	Voltage Identification	17
	3.3	Catastrophic Thermal Protection	18
	3.4	Signal Terminations and Unused Pins	19
	3.5	FSB Frequency Select Signals (BSEL[1:0])	19
	3.6	FSB Signal Groups	
	3.7	CMOS Signals	
	3.8	Maximum Ratings	
	3.9	Processor DC Specifications	21
4	Pack	kage Mechanical Specifications and Pin Information	47
	4.1	Processor Pinout and Pin List	54
	4.2	Alphabetical Signals Reference	
5	Ther	rmal Specifications and Design Considerations	77
	5.1	Thermal Specifications	80
	-	5.1.1 Thermal Diode	
		5.1.2 Thermal Diode Offset	
		5.1.3 Intel [®] Thermal Monitor	

Figures

2-1	Clock Control States	11
3-1	Illustration of Active State VCC Static and Ripple Tolerances (HFM- VID#A)	31
	Illustration of Deep Sleep State VCC Static and Ripple Tolerances (LFM- VID#A)	
3-3	Illustration of Active State VCC Static and Ripple Tolerances (HFM- VID#B)	33
3-4	Illustration of Deep Sleep State VCC Static and Ripple Tolerances (LFM- VID#B)	34
3-5	Illustration of Active State VCC Static and Ripple Tolerances (HFM- VID#C)	35
3-6	Illustration of Deep Sleep State VCC Static and Ripple Tolerances (LFM- VID#C)	36
3-7	Illustration of Active State VCC Static and Ripple Tolerances (HFM- VID#D)	37
3-8	Illustration of Deep Sleep State VCC Static and Ripple Tolerances (LFM- VID#D)	38
3-9	Illustration of Active State VCC Static and Ripple Tolerances (HFM- VID#E)	39
3-10	Olllustration of Deep Sleep State VCC Static and Ripple Tolerances (LFM- VID#E)	40
3-11	1 Active VCC and ICC Load Line	43
3-12	2 Deep Sleep VCC and ICC Load Line	44
4-1	Micro-FCPGA Package Top and Bottom Isometric Views	47
4-2	Micro-FCPGA Package - Top and Side Views	48
4-3	Micro-FCPGA Package - Bottom View	49
4-4	Micro-FCBGA Package Top and Bottom Isometric Views	51
4-5	Micro-FCBGA Package Top and Side Views	52
4-6	Micro-FCBGA Package Bottom View	54
4-7	The Coordinates of the Processor Pins as Viewed from the Top of the Package	55

Tables

1-1 References	9
3-1 Voltage Identification Definition	18
3-2 FSB Pin Groups	20
3-3 Processor DC Absolute Maximum Ratings	
3-4 Voltage and Current Specifications - Standard Voltage Processors	22
3-5 Voltage and Current Specifications - Low Voltage Processors	24
3-6 Voltage and Current Specifications - Ultra Low Voltage Processors	
3-7 Voltage and Current Specifications (Continued)	
3-8 Voltage Tolerances for the Intel® Pentium® M Processor (Active State) VID#A	
3-9 Voltage Tolerances for the Intel® Pentium® M Processor (Deep Sleep State) VID#A	
3-10 Voltage Tolerances for the Intel® Pentium® M Processor (Active State) VID#B	33
3-11 Voltage Tolerances for the Intel® Pentium® M Processor (Deep Sleep State) VID#B	34
3-12 Voltage Tolerances for the Intel® Pentium® M Processor (Active State) VID#C	
3-13 Voltage Tolerances for the Intel® Pentium® M Processor (Deep Sleep State) VID#C	
3-14 Voltage Tolerances for the Intel® Pentium® M Processor (Active State) VID#D	
3-15 Voltage Tolerances for the Intel® Pentium® M Processor (Deep Sleep State) VID#D	38
3-16 Voltage Tolerances for the Intel® Pentium® M Processor (Active State) VID#E	
3-17 Voltage Tolerances for the Intel® Pentium® M Processor (Deep Sleep State) VID#E	
3-18 Voltage Tolerances for the Intel® Pentium® M Processor LV (Active State)	41
3-19 Voltage Tolerances for the Intel® Pentium® M Processor LV (Deep Sleep State)	42
3-20 Voltage Tolerances for the Intel® Pentium® M Processor ULV (Active State)	42
3-21 Voltage Tolerances for the Intel [®] Pentium [®] M Processor ULV (Deep Sleep State)	
3-22 FSB Differential BCLK Specifications	
3-23AGTL+ Signal Group DC Specifications	
3-24CMOS Signal Group DC Specifications	
3-25 Open Drain Signal Group DC Specifications	
4-1 Micro-FCPGA Package Dimensions	
4-2 Micro-FCBGA Package Dimensions	
4-3 Pin Listing by Pin Name	
4-4 Pin Listing by Pin Number	
4-5 Signal Description	70
5-1 Power Specifications for the Intel [®] Pentium M Processor	78
5-2 Thermal Diode Interface	
5-3 Thermal Diode Specification	81

Revision History

Revision	Description	Date
001	Initial release of datasheet	May 2004
002	Added Intel® Pentium® M processor 725 and 715 specifications	June 2004
003	Specifications of Intel® Pentium® M processor Low Voltage 738 and Ultra Low Voltage 733 & 723 added in chapter 3 and chapter 5. Chapter 2 section 2.1.3 - Missing Stop Grant State title added. Description was previously merged with Auto Halt state section and is unchanged. Table 4 - Max ratings specifications updated	July 2004
004	Added Intel® Pentium® M processor 765 specifications	October 2004
005	Added Intel® Pentium® M processor 753 and 758 specifications Added Execute Disable support feature and lead free SLI (second layer interconnect) Micro-FCPGA packaging information in chapter 1 Added Table 3-20 AGTL + Signal Group Signal DC Specifications Table 3-18 - Voltage Tolerances for Intel® Pentium® M processor ULV (Deep Sleep State) updated	January 2005
006	Added Intel [®] Pentium [®] M processor 778 specifications	July 2005
007	Updated Intel® Pentium® M processor 753 and 733J specifications for optimized VID	July 2005
800	Added Intel [®] Pentium [®] M processor 773 specifications	January 2006
009	Changed product name from Intel [®] Pentium [®] M Processor on 90 nm Process with 2-MB L2 Cache to Intel [®] Pentium [®] M Processor with 2-MB L2 Cache and 400 MHz Front Side Bus	May 2009

§

1 Introduction

The Intel® Pentium® M processor based on 90 nm process technology featuring 2-MB L2 cache and 400-MHz front side bus (FSB) is the next generation high- performance, low-power mobile processor based on the Intel® Pentium® processor architecture.

Throughout this document, Intel Pentium M processor based on 90 nm technology featuring 2-MB L2 cache and 400 MHz FSB will be referred to as Pentium M processor, or simply the processor, including low voltage and ultra low voltage processors.

This document contains specifications for the Pentium M processors 765/755/745/735/725/715 Standard Voltage, 778/758/738 Low Voltage and 773/753/733J/733/723 Ultra Low Voltage $^{\Delta}$.

^ΔIntel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. See www.intel.com/products/processor_number for details.

The following list provides some of the key features on this processor:

- Supports Intel® Architecture with Dynamic Execution
- On-die, primary 32-KB instruction cache and 32-KB write-back data cache
- On-die, 2 MB second level cache with Advanced Transfer Cache Architecture
- Way set associativity and ECC (Error Correcting Code) support
- Data Prefetch Logic
- Streaming SIMD extensions 2 (SSE2)
- 400 MHz source-synchronous FSB
- Advanced power management features including Enhanced Intel SpeedStep® technology
- Micro-FCPGA and Micro-FCBGA packaging technologies
- Manufactured on Intel's advanced 90 nanometer process technology with copper interconnect.
- Support for MMXTM technology and Internet Streaming SIMD instructions
- The processor's data prefetch logic fetches data to the L2 cache before L1 cache requests occurs, resulting in reduced bus cycle penalties and improved performance
- Micro-FCPGA and Micro-FCBGA packaging technologies, including lead free SLI (second level interconnect) technology for the Micro-FCBGA package (for Pentium M processors 755, 745, 778, 758, 738, 773, 753, 733J/733, 723)
- Execute Disable Bit support for enhanced security (available on processors with CPU Signature = 06D8h and recommended for implementation on Intel® 915 Express chipset family-based platforms only)

The Pentium M processor will be manufactured on Intel's advanced 90 nm process technology with copper interconnect. The processor maintains support for MMX technology and Internet Streaming SIMD instructions and full compatibility with IA-32 software. The on-die, 32-KB Level 1 instruction and data caches along with the 2-MB L2 cache with advanced transfer cache

Introduction

architecture enable significant performance improvement over existing mobile processors. The processor's data prefetch logic fetches data to the L2 cache before L1 cache requests occurs, resulting in reduced bus cycle penalties and improved performance.

The streaming SIMD extensions 2 (SSE2) enable break-through levels of performance in multimedia applications including 3-D graphics, video decoding/encoding, and speech recognition. The new packed double-precision floating-point instructions enhance performance for applications that require greater range and precision, including scientific and engineering applications and advanced 3-D geometry techniques, such as ray tracing.

The 400-MHz FSB on the Pentium M processor utilizes a split-transaction, deferred reply protocol and uses source-synchronous transfer (SST) of address and data to improve performance by transferring data four times per bus clock (4X data transfer rate, as in AGP 4X). Along with the 4X data bus, the address bus can deliver addresses two times per bus clock and is referred to as a "double-clocked" or 2X address bus. Working together, the 4X data bus and 2X address bus provide a data bus bandwidth of up to 3.2 GB/second. The FSB uses Advanced Gunning Transceiver Logic (AGTL+) signaling technology, a variant of GTL+ signaling technology with low power enhancements.

The processor features Enhanced Intel SpeedStep technology, which enables real-time dynamic switching between multiple voltage and frequency points. This results in optimal performance without compromising low power. The processor features the Auto Halt, Stop Grant, Deep Sleep, and Deeper Sleep low power states.

The Pentium M processor utilizes socketable Micro Flip-Chip Pin Grid Array (Micro-FCPGA) and surface mount Micro Flip-Chip Ball Grid Array (Micro-FCBGA) package technology. The Micro-FCPGA package plugs into a 479-hole, surface-mount, zero insertion force (ZIF) socket, which is referred to as the mPGA479M socket.

Pentium M processors with CPU Signature = 06D8h will also include the Execute Disable Bit capability. This feature combined with a support operating system allows memory to be marked as executable or non executable. If code attempts to run in non-executable memory the processor raises an error to the operating system. This feature can prevent some classes of viruses or worms that exploit buffer overrun vulnerabilities and can thus help improve the overall security of the system. See the *Intel® Architecture Software Developer's Manual* for more detailed information. Intel will validate this feature only on Intel 915 Express chipset family based platforms and recommends customers implement BIOS changes related to this feature, only on Intel 915 Express chipset family based platforms.

Note: The term AGTL+ is used to refer to Assisted GTL+ signalling technology on some Intel processors.

1.1 Terminology

Term	Definition
#	A "#" symbol after a signal name refers to an active low signal, indicating a signal is in the active state when driven to a low level. For example, when RESET# is low, a reset has been requested. Conversely, when NMI is high, a nonmaskable interrupt has occurred. In the case of signals where the name does not imply an active state but describes part of a binary sequence (such as <i>address</i> or <i>data</i>), the "#" symbol implies that the signal is inverted. For example, D[3:0] = "HLHL" refers to a hex 'A', and D[3:0]# = "LHLH" also refers to a hex "A" (H= High logic level, L= Low logic level). XXXX means that the specification or value is yet to be determined.
Front Side Bus (FSB)	Refers to the interface between the processor and system core logic (also known as the chipset components).

1.2 References

Material and concepts available in the following documents may be beneficial when reading this document. Please note that "platform design guides," when used throughout this document, refers to the platform design guides listed below:

Table 1-1. References (Sheet 1 of 2)

Document	Document Number/ Location ¹			
Intel® Pentium® M Processor with 2-MB L2 Cache and 400 MHz Front Side Bus- Specification Update	http://download.intel.com/ support/processors/ mobile/pm/sb/ 30220925.pdf			
Mobile Intel® 915PM/GM/GMS and 910GML Express Chipset Datasheet	http://www.intel.com/ design/mobile/datashts/ 305264.htm			
Mobile Intel® 915PM/GM/GMS and 910GML Express Chipset Specification Update	http://www.intel.com/ design/mobile/specupdt/ 307167.htm			
Intel® 855PM Chipset Platform Design Guide: For use with Intel® Pentium® M and Intel® Celeron® Processors	http://developer.intel.com/ design/mobile/desguide/ 252614.htm			
Intel® 855PM Chipset Memory Controller Hub (MCH) Datasheet	http://developer.intel.com/ design/chipsets/datashts/ 252613.htm			
Intel® 855PM Chipset MCH DDR 333/200/266 MHz Specification Update	http://developer.intel.com/ design/chipsets/specupdt/ 253488.htm			
Intel® 855GM/GME Chipset Graphics and Memory Controller Hub (GMCH) Datasheet	http://developer.intel.com/ design/chipsets/datashts/ 252615.htm			
Intel® 855GM/GME Chipset Graphics and Memory Controller Hub (GMCH) Chipset Specification Update	http://developer.intel.com/ design/chipsets/specupdt/ 253572.htm			
Intel® 855GM/855GME Chipset Platform Design Guide	http://developer.intel.com/ design/mobile/desguide/ 252616.htm			

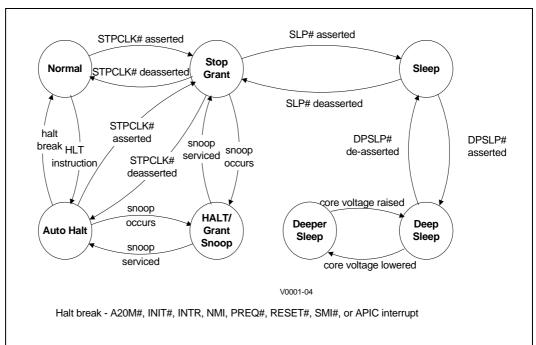
Introduction

Table 1-1. References (Sheet 2 of 2)

Document	Document Number/ Location ¹
IA-32 Intel [®] Architecture Software Developer's Manual	http://www.intel.com/
Volume 1: Basic Architecture	products/processor/ manuals/
Volume 2A: Instruction Set Reference	
Volume 2B: Instruction Set Reference	
Volume 3: System Programming Guide]

NOTE: Contact your Intel representative for the latest revision and document number of this document.

§



2 Low Power Features

2.1 Clock Control and Low Power States

The Pentium M processor supports the AutoHALT Power-Down, Stop Grant, Sleep, Deep Sleep, and Deeper Sleep states for optimal power management. See Figure 2-1 for a visual representation of the processor low-power states.

Figure 2-1. Clock Control States

2.1.1 Normal State

This is the normal operating state for the processor.

2.1.2 AutoHALT Power-Down State

AutoHALT Power-Down is a low-power state entered when the processor executes the HALT instruction. The processor will transition to the Normal state upon the occurrence of SMI#, INIT#, LINT[1:0] (NMI, INTR), or FSB interrupt message. RESET# will cause the processor to immediately initialize itself.

A system management interrupt (SMI) handler will return execution to either Normal state or the AutoHALT Power-Down state. See the *IA-32 Intel*® *Architecture Software Developer's Manual, Volume 3: System Programmer's Guide* for more information.

Low Power Features

The system can generate a STPCLK# while the processor is in the AutoHALT Power-Down state. When the system deasserts the STPCLK# interrupt, the processor will return execution to the HALT state.

While in AutoHALT Power-Down state, the processor will process bus snoops and interrupts.

2.1.3 Stop-Grant State

When the STPCLK# pin is asserted, the Stop-Grant state of the processor is entered 20 bus clocks after the response phase of the processor-issued Stop Grant Acknowledge special bus cycle.

Since the AGTL+ signal pins receive power from the FSB, these pins should not be driven (allowing the level to return to V_{CCP}) for minimum power drawn by the termination resistors in this state. In addition, all other input pins on the FSB should be driven to the inactive state.

RESET# will cause the processor to immediately initialize itself, but the processor will stay in Stop-Grant state. A transition back to the Normal state will occur with the de-assertion of the STPCLK# signal. When re-entering the Stop-Grant state from the Sleep state, STPCLK# should be deasserted ten or more bus clocks after the de-assertion of SLP#.

A transition to the HALT/Grant Snoop state will occur when the processor detects a snoop on the FSB (see Section 2.1.3). A transition to the Sleep state (see Section 2.1.5) will occur with the assertion of the SLP# signal.

While in the Stop-Grant State, SMI#, INIT# and LINT[1:0] will be latched by the processor, and only serviced when the processor returns to the Normal State. Only one occurrence of each event will be recognized upon return to the Normal state.

While in Stop-Grant state, the processor will process snoops on the FSB and it will latch interrupts delivered on the FSB.

The PBE# signal can be driven when the processor is in Stop-Grant state. PBE# will be asserted if there is any pending interrupt latched within the processor. Pending interrupts that are blocked by the EFLAGS.IF bit being clear will still cause assertion of PBE#. Assertion of PBE# indicates to system logic that it should return the processor to the Normal state.

2.1.4 HALT/Grant Snoop State

The processor responds to snoop or interrupt transactions on the FSB while in Stop-Grant state or in AutoHALT Power-Down state. During a snoop or interrupt transaction, the processor enters the HALT/Grant Snoop state. The processor will stay in this state until the snoop on the FSB has been serviced (whether by the processor or another agent on the FSB) or the interrupt has been latched. After the snoop is serviced or the interrupt is latched, the processor will return to the Stop-Grant state or AutoHALT Power-Down state, as appropriate.

2.1.5 Sleep State

A low power state in which the processor maintains its context, maintains the phase-locked loop (PLL), and has stopped all internal clocks. The Sleep state can be entered only from Stop-Grant state. Once in the Stop-Grant state, the processor will enter the Sleep state upon the assertion of the SLP# signal. The SLP# pin should only be asserted when the processor is in the Stop Grant state. SLP# assertions while the processor is not in the Stop-Grant state is out of specification and may result in unapproved operation.

Snoop events that occur while in Sleep State or during a transition into or out of Sleep state will cause unpredictable behavior.

In the Sleep state, the processor is incapable of responding to snoop transactions or latching interrupt signals. No transitions or assertions of signals (with the exception of SLP#, DPSLP# or RESET#) are allowed on the FSB while the processor is in Sleep state. Any transition on an input signal before the processor has returned to Stop-Grant state will result in unpredictable behavior.

If RESET# is driven active while the processor is in the Sleep state, and held active as specified in the RESET# pin specification, then the processor will reset itself, ignoring the transition through Stop-Grant State. If RESET# is driven active while the processor is in the Sleep State, the SLP# and STPCLK# signals should be deasserted immediately after RESET# is asserted to ensure the processor correctly executes the reset sequence.

While in the Sleep state, the processor is capable of entering an even lower power state, the Deep Sleep state by asserting the DPSLP# pin. (See Section 2.1.6.) While the processor is in the Sleep state, the SLP# pin must be deasserted if another asynchronous FSB event needs to occur.

2.1.6 Deep Sleep State

Deep Sleep state is a very low power state the processor can enter while maintaining context. Deep Sleep state is entered by asserting the DPSLP# pin while in the Sleep state. BCLK may be stopped during the Deep Sleep state for additional platform level power savings.

BCLK stop/restart timings on 855PM and Intel 855GM chipset-based platforms are as follows:

- Deep Sleep entry DPSLP# and CPU_STP# are asserted simultaneously. The platform clock chip will stop/tristate BCLK within 2 BCLKs +/- a few nanoseconds.
- Deep Sleep exit DPSLP# and CPU_STP# are deasserted simultaneously. The platform clock chip will drive BCLK to differential DC levels within 2-3 ns and starts toggling BCLK 2-6 BCLK periods later.

To re-enter the Sleep state, the DPSLP# pin must be deasserted. BCLK can be restarted after DPSLP# deassertion, as described above. A period of 30 microseconds (to allow for PLL stabilization) must occur before the processor can be considered to be in the Sleep State. Once in the Sleep state, the SLP# pin must be deasserted to re-enter the Stop-Grant state.

While in Deep Sleep state, the processor is incapable of responding to snoop transactions or latching interrupt signals. No transitions of signals are allowed on the FSB while the processor is in Deep Sleep state. Any transition on an input signal before the processor has returned to Stop-Grant state will result in unpredictable behavior.

When the processor is in Deep Sleep state, it will not respond to interrupts or snoop transactions.

2.1.7 Deeper Sleep State

The Deeper Sleep state is the lowest power state the processor can enter. This state is functionally identical to the Deep Sleep state but at a lower core voltage. The control signals to the voltage regulator to initiate a transition to the Deeper Sleep state are provided on the platform. Please refer to the platform design guides listed in Table 1-1.

2.2 Enhanced Intel SpeedStep® Technology

The Pentium M processor features Enhanced Intel SpeedStep technology. Unlike previous implementations of Intel SpeedStep technology, this technology enables the processor to switch between multiple frequency and voltage points instead of two. This will enable superior performance with optimal power savings. Switching between states is software controlled unlike previous implementations where the GHI# pin is used to toggle between two states. Following are the key features of Enhanced Intel SpeedStep technology:

- Multiple voltage/frequency operating points provide optimal performance at the lowest power.
- Voltage/Frequency selection is software controlled by writing to processor MSR's (Model Specific Registers) thus eliminating chipset dependency.
 - If the target frequency is higher than the current frequency, Vcc is ramped up by placing a new value on the VID pins and the PLL then locks to the new frequency.
 - If the target frequency is lower than the current frequency, the PLL locks to the new frequency and the Vcc is changed through the VID pin mechanism.
 - Software transitions are accepted at any time. If a previous transition is in progress, the new transition is deferred until its completion.
- The processor controls voltage ramp rates internally to ensure glitch free transitions.
- Low transition latency and large number of transitions possible per second.
 - Processor core (including L2 cache) is unavailable for up to $10~\mu s$ during the frequency transition
 - The bus protocol (BNR# mechanism) is used to block snooping
- No bus master arbiter disable required prior to transition and no processor cache flush necessary.
- Improved Intel® Thermal Monitor mode.
 - When the on-die thermal sensor indicates that the die temperature is too high, the processor can automatically perform a transition to a lower frequency/voltage specified in a software programmable MSR.
 - The processor waits for a fixed time period. If the die temperature is down to acceptable levels, an up transition to the previous frequency/voltage point occurs.
 - An interrupt is generated for the up and down Intel Thermal Monitor transitions enabling better system level thermal management.

2.3 Front Side Bus Low Power Enhancements

The Pentium M processor incorporates the following front side bus (processor system bus) low power enhancements:

- Dynamic FSB Power Down
- BPRI# control for address and control input buffers
- Dynamic On Die Termination disabling
- Low VCCP (I/O termination voltage)

The Pentium M processor incorporates the DPWR# signal that controls the data bus input buffers on the processor. The DPWR# signal disables the buffers when not used and activates them only when data bus activity occurs, resulting in significant power savings with no performance impact. BPRI# control also allows the processor address and control input buffers to be turned off when the BPRI# signal is inactive. The on-die termination on the processor FSB buffers is disabled when the signals are driven low, resulting in additional power savings. The low I/O termination voltage is on a dedicated voltage plane independent of the core voltage, enabling low I/O switching power at all times.

2.4 Processor Power Status Indicator (PSI#) Signal

The Pentium M processor incorporates the PSI# signal that is asserted when the processor is in a low power (Deep Sleep or Deeper Sleep) state. This signal is asserted upon Deep Sleep entry and deasserted upon exit. PSI# can be used to improve the light load efficiency of the voltage regulator, resulting in platform power savings and extended battery life. PSI# can also be used to simplify voltage regulator designs since it removes the need for integrated 100 µs timers required to mask the PWRGOOD signal during Deeper Sleep transitions. It also helps loosen PWRGOOD monitoring requirements in the Deeper Sleep state.

§

Low Power Features

3 Electrical Specifications

3.1 Power and Ground Pins

For clean, on-chip power distribution, the Pentium M processor has a large number of V_{CC} (power) and V_{SS} (ground) inputs. All power pins must be connected to V_{CC} power planes while all V_{SS} pins must be connected to system ground planes. Use of multiple power and ground planes is recommended to reduce I*R drop. Please refer to the platform design guides for more details. The processor V_{CC} pins must be supplied the voltage determined by the VID (Voltage ID) pins.

3.1.1 FSB Clock (BCLK[1:0]) and Processor Clocking

BCLK[1:0] directly controls the system bus interface speed as well as the core frequency of the processor. As in previous generation processors, the Pentium M processor core frequency is a multiple of the BCLK[1:0] frequency. In regards to processor clocking, the Pentium M processor uses a differential clocking implementation.

3.2 Voltage Identification

The Pentium M processor uses six voltage identification pins, VID[5:0], to support automatic selection of power supply voltages. The VID pins for the Pentium M processor are CMOS outputs driven by the processor VID circuitry. Table 3-1 specifies the voltage level corresponding to the state of VID[5:0]. A "1" in this refers to a high-voltage level and a "0" refers to low-voltage level.

Table 3-1. Voltage Identification Definition

		V	ID			.,			V	ID			.,
5	4	3	2	1	0	V _{cc} V	5	4	3	2	1	0	V _{cc} V
0	0	0	0	0	0	1.708	1	0	0	0	0	0	1.196
0	0	0	0	0	1	1.692	1	0	0	0	0	1	1.180
0	0	0	0	1	0	1.676	1	0	0	0	1	0	1.164
0	0	0	0	1	1	1.660	1	0	0	0	1	1	1.148
0	0	0	1	0	0	1.644	1	0	0	1	0	0	1.132
0	0	0	1	0	1	1.628	1	0	0	1	0	1	1.116
0	0	0	1	1	0	1.612	1	0	0	1	1	0	1.100
0	0	0	1	1	1	1.596	1	0	0	1	1	1	1.084
0	0	1	0	0	0	1.580	1	0	1	0	0	0	1.068
0	0	1	0	0	1	1.564	1	0	1	0	0	1	1.052
0	0	1	0	1	0	1.548	1	0	1	0	1	0	1.036
0	0	1	0	1	1	1.532	1	0	1	0	1	1	1.020
0	0	1	1	0	0	1.516	1	0	1	1	0	0	1.004
0	0	1	1	0	1	1.500	1	0	1	1	0	1	0.988
0	0	1	1	1	0	1.484	1	0	1	1	1	0	0.972
0	0	1	1	1	1	1.468	1	0	1	1	1	1	0.956
0	1	0	0	0	0	1.452	1	1	0	0	0	0	0.940
0	1	0	0	0	1	1.436	1	1	0	0	0	1	0.924
0	1	0	0	1	0	1.420	1	1	0	0	1	0	0.908
0	1	0	0	1	1	1.404	1	1	0	0	1	1	0.892
0	1	0	1	0	0	1.388	1	1	0	1	0	0	0.876
0	1	0	1	0	1	1.372	1	1	0	1	0	1	0.860
0	1	0	1	1	0	1.356	1	1	0	1	1	0	0.844
0	1	0	1	1	1	1.340	1	1	0	1	1	1	0.828
0	1	1	0	0	0	1.324	1	1	1	0	0	0	0.812
0	1	1	0	0	1	1.308	1	1	1	0	0	1	0.796
0	1	1	0	1	0	1.292	1	1	1	0	1	0	0.780
0	1	1	0	1	1	1.276	1	1	1	0	1	1	0.764
0	1	1	1	0	0	1.260	1	1	1	1	0	0	0.748
0	1	1	1	0	1	1.244	1	1	1	1	0	1	0.732
0	1	1	1	1	0	1.228	1	1	1	1	1	0	0.716
0	1	1	1	1	1	1.212	1	1	1	1	1	1	0.700

3.3 Catastrophic Thermal Protection

The Pentium M processor supports the THERMTRIP# signal for catastrophic thermal protection. An external thermal sensor should also be used to protect the processor and the system against excessive temperatures. Even with the activation of THERMTRIP#, which halts all processor internal clocks and activity, leakage current can be high enough such that the processor cannot be protected in all conditions without the removal of power to the processor. If the external thermal sensor detects a catastrophic processor temperature of 125 °C (maximum), or if the THERMTRIP# signal is asserted, the VCC supply to the processor must be turned off within 500 ms to prevent permanent silicon damage due to thermal runaway.

3.4 Signal Terminations and Unused Pins

All RSVD (RESERVED) pins must remain unconnected. Connection of these pins to V_{CC} , V_{SS} , or to any other signal (including each other) can result in component malfunction or incompatibility with future Pentium M processors. See Section 4.2 for a pin listing of the processor and the location of all RSVD pins.

For reliable operation, always connect unused inputs or bidirectional signals to an appropriate signal level. Unused active low AGTL+ inputs may be left as no connects if AGTL+ termination is provided on the processor silicon. Unused active high inputs should be connected through a resistor to ground (V_{SS}) . Unused outputs can be left unconnected.

For details on signal terminations, please refer to the platform design guides.

The TEST1 and TEST2 pins must have a stuffing option connection to V_{SS} separately via 1-k Ω , pull-down resistors.

3.5 FSB Frequency Select Signals (BSEL[1:0])

These signals are used to select the FSB clock frequency. They should be connected between the processor and the chipset MCH and clock generator on Intel 915 Express chipset family based platforms. These signals must be left unconnected on platforms designed with the Intel 855 chipset family. On these platforms, FSB clock frequency should be configured on the motherboard.

3.6 FSB Signal Groups

In order to simplify the following discussion, the FSB signals have been combined into groups by buffer type. AGTL+ input signals have differential input buffers, which use GTLREF as a reference level. In this document, the term "AGTL+ Input" refers to the AGTL+ input group as well as the AGTL+ I/O group when receiving. Similarly, "AGTL+ Output" refers to the AGTL+ output group as well as the AGTL+ I/O group when driving.

With the implementation of a source synchronous data bus comes the need to specify two sets of timing parameters. One set is for common clock signals which are dependant upon the rising edge of BCLK0 (ADS#, HIT#, HITM#, etc.) and the second set is for the source synchronous signals which are relative to their respective strobe lines (data and address) as well as the rising edge of BCLK0. Asychronous signals are still present (A20M#, IGNNE#, etc.) and can become active at any time during the clock cycle. Table 3-2 identifies which signals are common clock, source synchronous, and asynchronous.

Table 3-2. FSB Pin Groups

Signal Group	Туре	Signals ¹				
AGTL+ Common Clock Input	Synchronous to BCLK[1:0]	BPRI#, DEFER#, DPWR#, PREQ#, RESET#, RS[2:0]#, TRDY#				
AGTL+ Common Clock I/O	Synchronous to BCLK[1:0]	ADS#, BNR#, BPM[3:0]#, BR0#, DBSY#, DRDY#, HIT#, HITM#, LOCK#, PRDY#				
AGTL+ Source Synchronous I/O	Synchronous to assoc.					
	strobe	Signals Associated Strobe				
		REQ[4:0]#, A[16:3]# ADSTB[0]#				
		A[31:17]# ADSTB[1]#				
		D[15:0]#, DINV0# DSTBP0#, DSTBN0#				
		D[31:16]#, DINV1# DSTBP1#, DSTBN1#				
		D[47:32]#, DINV2# DSTBP2#, DSTBN2#				
		D[63:48]#, DINV3# DSTBP3#, DSTBN3#				
AGTL+ Strobes	Synchronous to BCLK[1:0]	ADSTB[1:0]#, DSTBP[3:0]#, DSTBN[3:0]#				
CMOS Input	Asynchronous	A20M#, DPSLP#, IGNNE#, INIT#, LINT0/INTR, LINT1/ NMI, PWRGOOD, SMI#, SLP#, STPCLK#				
Open Drain Output	Asynchronous	FERR#, IERR#, PROCHOT#, THERMTRIP#				
CMOS Output	Asynchronous	PSI#, VID[5:0], BSEL[1:0]				
CMOS Input	Synchronous to TCK	TCK, TDI, TMS, TRST#				
Open Drain Output	Synchronous to TCK	TDO				
FSB Clock	Clock	BCLK[1:0], ITP_CLK[1:0] ²				
Power/Other		$\begin{array}{l} {\sf COMP[3:0], DBR\#^2, GTLREF, RSVD, TEST2, TEST1, \\ {\sf THERMDA, THERMDC, V_{CC}, V_{CCA}[3:0], V_{CCP, V_{CCQ}}[1:0], } \\ {\sf V_{CC_SENSE}, V_{SS, VSS_SENSE}} \end{array}$				

NOTES

- 1. Refer to Chapter 4 for signal descriptions and termination requirements.
- 2. BPM[2:0]# and PRDY# are AGTL+ output only signals.
- 3. In processor systems where there is no debug port implemented on the system board, these signals are used to support a debug port interposer. In systems with the debug port implemented on the system board, these signals are no connects.

3.7 CMOS Signals

CMOS input signals are shown in Table 3-2. Legacy output FERR#, IERR# and other non-AGTL+ signals (THERMTRIP# and PROCHOT#) utilize Open Drain output buffers. These signals do not have setup or hold time specifications in relation to BCLK[1:0]. However, all of the CMOS signals are required to be asserted for at least three BCLKs in order for the processor to recognize them. See Section 3.9 for the DC and AC specifications for the CMOS signal groups.

3.8 Maximum Ratings

Table 3-3 lists the processor's maximum environmental stress ratings. The processor should not receive a clock while subjected to these conditions. Functional operating parameters are listed in the AC and DC tables. Extended exposure to the maximum ratings may affect device reliability. Furthermore, although the processor contains protective circuitry to resist damage from electro static discharge (ESD), one should always take precautions to avoid high static voltages or electric fields.

Table 3-3. Processor DC Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit	Notes
TSTORAGE	Processor storage temperature	-40	85	°C	2
V _{CC}	Any processor supply voltage with respect to V _{SS}	-0.3	1.6	V	1
V _{inAGTL+}	AGTL+ buffer DC input voltage with respect to V _{ss}	-0.1	1.6	V	1, 2
V _{inAsynch_CMOS}	CMOS buffer DC input voltage with respect to V _{SS}	-0.1	1.6	V	1, 2

NOTES

- 1. This rating applies to any processor pin.
- 2. Contact Intel for storage requirements in excess of one year.

3.9 Processor DC Specifications

The processor DC specifications in this section are defined at the processor core (pads) unless noted otherwise. See Table 4-3 for the pin signal definitions and signal pin assignments. The DC specifications for these signals are listed in Table 3-24 and Table 3-25.

Table 3-4 through Table 3-25 list the DC specifications for the Pentium M processor and are valid only while meeting specifications for junction temperature, clock frequency, and input voltages. The Highest Frequency mode (HFM) and Lowest Frequency mode (LFM) refer to the highest and lowest core operating frequencies supported on the processor. Active mode load line specifications apply in all states except in the Deep Sleep and Deeper Sleep states. $V_{CC,BOOT}$ is the default voltage driven by the voltage regulator at power up in order to set the VID values. Unless specified otherwise, all specifications for the Pentium M processor are at Tjunction = 100° C. Care should be taken to read all notes associated with each parameter.

Table 3-4. Voltage and Current Specifications - Standard Voltage Processors (Sheet 1 of 2)

Symbol	Parameter	VID#A Typical	VID#B Typical	VID#C Typical	VID#D Typical	VID#E Typical	Unit	Notes
V _{CCD765}	Intel® Pentium® M Processor 765 Core V _{CC FOR} Enhanced Intel SpeedStep® Technology Operating Points:						V	1, 2
	2.1 GHz	1.340	1.324	1.308		1.356		
	1.8 GHz	1.276	1.260	1.244		1.292		
	1.6 GHz	1.228	1.212	1.212		1.244		
	1.4 GHz	1.180	1.180	1.164		1.196		
	1.2 GHz	1.132	1.132	1.116		1.148		
	1.0 GHz	1.084	1.084	1.084		1.100		
	800 MHz	1.036	1.036	1.036		1.052		
	600 MHz	0.988	0.988	0.988		0.988		
V _{CCD755}	Pentium M Processor 755 Core V _{CC} for Enhanced Intel SpeedStep Technology Operating Points:						V	1, 2
	2.0 GHz	1.340	1.324	1.308	1.276			
	1.8 GHz	1.292	1.276	1.276	1.244			
	1.6 GHz	1.244	1.228	1.228	1.196			
	1.4 GHz	1.196	1.180	1.180	1.164			
	1.2 GHz	1.148	1.132	1.132	1.116			
	1.0 GHz	1.100	1.084	1.084	1.084			
	800 MHz	1.052	1.036	1.036	1.036			
	600 MHz	0.988	0.988	0.988	0.988			
V _{CCD745}	Pentium M Processor 745 Core V _{CC} for Enhanced Intel SpeedStep Technology Operating Points:						V	1, 2
	1.8 GHz	1.340	1.324	1.308	1.276			
	1.6 GHz	1.292	1.276	1.260	1.228			
	1.4 GHz	1.228	1.212	1.212	1.180			
	1.2 GHz	1.164	1.164	1.148	1.132			
	1.0 GHz	1.116	1.100	1.100	1.084			
	800 MHz	1.052	1.052	1.052	1.036			
	600 MHz	0.988	0.988	0.988	0.988			

Table 3-4. Voltage and Current Specifications - Standard Voltage Processors (Sheet 2 of 2)

Symbol	Parameter	VID#A Typical	VID#B Typical	VID#C Typical	VID#D Typical	VID#E Typical	Unit	Notes
V _{CCD735}	Pentium M Processor 735 Core V _{CC} for Enhanced Intel SpeedStep Technology Operating Points:						V	1, 2
	1.7 GHz	1.340	1.324	1.308	1.276			
	1.4 GHz	1.244	1.244	1.228	1.212			
	1.2 GHz	1.180	1.180	1.164	1.148			
	1.0 GHz	1.116	1.116	1.116	1.100			
	800 MHz	1.052	1.052	1.052	1.052			
	600 MHz	0.988	0.988	0.988	0.988			
V _{CCD725}	Pentium M Processor 725 Core V _{CC} for Enhanced Intel SpeedStep Technology Operating Points:						V	1, 2
	1.6 GHz	1.340	1.324	1.308	1.276			
	1.4 GHz	1.276	1.260	1.244	1.228			
	1.2 GHz	1.212	1.196	1.180	1.164			
	1.0 GHz	1.132	1.132	1.116	1.116			
	800 MHz	1.068	1.068	1.052	1.052			
	600 MHz	0.988	0.988	0.988	0.988			
V _{CCD715}	Pentium M Processor 715 Core V _{CC} for Enhanced Intel SpeedStep Technology Operating Points:						V	1, 2
	1.5 GHz	1.340	1.324	1.308	1.276			
	1.2 GHz	1.228	1.212	1.212	1.180			
	1.0 GHz	1.148	1.148	1.132	1.116			
	800 MHz	1.068	1.068	1.068	1.052			
	600 MHz	0.988	0.988	0.988	0.988			

NOTES

^{1.} The typical values shown are the VID encoded voltages. Static and ripple tolerances (for minimum and maximum voltages) are defined in the load line tables, Table 3-8 through Table 3-21. Adherence to loadline specifications for the Pentium M processor is required to ensure reliable processor operation.

^{2.} The voltage specifications are assumed to be measured at a via on the motherboard's opposite side of the processor's socket (or BGA) ball with a 100-MHz bandwidth oscilloscope, 1.5-pF maximum probe capacitance, and 1- $M\Omega$ minimum impedance. The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from the system is not coupled in the scope probe.

Table 3-5. Voltage and Current Specifications - Low Voltage Processors (Sheet 1 of 2)

Symbol	Parameter	Min	Тур	Max	Unit	Note
V _{CCD778}	Intel [®] Pentium [®] M Processor, Low Voltage 778 Core VCC for Enhanced Intel SpeedStep [®] Technology Operating Points:		,		V	1, 2
	1.6 GHz		1.116			
	1.5 GHz		1.116			
	1.4 GHz		1.100			
	1.3 GHz		1.084			
	1.2 GHz		1.068			
	1.1 GHz		1.052			
	1.0 GHz		1.052			
	900 GHz		1.036			
	800 MHz		1.020			
	600 MHz		0.988			
V _{CCD758}	Pentium M Processor, Low Voltage, 758 Core VCC for Enhanced Intel SpeedStep Technology Operating Points:				V	1, 2
	1.5 GHz		1.116			
	1.4 GHz		1.116			
	1.3 GHz		1.100			
	1.2 GHz		1.084			
	1.1 GHz		1.068			
	1.0 GHz		1.052			
	900 GHz		1.036			
	800 MHz		1.020			
	600 MHz		0.988			

Table 3-5. Voltage and Current Specifications - Low Voltage Processors (Sheet 2 of 2)

Symbol	Parameter	Min	Тур	Max	Unit	Note
V _{CCD738}	Pentium M Processor, Low Voltage, 738 Core VCC for Enhanced Intel SpeedStep Technology Operating Points:				V	1, 2
	1.4 GHz		1.116			
	1.3 GHz		1.116			
	1.2 GHz		1.100			
	1.1 GHz		1.068			
	1.0 GHz		1.052			
	900 GHz		1.036			
	800 MHz		1.020			
	600 MHz		0.988			

NOTES:

- The typical values shown are the VID encoded voltages. Static and ripple tolerances (for minimum and maximum voltages) are defined in the load line tables, Table 3-8 through Table 3-21. Adherence to loadline specifications for the Pentium M processor is required to ensure reliable processor operation.
- 2. The voltage specifications are assumed to be measured at a via on the motherboard's opposite side of the processor's socket (or BGA) ball with a 100-MHz bandwidth oscilloscope, 1.5-pF maximum probe capacitance, and 1-M Ω minimum impedance. The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from the system is not coupled in the scope probe.

Table 3-6. Voltage and Current Specifications - Ultra Low Voltage Processors (Sheet 1 of 2)

Symbol	Parameter	Min	Тур	Max	VID# GTyp	VID# HTyp	VID#I Typ	VID# J Typ	VID# K Typ	VID# L Typ	Unit	Note
V _{CCD773}	Intel® Pentium® M Processor, Ultra Low Voltage, 773 Core VCC for Enhanced Intel SpeedStep® Technology Operating Points:										V	2, 3
	1.3 GHz				0.956	0.940	0.924	0.908	0.892	0.876		
	1.2 GHz				0.940	0.924	0.908	0.908	0.892	0.876		
	1.1 GHz				0.924	0.908	0.892	0.892	0.876	0.860		
	1.0 GHz				0.908	0.892	0.876	0.876	0.860	0.860		
	900 MHz				0.876	0.876	0.860	0.860	0.860	0.844		
	800 MHz				0.860	0.860	0.844	0.844	0.844	0.844		
	600 MHz				0.812	0.812	0.812	0.812	0.812	0.812		
V _{CCD753}	Pentium M Processor, Ultra Low Voltage, 753 Core VCC for Enhanced Intel SpeedStep Technology Operating Points:										V	2, 3
	1.2 GHz				0.956	0.940	0.924	0.908	0.892	0.876		
	1.1 GHz				0.940	0.924	0.908	0.892	0.892	0.876		
	1.0 GHz				0.908	0.908	0.892	0.876	0.876	0.860		
	900 MHz				0.892	0.876	0.876	0.860	0.860	0.844		
	800 MHz				0.860	0.860	0.860	0.844	0.844	0.844		
	600 MHz				0.812	0.812	0.812	0.812	0.812	0.812		
V _{CCD733} J	Pentium M Processor, Ultra Low Voltage, 733J Core VCC for Enhanced Intel SpeedStep Technology operating points:										V	2, 3, 4
	1.1 GHz				0.956	0.940	0.924	0.908	0.892	0.876		
	1.0 GHz				0.940	0.924	0.908	0.892	0.876	0.876		
	900 MHz				0.908	0.892	0.892	0.876	0.860	0.860		
	800 MHz				0.876	0.876	0.860	0.860	0.844	0.844		
	600 MHz				0.812	0.812	0.812	0.812	0.812	0.812		

Table 3-6. Voltage and Current Specifications - Ultra Low Voltage Processors (Sheet 2 of 2)

Symbol	Parameter	Min	Тур	Max	VID# GTyp	VID# HTyp	VID#I Typ	VID# J Typ	VID# K Typ	VID# L Typ	Unit	Note
V _{CCD733}	Pentium M Processor, Ultra Low Voltage, 733 Core VCC for Enhanced Intel SpeedStep Technology Operating Points:										V	1, 3
	1.1 GHz		0.940									
	1.0 GHz		0.924									
	900 MHz		0.892									
	800 MHz		0.876									
	600 MHz		0.812									
V _{CCD723}	Pentium M Processor, Ultra Low Voltage, 723 Core VCC for Enhanced Intel SpeedStep Technology Operating Points:										V	1, 3
	1.0 GHz		0.940									
	900 MHz		0.908									
	800 MHz		0.876									
	600 MHz		0.812									

NOTES:

- The typical values shown are the VID encoded voltages. Static and ripple tolerances (for minimum and maximum voltages) are defined in the load line tables, Table 3-8 through Table 3-21. Adherence to loadline specifications for the Pentium M processor is required to ensure reliable processor operation.
 These are VID values. Individual processor VID values may be calibrated during manufacturing such that two
- 2. These are VID values. Individual processor VID values may be calibrated during manufacturing such that two devices at the same speed may have different VID settings. Actual voltage supplied to the processor should be as specified in the load lines in Figure 3-11 and Figure 3-12. Adherence to load line specifications is required to ensure reliable processor operation.
- 3. The voltage specifications are assumed to be measured at a via on the motherboard's opposite side of the processor's socket (or BGA) ball with a 100-MHz bandwidth oscilloscope, 1.5-pF maximum probe capacitance, and 1- $M\Omega$ minimum impedance. The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from the system is not coupled in the scope probe.
- 4. For 733J, CPU signature = 06D8h.

Table 3-7. Voltage and Current Specifications (Continued) (Sheet 1 of 3)

Symbol	Parameter	Min	Тур	Max	Unit	Note
V _{CC,BOOT}	Default V _{CC} Voltage for Initial Power-Up	1.14	1.20	1.26	V	2
V _{CCP}	AGTL+ Termination voltage	0.997	1.05	1.102	V	2
V _{CCA}	PLL Supply Voltage	1.71	1.8	1.89	V	2,
V _{CCA} for 778, 758,	PLL Supply Voltage for Pentium M Processors				V	2, 8
738 and 753,733J,	778/758/738	1.71	1.8	1.89		
733, 723	753/733J/733/723	1.425	1.5	1.575		
V _{CCDPRS} LP,TR1	Transient Deeper Sleep Voltage	0.695	0.748	0.795	V	2
V _{CCDPRS} LP,ST1	Static Deeper Sleep Voltage	0.705	0.748	0.785	V	2
V _{CCDPRS} LP,TR2	Transient Deeper Sleep Voltage	0.669	0.726	0.783	V	2, 9
V _{CCDPRS} LP,ST2	Static Deeper Sleep Voltage	0.679	0.726	0.793	V	2, 9
ICCDES	I _{CC} for Pentium M Processors Recommended Design Target			25	A	5
I _{CC}	I _{CC} for Pentium M Processors:				А	3, 10
	765/755/745/778/758/738/ 735/725/715 at LFM Vcc			8.1		
	765/755/745/735/725/715 at HFM Vcc			21.0		
	778/758/738 at HFM Vcc			12.0	1	
	773/753/733J/733/723 at LFM Vcc			4.0		
	773/753/733J at HFM Vcc			7.5	1	
	773/733/723 at HFM Vcc			7.0	1	

Table 3-7. Voltage and Current Specifications (Continued) (Sheet 2 of 3)

Symbol	Parameter	Min	Тур	Max	Unit	Note
I _{AH,} I _{SGNT}	I _{CC} Auto-Halt & Stop- Grant for Pentium M Processors:				А	4, 10
	765/755/745/778/758/738/ 735/725/715 at LFM Vcc			6.0		
	765/755/745/735/725/715 at HFM Vcc			15.1		
	778/758/738 at HFM Vcc			6.4		
	773/753/733J at LFM Vcc			2.3	=	
	733/723 at LFM Vcc			2.1	_	
	773/753/733J HFM Vcc			3.3		
	733/723 at HFM Vcc			3.1		
I _{SLP}	I _{CC} Sleep for Pentium M Processors:				Α	4, 10
	765/755/745/778/758/738/ 735/725/715 at LFM Vcc			5.9		
	765/755/745/735/725/715 at HFM Vcc			14.8		
	778/758/738 at HFM Vcc			6.2		
	773/753/733J at LFM Vcc			2.2		
	733/723 at LFM Vcc			2.0		
	773/753/733J at HFM Vcc			3.2	1	
	733/723 at HFM Vcc			3.0		
I _{DSLP}	I _{CC} Deep Sleep for Pentium M Processors:				А	4, 10
	765/755/745/778/758/738/ 735/725/715 at LFM Vcc			5.8		
	765/755/745/735/725/715 at HFM Vcc			14.2		
	778/758/738 at HFM Vcc			5.7	1	
	773/753/733J at LFM Vcc			2.1	1	
	733/723 at LFM Vcc			1.9	1	
	773/753/733J at HFM Vcc			2.9	1	
	733/723 at HFM Vcc			2.7	1	

Table 3-7. Voltage and Current Specifications (Continued) (Sheet 3 of 3)

Symbol	Parameter	Min	Тур	Max	Unit	Note
I _{DPRSLP1}	I _{CC} Deeper Sleep @ 0.748 V for Pentium M Processors:				А	4, 9, 10
	765/755/745/778/758/738/ 735/725/715			2.5		
	753/733J/733/723			1.6		
I _{DPRSLP1}	I _{CC} Deeper Sleep @ 0.726 V for Pentium M Processors:				А	4, 9, 10
	765/755/745/778/758/738/ 735/725/715			2.3		
	753/733J/733/723			1.3		
dl _{CC/DT}	V _{CC} power supply current slew rate			0.5	A/ns	6, 7
I _{CCA}	I _{CC} for V _{CCA} supply			120	mA	
I _{CCP}	I _{CC} for V _{CCP} supply			2.5	Α	

NOTES:

- 1. The typical values shown are the VID encoded voltages. Static and ripple tolerances (for minimum and maximum voltages) are defined in the load line tables i.e., Table 3-8 through Table 3-21. Adherence to loadline specifications for the Pentium M processor is required to ensure reliable processor operation.
- 2. The voltage specifications are assumed to be measured at a via on the motherboard's opposite side of the processor's socket (or BGA) ball with a 100-MHz bandwidth oscilloscope, 1.5-pF maximum probe capacitance, and 1-Mohm minimum impedance. The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from the system is not coupled in the scope probe.
- Specified at V_{CC,STATIC} (nominal) under maximum signal loading conditions.
 Specified at the VID voltage.
- 5. The I_{CCDES}(max) specification comprehends future processor HFM frequencies. Platforms should be designed to this specification.
- 6. Based on simulations and averaged over the duration of any change in current. Specified by design/ characterization at nominal V_{CC}. Not 100% tested.
- 7. Measured at the bulk capacitors on the motherboard.
- 8. Pentium M processors LV and ULV will support VCCA supply voltages of both 1.8 V ±5% and 1.5 V ±5%.
- 9. Deeper sleep voltage of 0.726 V (typical) is supported on LV and ULV Pentium M processors with CPU signature =06D8h. A typical voltage setting between 0.726 V and 0.748 V may be used but the minimum and maximum voltages specified in Table 3-7 should not be exceeded.

10. For 733J, CPU signature = 06D8h.

Table 3-8. Voltage Tolerances for the Intel® Pentium® M Processor (Active State) VID#A

	High	est Freque	ncy Mode	: VID=1.3	40V, Offse	et=0%	Lowe	st Freque	ncy Mode	: VID=0.98	88V, Offse	t=0%
MODE	I _{CC} , A	v _{cc} , v	STA	TIC	Rip	ple	I _{CC} , A	v _{cc} , v	STA	TIC	Rip	ple
	icc, A	v _{cc} , v	Min	Max	Min	Max	icc, A	v _{cc} , v	Min	Max	Min	Max
	0	1.340	1.320	1.360	1.310	1.370	0.0	0.988	0.973	1.003	0.963	1.013
	0.9	1.337	1.317	1.357	1.307	1.367	0.4	0.987	0.972	1.002	0.962	1.012
	1.9	1.334	1.314	1.355	1.304	1.365	0.9	0.985	0.971	1.000	0.961	1.010
	2.8	1.332	1.312	1.352	1.302	1.362	1.3	0.984	0.969	0.999	0.959	1.009
	3.7	1.329	1.309	1.349	1.299	1.359	1.7	0.983	0.968	0.998	0.958	1.008
	4.6	1.326	1.306	1.346	1.296	1.356	2.1	0.982	0.967	0.996	0.957	1.006
	5.6	1.323	1.303	1.343	1.293	1.353	2.6	0.980	0.966	0.995	0.956	1.005
	6.5	1.321	1.300	1.341	1.290	1.351	3.0	0.979	0.964	0.994	0.954	1.004
	7.4	1.318	1.298	1.338	1.288	1.348	3.4	0.978	0.963	0.993	0.953	1.003
	8.3	1.315	1.295	1.335	1.285	1.345	3.8	0.976	0.962	0.991	0.952	1.001
	9.3	1.312	1.292	1.332	1.282	1.342	4.3	0.975	0.960	0.990	0.950	1.000
	10.2	1.309	1.289	1.330	1.279	1.340	4.7	0.974	0.959	0.989	0.949	0.999
ല	11.1	1.307	1.287	1.327	1.277	1.337	5.1	0.973	0.958	0.987	0.948	0.997
ACTIVE	12.0	1.304	1.284	1.324	1.274	1.334	5.5	0.971	0.957	0.986	0.947	0.996
AC	13.0	1.301	1.281	1.321	1.271	1.331	6.0	0.970	0.955	0.985	0.945	0.995
	13.9	1.298	1.278	1.318	1.268	1.328	6.4	0.969	0.954	0.984	0.944	0.994
	14.8	1.296	1.275	1.316	1.265	1.326	6.8	0.968	0.953	0.982	0.943	0.992
	15.7	1.293	1.273	1.313	1.263	1.323	7.2	0.966	0.951	0.981	0.941	0.991
	16.7	1.290	1.270	1.310	1.260	1.320	7.7	0.965	0.950	0.980	0.940	0.990
	17.6	1.287	1.267	1.307	1.257	1.317	8.1	0.964	0.949	0.979	0.939	0.989
	18.5	1.284	1.264	1.305	1.254	1.315						
	19.4	1.282	1.262	1.302	1.252	1.312						
	20.4	1.279	1.259	1.299	1.249	1.309						
	21.3	1.276	1.256	1.296	1.246	1.306						
	22.2	1.273	1.253	1.293	1.243	1.303						
	23.1	1.271	1.250	1.291	1.240	1.301						
	24.1	1.268	1.248	1.288	1.238	1.298						
	25.0	1.265	1.245	1.285	1.235	1.295						

Figure 3-1. Illustration of Active State V_{CC} Static and Ripple Tolerances (HFM- VID#A)

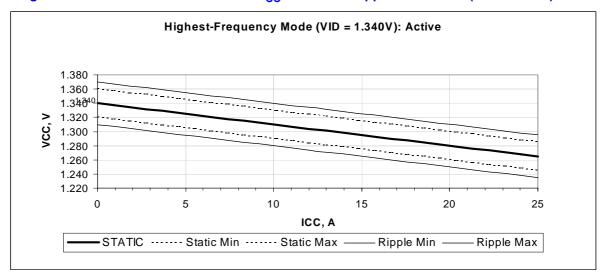


Table 3-9. Voltage Tolerances for the Intel® Pentium® M Processor (Deep Sleep State) VID#A

	Highes	st Frequer	ncy Mode:	VID=1.34	OV, Offset	=-1.2%	Lowest Frequency Mode: VID=0.988V, Offset=-1.2%						
MODE	т А	v _{cc} , v	STA	ATIC	Rip	ple	т А	v _{cc} , v	STA	TIC	Rip	ple	
	I _{CC} , A	VCC, V	Min	Max	Min	Max	I _{cc} , A	VCC, V	Min	Max	Min	Max	
	0.0	1.324	1.304	1.344	1.294	1.354	0.0	0.976	0.961	0.991	0.951	1.001	
	0.9	1.321	1.301	1.341	1.291	1.351	0.4	0.975	0.960	0.990	0.950	1.000	
	1.9	1.318	1.298	1.338	1.288	1.348	0.8	0.974	0.959	0.989	0.949	0.999	
	2.8	1.315	1.295	1.336	1.285	1.346	1.2	0.973	0.958	0.987	0.948	0.997	
	3.8	1.313	1.292	1.333	1.282	1.343	1.5	0.972	0.957	0.986	0.947	0.996	
	4.7	1.310	1.290	1.330	1.280	1.340	1.9	0.970	0.956	0.985	0.946	0.995	
Sleep	5.7	1.307	1.287	1.327	1.277	1.337	2.3	0.969	0.954	0.984	0.944	0.994	
SI	6.6	1.304	1.284	1.324	1.274	1.334	2.7	0.968	0.953	0.983	0.943	0.993	
Deep	7.6	1.301	1.281	1.321	1.271	1.331	3.1	0.967	0.952	0.982	0.942	0.992	
п	8.5	1.298	1.278	1.318	1.268	1.328	3.5	0.966	0.951	0.981	0.941	0.991	
	9.5	1.296	1.275	1.316	1.265	1.326	3.9	0.965	0.950	0.979	0.940	0.989	
	10.4	1.293	1.273	1.313	1.263	1.323	4.3	0.963	0.949	0.978	0.939	0.988	
	11.4	1.290	1.270	1.310	1.260	1.320	4.6	0.962	0.947	0.977	0.937	0.987	
	12.3	1.287	1.267	1.307	1.257	1.317	5.0	0.961	0.946	0.976	0.936	0.986	
	13.3	1.284	1.264	1.304	1.254	1.314	5.4	0.960	0.945	0.975	0.935	0.985	
	14.2	1.281	1.261	1.301	1.251	1.311	5.8	0.959	0.944	0.974	0.934	0.984	

Figure 3-2. Illustration of Deep Sleep State V_{CC} Static and Ripple Tolerances (LFM- VID#A)

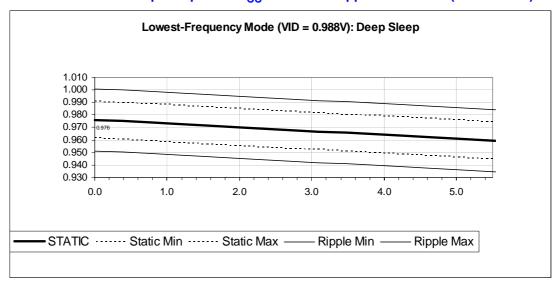


Table 3-10. Voltage Tolerances for the Intel® Pentium® M Processor (Active State) VID#B

	High	est Freque	ncy Mode	: VID=1.3	24V, Offse	et=0%	Lowe	st Freque	ncy Mode	: VID=0.98	88V, Offse	t=0%
MODE	т А	v v	STA	TIC	Rip	ple	т А	V V	STA	TIC	Rip	ple
	I _{cc} , A	v _{cc} , v	Min	Max	Min	Max	I _{CC} , A	v _{cc} , v	Min	Max	Min	Max
	0	1.324	1.304	1.344	1.294	1.354	0.0	0.988	0.973	1.003	0.963	1.013
	0.9	1.321	1.301	1.341	1.291	1.351	0.4	0.987	0.972	1.002	0.962	1.012
	1.9	1.318	1.299	1.338	1.289	1.348	0.9	0.985	0.971	1.000	0.961	1.010
	2.8	1.316	1.296	1.336	1.286	1.346	1.3	0.984	0.969	0.999	0.959	1.009
	3.7	1.313	1.293	1.333	1.283	1.343	1.7	0.983	0.968	0.998	0.958	1.008
	4.6	1.310	1.290	1.330	1.280	1.340	2.1	0.982	0.967	0.996	0.957	1.006
	5.6	1.307	1.287	1.327	1.277	1.337	2.6	0.980	0.966	0.995	0.956	1.005
	6.5	1.305	1.285	1.324	1.275	1.334	3.0	0.979	0.964	0.994	0.954	1.004
	7.4	1.302	1.282	1.322	1.272	1.332	3.4	0.978	0.963	0.993	0.953	1.003
	8.3	1.299	1.279	1.319	1.269	1.329	3.8	0.976	0.962	0.991	0.952	1.001
	9.3	1.296	1.276	1.316	1.266	1.326	4.3	0.975	0.960	0.990	0.950	1.000
	10.2	1.293	1.274	1.313	1.264	1.323	4.7	0.974	0.959	0.989	0.949	0.999
ю	11.1	1.291	1.271	1.311	1.261	1.321	5.1	0.973	0.958	0.987	0.948	0.997
ACTIVE	12.0	1.288	1.268	1.308	1.258	1.318	5.5	0.971	0.957	0.986	0.947	0.996
AC	13.0	1.285	1.265	1.305	1.255	1.315	6.0	0.970	0.955	0.985	0.945	0.995
	13.9	1.282	1.262	1.302	1.252	1.312	6.4	0.969	0.954	0.984	0.944	0.994
	14.8	1.280	1.260	1.299	1.250	1.309	6.8	0.968	0.953	0.982	0.943	0.992
	15.7	1.277	1.257	1.297	1.247	1.307	7.2	0.966	0.951	0.981	0.941	0.991
	16.7	1.274	1.254	1.294	1.244	1.304	7.7	0.965	0.950	0.980	0.940	0.990
	17.6	1.271	1.251	1.291	1.241	1.301	8.1	0.964	0.949	0.979	0.939	0.989
	18.5	1.268	1.249	1.288	1.239	1.298						
	19.4	1.266	1.246	1.286	1.236	1.296						
	20.4	1.263	1.243	1.283	1.233	1.293						
	21.3	1.260	1.240	1.280	1.230	1.290						
	22.2	1.257	1.237	1.277	1.227	1.287						
	23.1	1.255	1.235	1.274	1.225	1.284						
	24.1	1.252	1.232	1.272	1.222	1.282						
	25.0	1.249	1.229	1.269	1.219	1.279						

Figure 3-3. Illustration of Active State V_{CC} Static and Ripple Tolerances (HFM- VID#B)

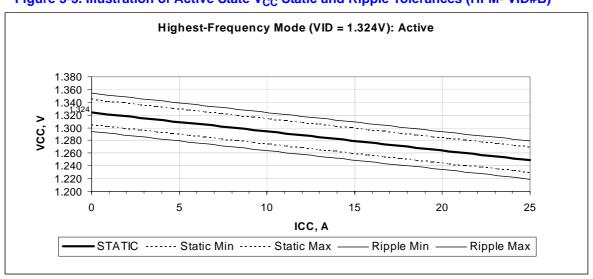


Table 3-11. Voltage Tolerances for the Intel® Pentium® M Processor (Deep Sleep State) VID#B

	Highes	st Frequen	cy Mode:	VID=1.32	4V, Offset	=1.2%	Lowest Frequency Mode: VID=0.988V, Offset=-1.2%						
MODE	Τ Α	V _{cc} , V	STA	ATIC	Rip	ple	I _{CC} , A	v _{cc} , v	STA	ATIC	Rij	pple	
	I _{CC} , A	VCC, V	Min	Max	Min	Max	100, A	VCC, V	Min	Max	Min	Max	
	0.0	1.308	1.288	1.328	1.278	1.338	0.0	0.976	0.961	0.991	0.951	1.001	
	0.9	1.305	1.285	1.325	1.275	1.335	0.4	0.975	0.960	0.990	0.950	1.000	
	1.9	1.302	1.283	1.322	1.273	1.332	0.8	0.974	0.959	0.989	0.949	0.999	
	2.8	1.300	1.280	1.319	1.270	1.329	1.2	0.973	0.958	0.987	0.948	0.997	
	3.8	1.297	1.277	1.317	1.267	1.327	1.5	0.972	0.957	0.986	0.947	0.996	
	4.7	1.294	1.274	1.314	1.264	1.324	1.9	0.970	0.956	0.985	0.946	0.995	
Sleep	5.7	1.291	1.271	1.311	1.261	1.321	2.3	0.969	0.954	0.984	0.944	0.994	
SI	6.6	1.288	1.268	1.308	1.258	1.318	2.7	0.968	0.953	0.983	0.943	0.993	
Deep	7.6	1.285	1.266	1.305	1.256	1.315	3.1	0.967	0.952	0.982	0.942	0.992	
"	8.5	1.283	1.263	1.302	1.253	1.312	3.5	0.966	0.951	0.981	0.941	0.991	
	9.5	1.280	1.260	1.300	1.250	1.310	3.9	0.965	0.950	0.979	0.940	0.989	
	10.4	1.277	1.257	1.297	1.247	1.307	4.3	0.963	0.949	0.978	0.939	0.988	
	11.4	1.274	1.254	1.294	1.244	1.304	4.6	0.962	0.947	0.977	0.937	0.987	
	12.3	1.271	1.251	1.291	1.241	1.301	5.0	0.961	0.946	0.976	0.936	0.986	
	13.3	1.268	1.248	1.288	1.238	1.298	5.4	0.960	0.945	0.975	0.935	0.985	
	14.2	1.266	1.246	1.285	1.236	1.295	5.8	0.959	0.944	0.974	0.934	0.984	

Figure 3-4. Illustration of Deep Sleep State V_{CC} Static and Ripple Tolerances (LFM- VID#B)

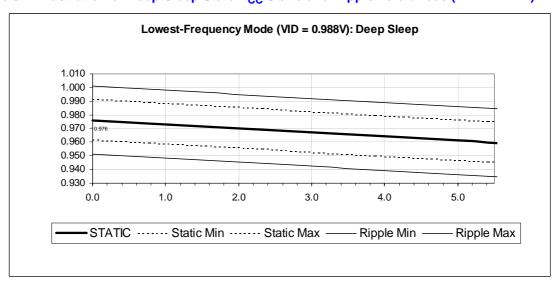


Table 3-12. Voltage Tolerances for the Intel® Pentium® M Processor (Active State) VID#C

	High	est Freque	ncy Mode	: VID=1.3	08V, Offse	et=0%	Lowe	st Freque	ncy Mode	: VID=0.98	88V, Offse	t=0%
MODE	I _{CC} , A	v _{cc} , v	STA	TIC	Rip	ple	I _{CC} , A	v _{cc} , v	STA	TIC	Rip	ple
	ICC, A	V _{CC} , V	Min	Max	Min	Max	I _{CC} , A	v _{cc} , v	Min	Max	Min	Max
	0	1.308	1.288	1.328	1.278	1.338	0.0	0.988	0.973	1.003	0.963	1.013
	0.9	1.305	1.286	1.325	1.276	1.335	0.4	0.987	0.972	1.002	0.962	1.012
	1.9	1.302	1.283	1.322	1.273	1.332	0.9	0.985	0.971	1.000	0.961	1.010
	2.8	1.300	1.280	1.319	1.270	1.329	1.3	0.984	0.969	0.999	0.959	1.009
	3.7	1.297	1.277	1.317	1.267	1.327	1.7	0.983	0.968	0.998	0.958	1.008
	4.6	1.294	1.274	1.314	1.264	1.324	2.1	0.982	0.967	0.996	0.957	1.006
	5.6	1.291	1.272	1.311	1.262	1.321	2.6	0.980	0.966	0.995	0.956	1.005
	6.5	1.289	1.269	1.308	1.259	1.318	3.0	0.979	0.964	0.994	0.954	1.004
	7.4	1.286	1.266	1.305	1.256	1.315	3.4	0.978	0.963	0.993	0.953	1.003
	8.3	1.283	1.263	1.303	1.253	1.313	3.8	0.976	0.962	0.991	0.952	1.001
	9.3	1.280	1.261	1.300	1.251	1.310	4.3	0.975	0.960	0.990	0.950	1.000
	10.2	1.277	1.258	1.297	1.248	1.307	4.7	0.974	0.959	0.989	0.949	0.999
6	11.1	1.275	1.255	1.294	1.245	1.304	5.1	0.973	0.958	0.987	0.948	0.997
ACTIVE	12.0	1.272	1.252	1.292	1.242	1.302	5.5	0.971	0.957	0.986	0.947	0.996
AC	13.0	1.269	1.249	1.289	1.239	1.299	6.0	0.970	0.955	0.985	0.945	0.995
	13.9	1.266	1.247	1.286	1.237	1.296	6.4	0.969	0.954	0.984	0.944	0.994
	14.8	1.264	1.244	1.283	1.234	1.293	6.8	0.968	0.953	0.982	0.943	0.992
	15.7	1.261	1.241	1.280	1.231	1.290	7.2	0.966	0.951	0.981	0.941	0.991
	16.7	1.258	1.238	1.278	1.228	1.288	7.7	0.965	0.950	0.980	0.940	0.990
	17.6	1.255	1.236	1.275	1.226	1.285	8.1	0.964	0.949	0.979	0.939	0.989
	18.5	1.252	1.233	1.272	1.223	1.282						
	19.4	1.250	1.230	1.269	1.220	1.279						
	20.4	1.247	1.227	1.267	1.217	1.277						
	21.3	1.244	1.224	1.264	1.214	1.274						
	22.2	1.241	1.222	1.261	1.212	1.271						
	23.1	1.239	1.219	1.258	1.209	1.268						
	24.1	1.236	1.216	1.255	1.206	1.265						
	25.0	1.233	1.213	1.253	1.203	1.263						

Figure 3-5. Illustration of Active State V_{CC} Static and Ripple Tolerances (HFM- VID#C)

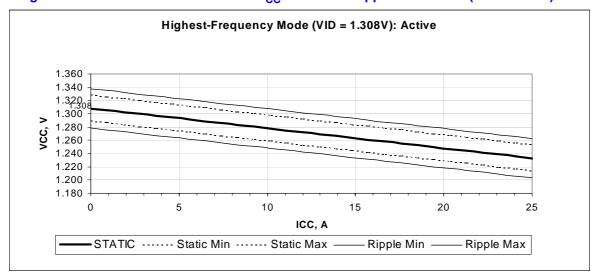


Table 3-13. Voltage Tolerances for the Intel® Pentium® M Processor (Deep Sleep State) VID#C

MODE	Highest Frequency Mode: VID=1.308V, Offset=-1.2%						Lowest Frequency Mode: VID=0.988V, Offset=-1.2%					
	I _{CC} , A	v _{cc} , v	STATIC		Ripple		T A	37 37	STATIC		Ripple	
			Min	Max	Min	Max	I _{CC} , A	V _{cc} , V	Min	Max	Min	Max
Deep Sleep	0.0	1.292	1.273	1.312	1.263	1.322	0.0	0.976	0.961	0.991	0.951	1.001
	0.9	1.289	1.270	1.309	1.260	1.319	0.4	0.975	0.960	0.990	0.950	1.000
	1.9	1.287	1.267	1.306	1.257	1.316	0.8	0.974	0.959	0.989	0.949	0.999
	2.8	1.284	1.264	1.303	1.254	1.313	1.2	0.973	0.958	0.987	0.948	0.997
	3.8	1.281	1.261	1.301	1.251	1.311	1.5	0.972	0.957	0.986	0.947	0.996
	4.7	1.278	1.258	1.298	1.248	1.308	1.9	0.970	0.956	0.985	0.946	0.995
	5.7	1.275	1.256	1.295	1.246	1.305	2.3	0.969	0.954	0.984	0.944	0.994
	6.6	1.272	1.253	1.292	1.243	1.302	2.7	0.968	0.953	0.983	0.943	0.993
	7.6	1.270	1.250	1.289	1.240	1.299	3.1	0.967	0.952	0.982	0.942	0.992
	8.5	1.267	1.247	1.286	1.237	1.296	3.5	0.966	0.951	0.981	0.941	0.991
	9.5	1.264	1.244	1.284	1.234	1.294	3.9	0.965	0.950	0.979	0.940	0.989
	10.4	1.261	1.241	1.281	1.231	1.291	4.3	0.963	0.949	0.978	0.939	0.988
	11.4	1.258	1.239	1.278	1.229	1.288	4.6	0.962	0.947	0.977	0.937	0.987
	12.3	1.255	1.236	1.275	1.226	1.285	5.0	0.961	0.946	0.976	0.936	0.986
	13.3	1.253	1.233	1.272	1.223	1.282	5.4	0.960	0.945	0.975	0.935	0.985
	14.2	1.250	1.230	1.269	1.220	1.279	5.8	0.959	0.944	0.974	0.934	0.984

Figure 3-6. Illustration of Deep Sleep State V_{CC} Static and Ripple Tolerances (LFM- VID#C)

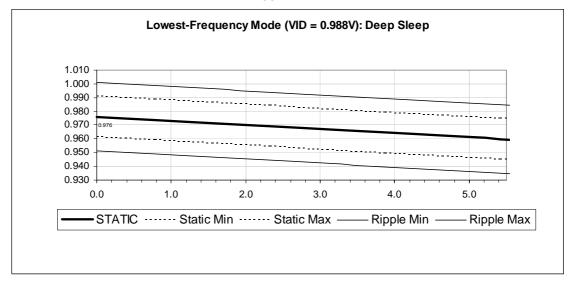


Table 3-14. Voltage Tolerances for the Intel® Pentium® M Processor (Active State) VID#D

	High	est Freque	ncy Mode	: VID=1.2	76V, Offse	et=0%	Lowe	st Freque	ncy Mode	: VID=0.98	88V, Offse	t=0%
MODE	т А	V V	STA	TIC	Rip	ple	I _{cc} , A	v _{cc} , v	STA	TIC	Rip	ple
	I _{CC} , A	v _{cc} , v	Min	Max	Min	Max	I _{CC} , A	V _{CC} , V	Min	Max	Min	Max
	0	1.276	1.257	1.295	1.247	1.305	0.0	0.988	0.973	1.003	0.963	1.013
	0.9	1.273	1.254	1.292	1.244	1.302	0.4	0.987	0.972	1.002	0.962	1.012
	1.9	1.270	1.251	1.290	1.241	1.300	0.9	0.985	0.971	1.000	0.961	1.010
	2.8	1.268	1.249	1.287	1.239	1.297	1.3	0.984	0.969	0.999	0.959	1.009
	3.7	1.265	1.246	1.284	1.236	1.294	1.7	0.983	0.968	0.998	0.958	1.008
	4.6	1.262	1.243	1.281	1.233	1.291	2.1	0.982	0.967	0.996	0.957	1.006
	5.6	1.259	1.240	1.278	1.230	1.288	2.6	0.980	0.966	0.995	0.956	1.005
	6.5	1.257	1.237	1.276	1.227	1.286	3.0	0.979	0.964	0.994	0.954	1.004
	7.4	1.254	1.235	1.273	1.225	1.283	3.4	0.978	0.963	0.993	0.953	1.003
	8.3	1.251	1.232	1.270	1.222	1.280	3.8	0.976	0.962	0.991	0.952	1.001
	9.3	1.248	1.229	1.267	1.219	1.277	4.3	0.975	0.960	0.990	0.950	1.000
	10.2	1.245	1.226	1.265	1.216	1.275	4.7	0.974	0.959	0.989	0.949	0.999
6	11.1	1.243	1.224	1.262	1.214	1.272	5.1	0.973	0.958	0.987	0.948	0.997
ACTIVE	12.0	1.240	1.221	1.259	1.211	1.269	5.5	0.971	0.957	0.986	0.947	0.996
AC	13.0	1.237	1.218	1.256	1.208	1.266	6.0	0.970	0.955	0.985	0.945	0.995
	13.9	1.234	1.215	1.253	1.205	1.263	6.4	0.969	0.954	0.984	0.944	0.994
	14.8	1.232	1.212	1.251	1.202	1.261	6.8	0.968	0.953	0.982	0.943	0.992
	15.7	1.229	1.210	1.248	1.200	1.258	7.2	0.966	0.951	0.981	0.941	0.991
	16.7	1.226	1.207	1.245	1.197	1.255	7.7	0.965	0.950	0.980	0.940	0.990
	17.6	1.223	1.204	1.242	1.194	1.252	8.1	0.964	0.949	0.979	0.939	0.989
	18.5	1.220	1.201	1.240	1.191	1.250						
	19.4	1.218	1.199	1.237	1.189	1.247						
	20.4	1.215	1.196	1.234	1.186	1.244						
	21.3	1.212	1.193	1.231	1.183	1.241						
	22.2	1.209	1.190	1.228	1.180	1.238						
	23.1	1.207	1.187	1.226	1.177	1.236						
	24.1	1.204	1.185	1.223	1.175	1.233						
	25.0	1.201	1.182	1.220	1.172	1.230						

Figure 3-7. Illustration of Active State V_{CC} Static and Ripple Tolerances (HFM- VID#D)

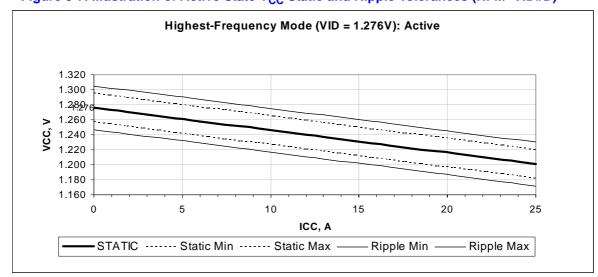


Table 3-15. Voltage Tolerances for the Intel® Pentium® M Processor (Deep Sleep State) VID#D

	Highe	st Frequer	ncy Mode:	VID=1.27	6V, Offset	=-1.2 %	Lowes	t Frequen	cy Mode:	VID=0.988	3V, Offset	-1.2%
MODE	т А	v _{cc} , v	STA	ATIC	Rij	pple	T A	v _{cc} , v	STA	ATIC	Rip	ple
	I _{cc} , A	v _{CC} , v	Min	Max	Min	Max	I _{cc} , A	V _{CC} , V	Min	Max	Min	Max
	0.0	1.261	1.242	1.280	1.232	1.290	0.0	0.976	0.961	0.991	0.951	1.001
	0.9	1.258	1.239	1.277	1.229	1.287	0.4	0.975	0.960	0.990	0.950	1.000
	1.9	1.255	1.236	1.274	1.226	1.284	0.8	0.974	0.959	0.989	0.949	0.999
	2.8	1.252	1.233	1.271	1.223	1.281	1.2	0.973	0.958	0.987	0.948	0.997
	3.8	1.249	1.230	1.268	1.220	1.278	1.5	0.972	0.957	0.986	0.947	0.996
	4.7	1.246	1.227	1.266	1.217	1.276	1.9	0.970	0.956	0.985	0.946	0.995
Sleep	5.7	1.244	1.225	1.263	1.215	1.273	2.3	0.969	0.954	0.984	0.944	0.994
SI	6.6	1.241	1.222	1.260	1.212	1.270	2.7	0.968	0.953	0.983	0.943	0.993
Deep	7.6	1.238	1.219	1.257	1.209	1.267	3.1	0.967	0.952	0.982	0.942	0.992
"	8.5	1.235	1.216	1.254	1.206	1.264	3.5	0.966	0.951	0.981	0.941	0.991
	9.5	1.232	1.213	1.251	1.203	1.261	3.9	0.965	0.950	0.979	0.940	0.989
	10.4	1.229	1.210	1.249	1.200	1.259	4.3	0.963	0.949	0.978	0.939	0.988
	11.4	1.227	1.207	1.246	1.197	1.256	4.6	0.962	0.947	0.977	0.937	0.987
	12.3	1.224	1.205	1.243	1.195	1.253	5.0	0.961	0.946	0.976	0.936	0.986
	13.3	1.221	1.202	1.240	1.192	1.250	5.4	0.960	0.945	0.975	0.935	0.985
	14.2	1.218	1.199	1.237	1.189	1.247	5.8	0.959	0.944	0.974	0.934	0.984

Figure 3-8. Illustration of Deep Sleep State V_{CC} Static and Ripple Tolerances (LFM- VID#D)

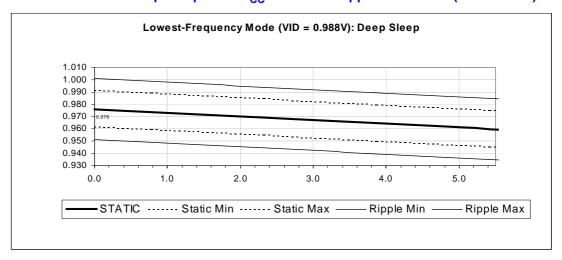


Table 3-16. Voltage Tolerances for the Intel® Pentium® M Processor (Active State) VID#E

	High	est Freque	ncy Mode	: VID=1.3	56V, Offse	et=0%	Lowe	st Freque	ncy Mode	: VID=0.98	88V, Offse	t=0%
MODE	т л	v _{cc} , v	STA	TIC	Rip	ple	т А	v _{cc} , v	STA	TIC	Rip	ple
	I _{CC} , A	V _{CC} , V	Min	Max	Min	Max	I _{CC} , A	V _{CC} , V	Min	Max	Min	Max
	0	1.356	1.336	1.376	1.326	1.386	0.0	0.988	0.973	1.003	0.963	1.013
	0.9	1.353	1.333	1.374	1.323	1.384	0.4	0.987	0.972	1.002	0.962	1.012
	1.9	1.350	1.330	1.371	1.320	1.381	0.9	0.985	0.971	1.000	0.961	1.010
	2.8	1.348	1.327	1.368	1.317	1.378	1.3	0.984	0.969	0.999	0.959	1.009
	3.7	1.345	1.325	1.365	1.315	1.375	1.7	0.983	0.968	0.998	0.958	1.008
	4.6	1.342	1.322	1.362	1.312	1.372	2.1	0.982	0.967	0.996	0.957	1.006
	5.6	1.339	1.319	1.360	1.309	1.370	2.6	0.980	0.966	0.995	0.956	1.005
	6.5	1.337	1.316	1.357	1.306	1.367	3.0	0.979	0.964	0.994	0.954	1.004
	7.4	1.334	1.313	1.354	1.303	1.364	3.4	0.978	0.963	0.993	0.953	1.003
	8.3	1.331	1.311	1.351	1.301	1.361	3.8	0.976	0.962	0.991	0.952	1.001
	9.3	1.328	1.308	1.349	1.298	1.359	4.3	0.975	0.960	0.990	0.950	1.000
	10.2	1.325	1.305	1.346	1.295	1.356	4.7	0.974	0.959	0.989	0.949	0.999
6	11.1	1.323	1.302	1.343	1.292	1.353	5.1	0.973	0.958	0.987	0.948	0.997
ACTIVE	12.0	1.320	1.300	1.340	1.290	1.350	5.5	0.971	0.957	0.986	0.947	0.996
AC	13.0	1.317	1.297	1.337	1.287	1.347	6.0	0.970	0.955	0.985	0.945	0.995
	13.9	1.314	1.294	1.335	1.284	1.345	6.4	0.969	0.954	0.984	0.944	0.994
	14.8	1.312	1.291	1.332	1.281	1.342	6.8	0.968	0.953	0.982	0.943	0.992
	15.7	1.309	1.288	1.329	1.278	1.339	7.2	0.966	0.951	0.981	0.941	0.991
	16.7	1.306	1.286	1.326	1.276	1.336	7.7	0.965	0.950	0.980	0.940	0.990
	17.6	1.303	1.283	1.324	1.273	1.334	8.1	0.964	0.949	0.979	0.939	0.989
	18.5	1.300	1.280	1.321	1.270	1.331						
	19.4	1.298	1.277	1.318	1.267	1.328						
	20.4	1.295	1.275	1.315	1.265	1.325						
	21.3	1.292	1.272	1.312	1.262	1.322						
	22.2	1.289	1.269	1.310	1.259	1.320						
	23.1	1.287	1.266	1.307	1.256	1.317						
	24.1	1.284	1.263	1.304	1.253	1.314						
	25.0	1.281	1.261	1.301	1.251	1.311						

Figure 3-9. Illustration of Active State V_{CC} Static and Ripple Tolerances (HFM- VID#E)

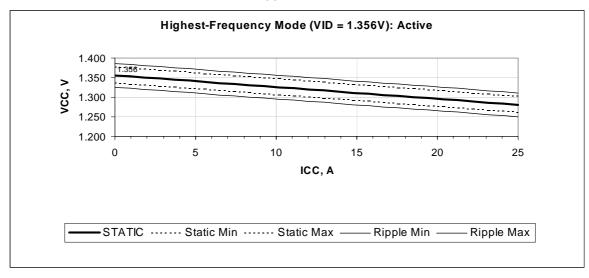


Table 3-17. Voltage Tolerances for the Intel® Pentium® M Processor (Deep Sleep State) VID#E

Highest Frequency Mode: VID=1.356V, Offset=-1.2% Lowest Frequency I									cy Mode:	VID=0.98	SV, Offset	1.2%
MODE	T A	v _{cc} , v	STA	ATIC .	Rip	ple	т А	v _{cc} , v	STA	ATIC	Rip	ple
	I _{CC} , A	V _{CC} , V	Min	Max	Min	Max	I _{cc} , A	v _{CC} , v	Min	Max	Min	Max
	0.0	1.340	1.319	1.360	1.309	1.370	0.0	0.976	0.961	0.991	0.951	1.001
	0.9	1.337	1.317	1.357	1.307	1.367	0.4	0.975	0.960	0.990	0.950	1.000
	1.9	1.334	1.314	1.354	1.304	1.364	0.8	0.974	0.959	0.989	0.949	0.999
	2.8	1.331	1.311	1.352	1.301	1.362	1.2	0.973	0.958	0.987	0.948	0.997
	3.8	1.328	1.308	1.349	1.298	1.359	1.5	0.972	0.957	0.986	0.947	0.996
	4.7	1.326	1.305	1.346	1.295	1.356	1.9	0.970	0.956	0.985	0.946	0.995
Sleep	5.7	1.323	1.302	1.343	1.292	1.353	2.3	0.969	0.954	0.984	0.944	0.994
SI	6.6	1.320	1.300	1.340	1.290	1.350	2.7	0.968	0.953	0.983	0.943	0.993
Deep	7.6	1.317	1.297	1.337	1.287	1.347	3.1	0.967	0.952	0.982	0.942	0.992
н	8.5	1.314	1.294	1.335	1.284	1.345	3.5	0.966	0.951	0.981	0.941	0.991
	9.5	1.311	1.291	1.332	1.281	1.342	3.9	0.965	0.950	0.979	0.940	0.989
	10.4	1.308	1.288	1.329	1.278	1.339	4.3	0.963	0.949	0.978	0.939	0.988
	11.4	1.306	1.285	1.326	1.275	1.336	4.6	0.962	0.947	0.977	0.937	0.987
	12.3	1.303	1.282	1.323	1.272	1.333	5.0	0.961	0.946	0.976	0.936	0.986
	13.3	1.300	1.280	1.320	1.270	1.330	5.4	0.960	0.945	0.975	0.935	0.985
	14.2	1.297	1.277	1.317	1.267	1.327	5.8	0.959	0.944	0.974	0.934	0.984

Figure 3-10. Illustration of Deep Sleep State V_{CC} Static and Ripple Tolerances (LFM- VID#E)

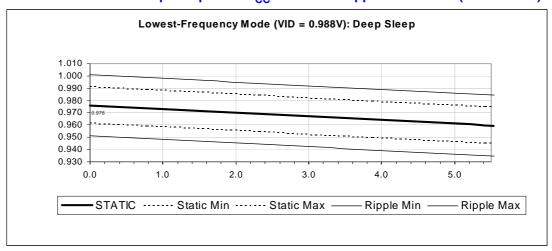


Table 3-18. Voltage Tolerances for the Intel® Pentium® M Processor LV (Active State)

	High	est Freque	ncy Mode	: VID=1.1	16V, Offse	et=0%	Lowe	st Freque	ncy Mode	: VID=0.98	88V, Offse	t=0%
MODE	I _{CC} , A	v _{cc} , v	STA	TIC	Rip	ple	I _{CC} , A	v _{cc} , v	STA	TIC	Rij	ple
	I _{CC} , A	V _{CC} , V	Min	Max	Min	Max	I _{CC} , A	V _{CC} , V	Min	Max	Min	Max
	0	1.116	1.099	1.133	1.089	1.143	0.0	0.988	0.973	1.003	0.963	1.013
	0.4	1.115	1.098	1.131	1.088	1.141	0.4	0.987	0.972	1.002	0.962	1.012
	0.9	1.113	1.097	1.130	1.087	1.140	0.9	0.985	0.971	1.000	0.961	1.010
	1.3	1.112	1.095	1.129	1.085	1.139	1.3	0.984	0.969	0.999	0.959	1.009
	1.8	1.111	1.094	1.127	1.084	1.137	1.7	0.983	0.968	0.998	0.958	1.008
	2.2	1.109	1.093	1.126	1.083	1.136	2.1	0.982	0.967	0.996	0.957	1.006
	2.7	1.108	1.091	1.125	1.081	1.135	2.6	0.980	0.966	0.995	0.956	1.005
	3.1	1.107	1.090	1.123	1.080	1.133	3.0	0.979	0.964	0.994	0.954	1.004
	3.6	1.105	1.089	1.122	1.079	1.132	3.4	0.978	0.963	0.993	0.953	1.003
	4.0	1.104	1.087	1.121	1.077	1.131	3.8	0.976	0.962	0.991	0.952	1.001
	4.4	1.103	1.086	1.119	1.076	1.129	4.3	0.975	0.960	0.990	0.950	1.000
	4.9	1.101	1.085	1.118	1.075	1.128	4.7	0.974	0.959	0.989	0.949	0.999
ெ	5.3	1.100	1.083	1.117	1.073	1.127	5.1	0.973	0.958	0.987	0.948	0.997
ACTIVE	5.8	1.099	1.082	1.115	1.072	1.125	5.5	0.971	0.957	0.986	0.947	0.996
AC	6.2	1.097	1.081	1.114	1.071	1.124	6.0	0.970	0.955	0.985	0.945	0.995
	6.7	1.096	1.079	1.113	1.069	1.123	6.4	0.969	0.954	0.984	0.944	0.994
	7.1	1.095	1.078	1.111	1.068	1.121	6.8	0.968	0.953	0.982	0.943	0.992
	7.6	1.093	1.077	1.110	1.067	1.120	7.2	0.966	0.951	0.981	0.941	0.991
	8.0	1.092	1.075	1.109	1.065	1.119	7.7	0.965	0.950	0.980	0.940	0.990
	8.4	1.091	1.074	1.107	1.064	1.117	8.1	0.964	0.949	0.979	0.939	0.989
	8.9	1.089	1.073	1.106	1.063	1.116						
	9.3	1.088	1.071	1.105	1.061	1.115						
	9.8	1.087	1.070	1.103	1.060	1.113						
	10.2	1.085	1.069	1.102	1.059	1.112						
	10.7	1.084	1.067	1.101	1.057	1.111						
	11.1	1.083	1.066	1.099	1.056	1.109						
	11.6	1.081	1.065	1.098	1.055	1.108						
	12.0	1.080	1.063	1.097	1.053	1.107						

Table 3-19. Voltage Tolerances for the Intel[®] Pentium[®] M Processor LV (Deep Sleep State)

	Highes	st Frequer	cy Mode:	VID=1.11	6V, Offset	=-1.2%	Lowes	t Frequen	cy Mode:	VID=0.988	3V, Offset=	-1.2%
MODE	т л	v _{cc} , v	STA	TIC	Rij	pple	т л	v _{cc} , v	STA	TIC	Rip	ple
	I _{CC} , A	V _{CC} , V	Min	Max	Min	Max	I _{CC} , A	V _{CC} , V	Min	Max	Min	Max
	0.0	1.103	1.086	1.119	1.076	1.129	0.0	0.976	0.961	0.991	0.951	1.001
	0.4	1.101	1.085	1.118	1.075	1.128	0.4	0.975	0.960	0.990	0.950	1.000
	0.8	1.100	1.083	1.117	1.073	1.127	0.8	0.974	0.959	0.989	0.949	0.999
	1.2	1.099	1.082	1.116	1.072	1.126	1.2	0.973	0.958	0.987	0.948	0.997
	1.6	1.098	1.081	1.114	1.071	1.124	1.5	0.972	0.957	0.986	0.947	0.996
	2.0	1.097	1.080	1.113	1.070	1.123	1.9	0.970	0.956	0.985	0.946	0.995
Sleep	2.4	1.095	1.079	1.112	1.069	1.122	2.3	0.969	0.954	0.984	0.944	0.994
SIe	2.8	1.094	1.077	1.111	1.067	1.121	2.7	0.968	0.953	0.983	0.943	0.993
Deep	3.3	1.093	1.076	1.110	1.066	1.120	3.1	0.967	0.952	0.982	0.942	0.992
О	3.7	1.092	1.075	1.108	1.065	1.118	3.5	0.966	0.951	0.981	0.941	0.991
	4.1	1.090	1.074	1.107	1.064	1.117	3.9	0.965	0.950	0.979	0.940	0.989
	4.5	1.089	1.072	1.106	1.062	1.116	4.3	0.963	0.949	0.978	0.939	0.988
	4.9	1.088	1.071	1.105	1.061	1.115	4.6	0.962	0.947	0.977	0.937	0.987
	5.3	1.087	1.070	1.103	1.060	1.113	5.0	0.961	0.946	0.976	0.936	0.986
	5.7	1.086	1.069	1.102	1.059	1.112	5.4	0.960	0.945	0.975	0.935	0.985
	6.1	1.084	1.068	1.101	1.058	1.111	5.8	0.959	0.944	0.974	0.934	0.984

Table 3-20. Voltage Tolerances for the Intel[®] Pentium[®] M Processor ULV (Active State)

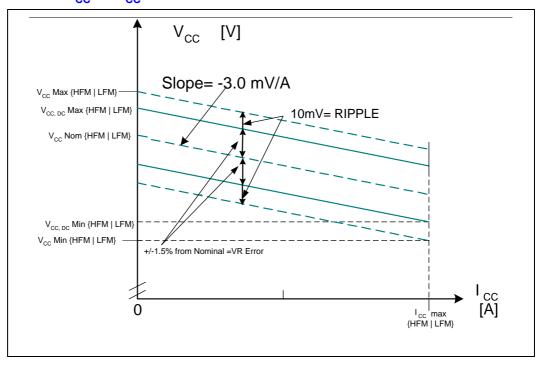

	High	est Freque	ncy Mode	: VID=0.9	40V, Offse	et=0%	Lowe	st Freque	ncy Mode	: VID=0.8	12V, Offse	t=0%
MODE	I _{CC} , A	v _{cc} , v	STA	TIC	Rip	ple	I _{CC} , A	v _{cc} , v	STA	TIC	Rip	ple
	icc, A	v _{cc} , v	Min	Max	Min	Max	ICC, A	v _{cc} , v	Min	Max	Min	Max
	0	0.940	0.926	0.954	0.916	0.964	0.0	0.812	0.799	0.825	0.789	0.835
	0.3	0.939	0.925	0.953	0.915	0.963	0.2	0.811	0.799	0.824	0.789	0.834
	0.5	0.938	0.924	0.953	0.914	0.963	0.4	0.811	0.798	0.823	0.788	0.833
	0.8	0.938	0.924	0.952	0.914	0.962	0.6	0.810	0.797	0.823	0.787	0.833
	1.0	0.937	0.923	0.951	0.913	0.961	0.8	0.809	0.797	0.822	0.787	0.832
	1.3	0.936	0.922	0.950	0.912	0.960	1.1	0.809	0.796	0.822	0.786	0.832
	1.6	0.935	0.921	0.949	0.911	0.959	1.3	0.808	0.796	0.821	0.786	0.831
	1.8	0.935	0.920	0.949	0.910	0.959	1.5	0.808	0.795	0.820	0.785	0.830
	2.1	0.934	0.920	0.948	0.910	0.958	1.7	0.807	0.794	0.820	0.784	0.830
	2.3	0.933	0.919	0.947	0.909	0.957	1.9	0.806	0.794	0.819	0.784	0.829
	2.6	0.932	0.918	0.946	0.908	0.956	2.1	0.806	0.793	0.818	0.783	0.828
	2.9	0.931	0.917	0.946	0.907	0.956	2.3	0.805	0.792	0.818	0.782	0.828
ല	3.1	0.931	0.917	0.945	0.907	0.955	2.5	0.804	0.792	0.817	0.782	0.827
ACTIVE	3.4	0.930	0.916	0.944	0.906	0.954	2.7	0.804	0.791	0.816	0.781	0.826
AC	3.6	0.929	0.915	0.943	0.905	0.953	2.9	0.803	0.790	0.816	0.780	0.826
	3.9	0.928	0.914	0.942	0.904	0.952	3.2	0.803	0.790	0.815	0.780	0.825
	4.1	0.928	0.913	0.942	0.903	0.952	3.4	0.802	0.789	0.815	0.779	0.825
	4.4	0.927	0.913	0.941	0.903	0.951	3.6	0.801	0.789	0.814	0.779	0.824
	4.7	0.926	0.912	0.940	0.902	0.950	3.8	0.801	0.788	0.813	0.778	0.823
	4.9	0.925	0.911	0.939	0.901	0.949	4.0	0.800	0.787	0.813	0.777	0.823
	5.2	0.924	0.910	0.939	0.900	0.949						
	5.4	0.924	0.910	0.938	0.900	0.948						
	5.7	0.923	0.909	0.937	0.899	0.947						
	6.0	0.922	0.908	0.936	0.898	0.946						
	6.2	0.921	0.907	0.935	0.897	0.945						
	6.5	0.921	0.906	0.935	0.896	0.945						
	6.7	0.920	0.906	0.934	0.896	0.944						
	7.0	0.919	0.905	0.933	0.895	0.943						

Table 3-21. Voltage Tolerances for the Intel® Pentium® M Processor ULV (Deep Sleep State)

	Highe	st Frequer	ncy Mode:	VID=0.94	OV, Offset	=1.2 %	Lowes	t Frequen	cy Mode: '	VID=0.812	ZV, Offset	-1.2 %
MODE	I _{CC} , A	v _{cc} , v	STA	XTIC	Rip	pple	I _{CO} A	v _{cc} , v	STA	XTIC	Rip	ple
	100 A	V00, V	Min	Max	Min	Max	100, A	VOC, V	Min	Max	Min	Max
	0.0	0.929	0.915	0.943	0.905	0.953	0.0	0.802	0.758	0.847	0.757	0.848
	0.2	0.928	0.914	0.942	0.904	0.952	0.1	0.802	0.757	0.847	0.756	0.847
	0.4	0.928	0.913	0.942	0.903	0.952	0.3	0.801	0.757	0.846	0.756	0.847
	0.6	0.927	0.913	0.941	0.903	0.951	0.4	0.801	0.756	0.846	0.756	0.847
	0.8	0.926	0.912	0.940	0.902	0.950	0.5	0.801	0.756	0.845	0.755	0.846
	1.0	0.926	0.912	0.940	0.902	0.950	0.7	0.800	0.756	0.845	0.755	0.846
Sleep	1.2	0.925	0.911	0.939	0.901	0.949	0.8	0.800	0.755	0.845	0.754	0.845
SIC	1.4	0.925	0.910	0.939	0.900	0.949	0.9	0.799	0.755	0.844	0.754	0.845
Deep	1.6	0.924	0.910	0.938	0.900	0.948	1.1	0.799	0.754	0.844	0.754	0.845
Д	1.8	0.923	0.909	0.937	0.899	0.947	1.2	0.799	0.754	0.843	0.753	0.844
	2.0	0.923	0.909	0.937	0.899	0.947	1.3	0.798	0.754	0.843	0.753	0.844
	2.2	0.922	0.908	0.936	0.898	0.946	1.5	0.798	0.753	0.843	0.752	0.843
	2.4	0.922	0.907	0.936	0.897	0.946	1.6	0.797	0.753	0.842	0.752	0.843
	2.6	0.921	0.907	0.935	0.897	0.945	1.7	0.797	0.752	0.842	0.752	0.843
	2.8	0.920	0.906	0.934	0.896	0.944	1.9	0.797	0.752	0.841	0.751	0.842
	3.0	0.920	0.906	0.934	0.896	0.944	2.0	0.796	0.752	0.841	0.751	0.842

Figure 3-11. Active V_{CC} and I_{CC} Load Line

I max Deep Sleep {HFM | LFM}

V_{CC} [V]

Slope= -3.0 mV/A

10mV= RIPPLE

+/-1.5% from Nominal =VR Error

Figure 3-12. Deep Sleep V_{CC} and I_{CC} Load Line

Table 3-22. FSB Differential BCLK Specifications

Symbol	Parameter	Min	Тур	Max	Unit	Notes ¹
V_L	Input Low Voltage		0		V	
V _H	Input High Voltage	0.660	0.710	0.850	V	
V _{CROSS}	Crossing Voltage	0.25	0.35	0.55	V	2
$\Delta V_{ ext{CROSS}}$	Range of Crossing Points	N/A	N/A	0.140	V	6
V _{TH}	Threshold Region	V _{CROSS} -0.100		V _{CROSS} +0.100	V	3
lu	Input Leakage Current			± 100	μΑ	4
Cpad	Pad Capacitance	1.8	2.3	2.75	pF	5

NOTES:

- 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
- 2. Crossing Voltage is defined as absolute voltage where rising edge of BCLK0 is equal to the falling edge of BCLK1.
- 3. Threshold Region is defined as a region entered about the crossing voltage in which the differential receiver switches. It includes input threshold hysteresis.
- 4. For Vin between 0 V and V_H.
- 5. Cpad includes die capacitance only. No package parasitics are included.
- 6. VCROSS is defined as the total variation of all crossing voltages as defined in note 2

Table 3-23. AGTL+ Signal Group DC Specifications

Symbol	Parameter	Min	Тур	Max	Unit	Notes ¹
VCCP	I/O Voltage	0.997	1.05	1.102	V	
GTLREF	Reference Voltage	2/3 VCCP - 2%	2/3 VCCP	2/3 VCCP + 2%	V	6
ViH	Input High Voltage	GTLREF+0.1		VCCP+0.1	V	3,6
VIL	Input Low Voltage	-0.1		GTLREF-0.1	V	2,4
Vон	Output High Voltage		VCCP			6
R _{TT}	Termination Resistance	47	55	63	Ω	7
Ron	Buffer On Resistance	17.7	24.7	32.9	Ω	5
lμ	Input Leakage Current			± 100	μΑ	8
Cpad	Pad Capacitance	1.8	2.3	2.75	pF	9

NOTES:

- 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
- 2. VIL is defined as the maximum voltage level at a receiving agent that will be interpreted as a logical low value.
- 3. VIH is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical high
- 4. VIH and VOH may experience excursions above VCCP. However, input signal drivers must comply with the signal quality specifications in Chapter 3.
- 5. This is the pull down driver resistance. Refer to processor I/O buffer models for I/V characteristics. Measured at 0.31^* VCCP. R_{ON} (min) = 0.38^*R_{TT} , R_{ON} (typ) = 0.45^*R_{TT} , R_{ON} (max) = 0.52^*R_{TT} . 6. GTLREF should be generated from VCCP with a 1% tolerance resistor divider. The VCCP referred to in
- these specifications is the instantaneous VCCP.
- 7. R_{TT} is the on-die termination resistance measured at V_{OL} of the AGTL+ output driver. Measured at 0.31*VCCP. R_{TT} is connected to VCCP on die. Refer to processor I/O buffer models for I/V characteristics.
- 8. Specified with on die R_{TT} and R_{ON} are turned off.
 9. Cpad includes die capacitance only. No package parasitics are included.

Table 3-24. CMOS Signal Group DC Specifications

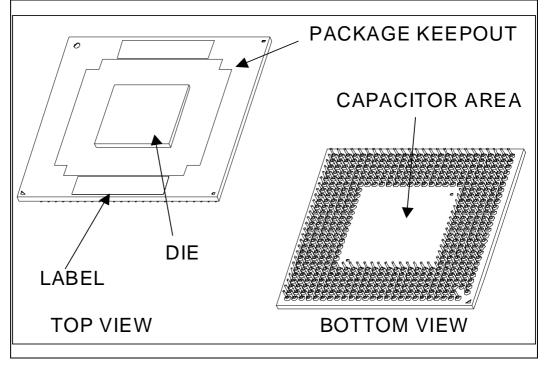
Symbol	Parameter	Min	Тур	Max	Unit	Notes ¹
VCCP	I/O Voltage	0.997	1.05	1.102	V	
VIL	Input Low Voltage CMOS	-0.1		0.3*VCCP	V	2, 3
VIH	Input High Voltage	0.7*VCCP		VCCP+0.1	V	2
Vol	Output Low Voltage	-0.1	0	0.1*VCCP	V	2
Voн	Output High Voltage	0.9*VCCP	VCCP	VCCP+0.1	V	2
lol	Output Low Current	1.49		4.08	mA	4
Іон	Output High Current	1.49		4.08	mA	5
I _{LI}	Leakage Current			± 100	μΑ	6
Cpad	Pad Capacitance	1.0	2.3	3.0	pF	

- 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
- 2. The VCCP referred to in these specifications refers to instantaneous VCCP.
- 3. Refer to the processor I/O buffer models for I/V characteristics.
- 4. Measured at 0.1*VCCP.
- 5. Measured at 0.9*VCCP.
- 6. For Vin between 0 V and VCCP. Measured when the driver is tristated.
- 7. Cpad includes die capacitance only. No package parasitics are included

Table 3-25. Open Drain Signal Group DC Specifications

Symbol	Parameter	Min	Тур	Max	Unit	Notes ¹
Voн	Output High Voltage		VCCP		V	3
Vol	Output Low Voltage	0		0.20	V	
lol	Output Low Current	16		50	mA	2
I _{LO}	Leakage Current			± 200	μΑ	4
Cpad	Pad Capacitance	1.7	2.3	3.0	pF	5

- 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
- Measured at 0.2 V.
 V_{OH} is determined by value of the external pullup resistor to VCCP. Please refer to the platform design guides for details.
- For Vin between 0 V and V_{OH}.
 Cpad includes die capacitance only. No package parasitics are included.



4 Package Mechanical Specifications and Pin Information

The Pentium M Processor is available in 478-pin, Micro-FCPGA and 479-ball, Micro-FCBGA packages. Different views of the Micro-FCPGA package are shown in Figure 4-1 through Figure 4-3. Package dimensions are shown in Table 4-1. Different views of the Micro-FCBGA package are shown in Figure 4-4 through Figure 4-6. Package dimensions are shown in Table 4-2.

The Micro-FCBGA package may have capacitors placed in the area surrounding the die. Because the die-side capacitors are electrically conductive, and only slightly shorter than the die height, care should be taken to avoid contacting the capacitors with electrically conductive materials. Doing so may short the capacitors, and possibly damage the device or render it inactive. The use of an insulating material between the capacitors and any thermal solution should be considered to prevent capacitor shorting.

Figure 4-1. Micro-FCPGA Package Top and Bottom Isometric Views

NOTE: All dimensions in millimeters. Values shown for reference only. Refer to Table 4-1 for details.

Figure 4-2. Micro-FCPGA Package - Top and Side Views

NOTE: MDie is centered on the Package. All dimensions in millimeters. Values shown for reference only. Refer to Table 4-1 for details.

14 (K3) ΑF ΑE ΑD AC ΑB ΑA 000000 000000 W <u></u> U 00000 000000 000000 00000000000 Р 14 (K3) 00000 00000 <u></u> M 00000 00000 00000 000000 <u></u> Н G Ε D \triangleright 11 13 15 17 19 21 23 25 8 10 12 14 16 18 20 22 24 26 25X 1.27 6 (e) 25X 1.27 (e)

Figure 4-3. Micro-FCPGA Package - Bottom View

NOTE: All dimensions in millimeters. Values shown for reference only. Refer to Table 4-1 for details.

Table 4-1. Micro-FCPGA Package Dimensions

Symbol	Parameter	Min	Max	Unit
Α	Overall height, top of die to package seating plane	1.88	2.02	mm
-	Overall height, top of die to PCB surface, including socket (Refer to Note 1)	4.74	5.16	mm
A1	Pin length	1.95	2.11	mm
A2	Die height	0.8	320	mm
А3	Pin-side capacitor height	-	1.25	mm
В	Pin diameter	0.28	0.36	mm
D	Package substrate length	34.9	35.1	mm
E	Package substrate width	34.9	35.1	mm
D1	Die length	12.54		mm
E1	Die width	6.99		mm
е	Pin Pitch	1.27		mm
К	Package edge keep-out	5 mm		mm
K1	Package corner keep-out	7 mn		mm
КЗ	Pin-side capacitor boundary	14		mm
N	Pin count	478		each
Pdie	Allowable pressure on the die for thermal solution	- 689		kPa
W	Package weight		4.5	g
	Package Surface Flatness	0.2	286	mm

NOTE: Overall height with socket is based on design dimensions of the Micro-FCPGA package with no thermal solution attached. Values are based on design specifications and tolerances. This dimension is subject to change based on socket design, OEM motherboard design or OEM SMT process.

PACKAGE KEEPOUT

CAPACITOR AREA

LABEL

DIE

TOP VIEW

BOTTOM VIEW

Figure 4-4. Micro-FCBGA Package Top and Bottom Isometric Views

SUBSTRATE KEEPOUT ZONE DO NOT CONTACT PACKAGE INSIDE THIS LINE 7 (K1) 8 places 7 0.20 5 (K) 4 places A2 -35 (D) D1 Ø 0.78 (b) 479 places \circ Δ E1 35 (E) PIN A1 CORNER

Figure 4-5. Micro-FCBGA Package Top and Side Views

NOTE: Die is centered on the Package. All dimensions in millimeters. Values shown for reference only. Refer to Table 4-2 for details.

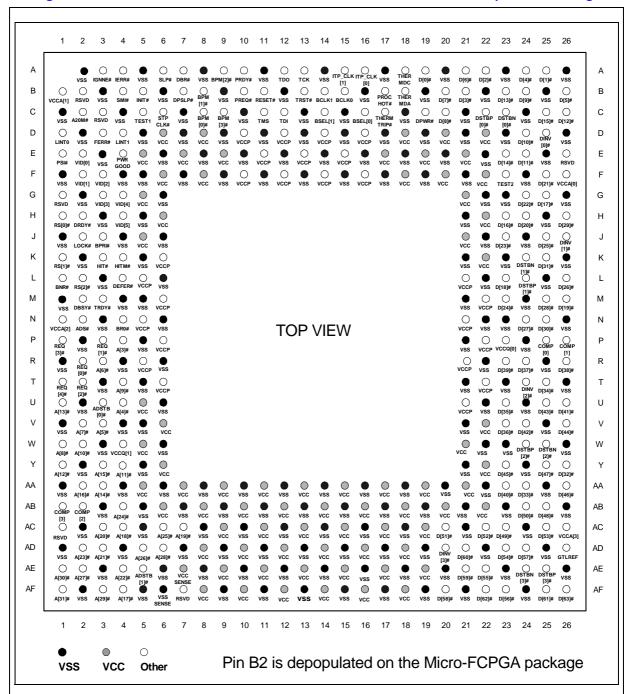
Table 4-2. Micro-FCBGA Package Dimensions

Symbol	Parameter Min Max		Max	Unit
Α	Overall height, as delivered (Refer to Note 1)	2.60	2.85	mm
A2	Die height	0.	82	mm
b	Ball diameter	0.	78	mm
D	Package substrate length	34.9	35.1	mm
Е	Package substrate width	34.9	35.1	mm
D1	Die length	12.54		mm
E1	Die width	6.99		mm
е	Ball Pitch	1.27		mm
К	Package edge keep-out	5		mm
K1	Package corner keep-out	7		mm
K2	Die-side capacitor height	- 0.7		mm
S	Package edge to first ball center	1.625		mm
N	Ball count	479		each
_	Solder ball coplanarity	0.2		mm
Pdie	Allowable pressure on the die for thermal solution	- 689		kPa
W	Package weight	4.5		g

NOTE: Overall height as delivered. Values are based on design specifications and tolerances. This dimension is subject to change based on OEM motherboard design or OEM SMT process.

1.625 (S) 4 places AF 00000000000000000000000 ΑE AD AC 1.625 (S) AB 4 places AA γ 000000 000000 W 000000 000000 000000 000000 U 000000 000000 000000 000000 R 000000 000000 000000 000000 Ν 000000 000000 Μ 000000 000000 000000 000000 Κ 000000 000000 000000 000000 Н 000000 000000 G 000000 000000 0000000000000000000000000 Ε D С 11 13 15 17 19 21 23 25X 1.27 10 12 14 16 18 20 22 24 26 (e) 25X 1.27 (e)

Figure 4-6. Micro-FCBGA Package Bottom View


NOTE: All dimensions in millimeters. Values shown for reference only. Refer to Table 4-2 for details.

4.1 Processor Pinout and Pin List

Figure 4-7 on the next page shows the top view pinout of the Pentium M Processor. The pin list arranged in two different formats is shown in the following pages.

Figure 4-7. The Coordinates of the Processor Pins as Viewed from the Top of the Package

Package Mechanical Specifications and Pin Information

This page is intentionally left blank.

Table 4-3. Pin Listing by Pin Name

Pin Name	Pin Number	Signal Buffer Type	Direction
A[3]#	P4	Source Synch	Input/Output
A[4]#	U4	Source Synch	Input/Output
A[5]#	V3	Source Synch	Input/Output
A[6]#	R3	Source Synch	Input/Output
A[7]#	V2	Source Synch	Input/Output
A[8]#	W1	Source Synch	Input/Output
A[9]#	T4	Source Synch	Input/Output
A[10]#	W2	Source Synch	Input/Output
A[11]#	Y4	Source Synch	Input/Output
A[12]#	Y1	Source Synch	Input/Output
A[13]#	U1	Source Synch	Input/Output
A[14]#	AA3	Source Synch	Input/Output
A[15]#	Y3	Source Synch	Input/Output
A[16]#	AA2	Source Synch	Input/Output
A[17]#	AF4	Source Synch	Input/Output
A[18]#	AC4	Source Synch	Input/Output
A[19]#	AC7	Source Synch	Input/Output
A[20]#	AC3	Source Synch	Input/Output
A[21]#	AD3	Source Synch	Input/Output
A[22]#	AE4	Source Synch	Input/Output
A[23]#	AD2	Source Synch	Input/Output
A[24]#	AB4	Source Synch	Input/Output
A[25]#	AC6	Source Synch	Input/Output
A[26]#	AD5	Source Synch	Input/Output
A[27]#	AE2	Source Synch	Input/Output
A[28]#	AD6	Source Synch	Input/Output
A[29]#	AF3	Source Synch	Input/Output
A[30]#	AE1	Source Synch	Input/Output
A[31]#	AF1	Source Synch	Input/Output
A20M#	C2	CMOS	Input
ADS#	N2	Common Clock	Input/Output
ADSTB[0]#	U3	Source Synch	Input/Output
ADSTB[1]#	AE5	Source Synch	Input/Output
BCLK[0]	B15	Bus Clock	Input
BCLK[1]	B14	Bus Clock	Input
BNR#	L1	Common Clock	Input/Output
BPM[0]#	C8	Common Clock	Output

Table 4-3. Pin Listing by Pin Name

Pin Name	Pin Number	Signal Buffer Type	Direction
BPM[1]#	B8	Common Clock	Output
BPM[2]#	A9	Common Clock	Output
BPM[3]#	C9	Common Clock	Input/Output
BPRI#	J3	Common Clock	Input
BR0#	N4	Common Clock	Input/Output
BSEL[1]	C14	CMOS	Output
BSEL[0]	C16	CMOS	Output
COMP[0]	P25	Power/Other	Input/Output
COMP[1]	P26	Power/Other	Input/Output
COMP[2]	AB2	Power/Other	Input/Output
COMP[3]	AB1	Power/Other	Input/Output
D[0]#	A19	Source Synch	Input/Output
D[1]#	A25	Source Synch	Input/Output
D[2]#	A22	Source Synch	Input/Output
D[3]#	B21	Source Synch	Input/Output
D[4]#	A24	Source Synch	Input/Output
D[5]#	B26	Source Synch	Input/Output
D[6]#	A21	Source Synch	Input/Output
D[7]#	B20	Source Synch	Input/Output
D[8]#	C20	Source Synch	Input/Output
D[9]#	B24	Source Synch	Input/Output
D[10]#	D24	Source Synch	Input/Output
D[11]#	E24	Source Synch	Input/Output
D[12]#	C26	Source Synch	Input/Output
D[13]#	B23	Source Synch	Input/Output
D[14]#	E23	Source Synch	Input/Output
D[15]#	C25	Source Synch	Input/Output
D[16]#	H23	Source Synch	Input/Output
D[17]#	G25	Source Synch	Input/Output
D[18]#	L23	Source Synch	Input/Output
D[19]#	M26	Source Synch	Input/Output
D[20]#	H24	Source Synch	Input/Output
D[21]#	F25	Source Synch	Input/Output
D[22]#	G24	Source Synch	Input/Output
D[23]#	J23	Source Synch	Input/Output
D[24]#	M23	Source Synch	Input/Output
D[25]#	J25	Source Synch	Input/Output
D[26]#	L26	Source Synch	Input/Output

Table 4-3. Pin Listing by Pin Name

Pin **Signal Buffer Pin Name** Direction Number **Type** D[27]# N24 Source Synch Input/Output M25 D[28]# Source Synch Input/Output D[29]# H26 Source Synch Input/Output D[30]# N25 Source Synch Input/Output K25 D[31]# Source Synch Input/Output D[32]# Y26 Source Synch Input/Output D[33]# AA24 Source Synch Input/Output D[34]# T25 Source Synch Input/Output D[35]# U23 Source Synch Input/Output D[36]# V23 Source Synch Input/Output D[37]# R24 Input/Output Source Synch R26 D[38]# Source Synch Input/Output D[39]# R23 Source Synch Input/Output D[40]# AA23 Input/Output Source Synch D[41]# U26 Source Synch Input/Output D[42]# V24 Source Synch Input/Output D[43]# U25 Source Synch Input/Output D[44]# V26 Source Synch Input/Output D[45]# Y23 Source Synch Input/Output AA26 D[46]# Source Synch Input/Output D[47]# Y25 Source Synch Input/Output D[48]# AB25 Source Synch Input/Output AC23 Input/Output D[49]# Source Synch D[50]# AB24 Source Synch Input/Output Input/Output D[51]# AC20 Source Synch AC22 D[52]# Source Synch Input/Output D[53]# AC25 Source Synch Input/Output D[54]# AD23 Source Synch Input/Output D[55]# AE22 Source Synch Input/Output D[56]# AF23 Source Synch Input/Output D[57]# AD24 Source Synch Input/Output D[58]# AF20 Input/Output Source Synch D[59]# AE21 Source Synch Input/Output AD21 D[60]# Source Synch Input/Output D[61]# AF25 Input/Output Source Synch D[62]# AF22 Source Synch Input/Output AF26 D[63]# Source Synch Input/Output DBR# Α7 **CMOS** Output

Table 4-3. Pin Listing by Pin Name

Pin Name	Pin Number	Signal Buffer Type	Direction
DBSY#	M2	Common Clock	Input/Output
DEFER#	L4	Common Clock	Input
DINV[0]#	D25	Source Synch	Input/Output
DINV[1]#	J26	Source Synch	Input/Output
DINV[2]#	T24	Source Synch	Input/Output
DINV[3]#	AD20	Source Synch	Input/Output
DPSLP#	B7	CMOS	Input
DPWR#	C19	Common Clock	Input
DRDY#	H2	Common Clock	Input/Output
DSTBN[0]#	C23	Source Synch	Input/Output
DSTBN[1]#	K24	Source Synch	Input/Output
DSTBN[2]#	W25	Source Synch	Input/Output
DSTBN[3]#	AE24	Source Synch	Input/Output
DSTBP[0]#	C22	Source Synch	Input/Output
DSTBP[1]#	L24	Source Synch	Input/Output
DSTBP[2]#	W24	Source Synch	Input/Output
DSTBP[3]#	AE25	Source Synch	Input/Output
FERR#	D3	Open Drain	Output
GTLREF	AD26	Power/Other	Input
HIT#	K3	Common Clock	Input/Output
HITM#	K4	Common Clock	Input/Output
IERR#	A4	Open Drain	Output
IGNNE#	А3	CMOS	Input
INIT#	B5	CMOS	Input
ITP_CLK[0]	A16	CMOS	input
ITP_CLK[1]	A15	CMOS	input
LINT0	D1	CMOS	Input
LINT1	D4	CMOS	Input
LOCK#	J2	Common Clock	Input/Output
PRDY#	A10	Common Clock	Output
PREQ#	B10	Common Clock	Input
PROCHOT#	B17	Open Drain	Output
PSI#	E1	CMOS	Output
PWRGOOD	E4	CMOS	Input
REQ[0]#	R2	Source Synch	Input/Output
REQ[1]#	P3	Source Synch	Input/Output
REQ[2]#	T2	Source Synch	Input/Output
REQ[3]#	P1	Source Synch	Input/Output

Table 4-3. Pin Listing by Pin Name

Pin Name	Pin Number	Signal Buffer Type	Direction
REQ[4]#	T1	Source Synch	Input/Output
RESET#	B11	Common Clock	Input
RS[0]#	H1	Common Clock	Input
RS[1]#	K1	Common Clock	Input
RS[2]#	L2	Common Clock	Input
RSVD	AF7	Reserved	
RSVD	B2	Reserved	
RSVD	C3	Reserved	
RSVD	E26	Reserved	
RSVD	G1	Reserved	
RSVD	AC1	Reserved	
SLP#	A6	CMOS	Input
SMI#	B4	CMOS	Input
STPCLK#	C6	CMOS	Input
TCK	A13	CMOS	Input
TDI	C12	CMOS	Input
TDO	A12	Open Drain	Output
TEST1	C5	Test	
TEST2	F23	Test	
THERMDA	B18	Power/Other	
THERMDC	A18	Power/Other	
THERMTRIP#	C17	Open Drain	Output
TMS	C11	CMOS	Input
TRDY#	M3	Common Clock	Input
TRST#	B13	CMOS	Input
VCC	D6	Power/Other	
VCC	D8	Power/Other	
VCC	D18	Power/Other	
VCC	D20	Power/Other	
VCC	D22	Power/Other	
VCC	E5	Power/Other	
VCC	E7	Power/Other	
VCC	E9	Power/Other	
VCC	E17	Power/Other	
VCC	E19	Power/Other	
VCC	E21	Power/Other	
VCC	F6	Power/Other	
VCC	F8	Power/Other	

Table 4-3. Pin Listing by Pin Name

Pin Name	Pin Number	Signal Buffer Type	Direction
VCC	F18	Power/Other	
VCC	F20	Power/Other	
VCC	F22	Power/Other	
VCC	G5	Power/Other	
VCC	G21	Power/Other	
VCC	H6	Power/Other	
VCC	H22	Power/Other	
VCC	J5	Power/Other	
VCC	J21	Power/Other	
VCC	K22	Power/Other	
VCC	U5	Power/Other	
VCC	V6	Power/Other	
VCC	V22	Power/Other	
VCC	W5	Power/Other	
VCC	W21	Power/Other	
VCC	Y6	Power/Other	
VCC	Y22	Power/Other	
VCC	AA5	Power/Other	
VCC	AA7	Power/Other	
VCC	AA9	Power/Other	
VCC	AA11	Power/Other	
VCC	AA13	Power/Other	
VCC	AA15	Power/Other	
VCC	AA17	Power/Other	
VCC	AA19	Power/Other	
VCC	AA21	Power/Other	
VCC	AB6	Power/Other	
VCC	AB8	Power/Other	
VCC	AB10	Power/Other	
VCC	AB12	Power/Other	
VCC	AB14	Power/Other	
VCC	AB16	Power/Other	
VCC	AB18	Power/Other	
VCC	AB20	Power/Other	
VCC	AB22	Power/Other	
VCC	AC9	Power/Other	
VCC	AC11	Power/Other	
VCC	AC13	Power/Other	

Table 4-3. Pin Listing by Pin Name

Pin **Signal Buffer Pin Name Direction** Number **Type** VCC AC15 Power/Other VCC AC17 Power/Other VCC AC19 Power/Other VCC AD8 Power/Other VCC AD10 Power/Other VCC AD12 Power/Other VCC AD14 Power/Other VCC AD16 Power/Other VCC AD18 Power/Other VCC AE9 Power/Other VCC AE11 Power/Other VCC AE13 Power/Other VCC AE15 Power/Other Power/Other VCC AE17 VCC AE19 Power/Other VCC AF8 Power/Other VCC AF10 Power/Other VCC AF12 Power/Other VCC AF14 Power/Other VCC AF16 Power/Other VCC AF18 Power/Other VCCA[0] F26 Power/Other VCCA[1] В1 Power/Other VCCA[2] N1 Power/Other VCCA[3] AC26 Power/Other VCCP D10 Power/Other **VCCP** D12 Power/Other VCCP D14 Power/Other VCCP D16 Power/Other VCCP E11 Power/Other VCCP E13 Power/Other VCCP E15 Power/Other F10 VCCP Power/Other VCCP F12 Power/Other VCCP F14 Power/Other F16 VCCP Power/Other VCCP K6 Power/Other

Table 4-3. Pin Listing by Pin Name

Pin Name	Pin Number	Signal Buffer Type	Direction
VCCP	L21	Power/Other	
VCCP	M6	Power/Other	
VCCP	M22	Power/Other	
VCCP	N5	Power/Other	
VCCP	N21	Power/Other	
VCCP	P6	Power/Other	
VCCP	P22	Power/Other	
VCCP	R5	Power/Other	
VCCP	R21	Power/Other	
VCCP	T6	Power/Other	
VCCP	T22	Power/Other	
VCCP	U21	Power/Other	
VCCQ[0]	P23	Power/Other	
VCCQ[1]	W4	Power/Other	
VCCSENSE	AE7	Power/Other	Output
VID[0]	E2	CMOS	Output
VID[1]	F2	CMOS	Output
VID[2]	F3	CMOS	Output
VID[3]	G3	CMOS	Output
VID[4]	G4	CMOS	Output
VID[5]	H4	CMOS	Output
VSS	A2	Power/Other	
VSS	A5	Power/Other	
VSS	A8	Power/Other	
VSS	A11	Power/Other	
VSS	A14	Power/Other	
VSS	A17	Power/Other	
VSS	A20	Power/Other	
VSS	A23	Power/Other	
VSS	A26	Power/Other	
VSS	В3	Power/Other	
VSS	B6	Power/Other	
VSS	B9	Power/Other	
VSS	B12	Power/Other	
VSS	B16	Power/Other	
VSS	B19	Power/Other	
VSS	B22	Power/Other	
VSS	B25	Power/Other	

VCCP

L5

Power/Other

Table 4-3. Pin Listing by Pin Name

Pin Name	Pin Number	Signal Buffer Type	Direction
VSS	C1	Power/Other	
VSS	C4	Power/Other	
VSS	C7	Power/Other	
VSS	C10	Power/Other	
VSS	C13	Power/Other	
VSS	C15	Power/Other	
VSS	C18	Power/Other	
VSS	C21	Power/Other	
VSS	C24	Power/Other	
VSS	D2	Power/Other	
VSS	D5	Power/Other	
VSS	D7	Power/Other	
VSS	D9	Power/Other	
VSS	D11	Power/Other	
VSS	D13	Power/Other	
VSS	D15	Power/Other	
VSS	D17	Power/Other	
VSS	D19	Power/Other	
VSS	D21	Power/Other	
VSS	D23	Power/Other	
VSS	D26	Power/Other	
VSS	E3	Power/Other	
VSS	E6	Power/Other	
VSS	E8	Power/Other	
VSS	E10	Power/Other	
VSS	E12	Power/Other	
VSS	E14	Power/Other	
VSS	E16	Power/Other	
VSS	E18	Power/Other	
VSS	E20	Power/Other	
VSS	E22	Power/Other	
VSS	E25	Power/Other	
VSS	F1	Power/Other	
VSS	F4	Power/Other	
VSS	F5	Power/Other	
VSS	F7	Power/Other	
VSS	F9	Power/Other	
VSS	F11	Power/Other	

Table 4-3. Pin Listing by Pin Name

Pin Name	Pin Number	Signal Buffer Type	Direction
VSS	F13	Power/Other	
VSS	F15	Power/Other	
VSS	F17	Power/Other	
VSS	F19	Power/Other	
VSS	F21	Power/Other	
VSS	F24	Power/Other	
VSS	G2	Power/Other	
VSS	G6	Power/Other	
VSS	G22	Power/Other	
VSS	G23	Power/Other	
VSS	G26	Power/Other	
VSS	НЗ	Power/Other	
VSS	H5	Power/Other	
VSS	H21	Power/Other	
VSS	H25	Power/Other	
VSS	J1	Power/Other	
VSS	J4	Power/Other	
VSS	J6	Power/Other	
VSS	J22	Power/Other	
VSS	J24	Power/Other	
VSS	K2	Power/Other	
VSS	K5	Power/Other	
VSS	K21	Power/Other	
VSS	K23	Power/Other	
VSS	K26	Power/Other	
VSS	L3	Power/Other	
VSS	L6	Power/Other	
VSS	L22	Power/Other	
VSS	L25	Power/Other	
VSS	M1	Power/Other	
VSS	M4	Power/Other	
VSS	M5	Power/Other	
VSS	M21	Power/Other	
VSS	M24	Power/Other	
VSS	N3	Power/Other	
VSS	N6	Power/Other	
VSS	N22	Power/Other	
VSS	N23	Power/Other	

Table 4-3. Pin Listing by Pin Name Pin **Signal Buffer Pin Name Direction** Number **Type** VSS N26 Power/Other VSS P2 Power/Other VSS P5 Power/Other VSS P21 Power/Other VSS P24 Power/Other VSS R1 Power/Other VSS R4 Power/Other VSS R6 Power/Other VSS R22 Power/Other VSS R25 Power/Other VSS Т3 Power/Other VSS T5 Power/Other VSS T21 Power/Other VSS T23 Power/Other VSS T26 Power/Other VSS U2 Power/Other VSS U6 Power/Other U22 VSS Power/Other VSS U24 Power/Other VSS V1 Power/Other V4 VSS Power/Other VSS ۷5 Power/Other VSS V21 Power/Other VSS V25 Power/Other VSS W3 Power/Other VSS W6 Power/Other VSS W22 Power/Other VSS W23 Power/Other VSS W26 Power/Other VSS Y2 Power/Other VSS Y5 Power/Other VSS Y21 Power/Other VSS Y24 Power/Other VSS AA1 Power/Other VSS AA4 Power/Other VSS AA6 Power/Other VSS AA8 Power/Other

Table 4-3. Pin Listing by Pin Name

Pin Name	Pin Number	Signal Buffer Type	Direction
VSS	AA12	Power/Other	
VSS	AA14	Power/Other	
VSS	AA16	Power/Other	
VSS	AA18	Power/Other	
VSS	AA20	Power/Other	
VSS	AA22	Power/Other	
VSS	AA25	Power/Other	
VSS	AB3	Power/Other	
VSS	AB5	Power/Other	
VSS	AB7	Power/Other	
VSS	AB9	Power/Other	
VSS	AB11	Power/Other	
VSS	AB13	Power/Other	
VSS	AB15	Power/Other	
VSS	AB17	Power/Other	
VSS	AB19	Power/Other	
VSS	AB21	Power/Other	
VSS	AB23	Power/Other	
VSS	AB26	Power/Other	
VSS	AC2	Power/Other	
VSS	AC5	Power/Other	
VSS	AC8	Power/Other	
VSS	AC10	Power/Other	
VSS	AC12	Power/Other	
VSS	AC14	Power/Other	
VSS	AC16	Power/Other	
VSS	AC18	Power/Other	
VSS	AC21	Power/Other	
VSS	AC24	Power/Other	
VSS	AD1	Power/Other	
VSS	AD4	Power/Other	
VSS	AD7	Power/Other	
VSS	AD9	Power/Other	
VSS	AD11	Power/Other	
VSS	AD13	Power/Other	
VSS	AD15	Power/Other	
VSS	AD17	Power/Other	
VSS	AD19	Power/Other	

VSS

AA10

Power/Other

Table 4-3. Pin Listing by Pin Name

Pin Name	Pin Number	Signal Buffer Type	Direction
VSS	AD22	Power/Other	
VSS	AD25	Power/Other	
VSS	AE3	Power/Other	
VSS	AE6	Power/Other	
VSS	AE8	Power/Other	
VSS	AE10	Power/Other	
VSS	AE12	Power/Other	
VSS	AE14	Power/Other	
VSS	AE16	Power/Other	
VSS	AE18	Power/Other	
VSS	AE20	Power/Other	
VSS	AE23	Power/Other	
VSS	AE26	Power/Other	
VSS	AF2	Power/Other	
VSS	AF5	Power/Other	
VSS	AF9	Power/Other	
VSS	AF11	Power/Other	
VSS	AF13	Power/Other	
VSS	AF15	Power/Other	
VSS	AF17	Power/Other	
VSS	AF19	Power/Other	
VSS	AF21	Power/Other	
VSS	AF24	Power/Other	
VSSSENSE	AF6	Power/Other	Output

Table 4-4. Pin Listing by Pin Number

Pin Number	Pin Name	Signal Buffer Type	Direction
A2	VSS	Power/Other	
А3	IGNNE#	CMOS	Input
A4	IERR#	Open Drain	Output
A5	VSS	Power/Other	
A6	SLP#	CMOS	Input
A7	DBR#	CMOS	Output
A8	VSS	Power/Other	
A9	BPM[2]#	Common Clock	Output
A10	PRDY#	Common Clock	Output
A11	VSS	Power/Other	
A12	TDO	Open Drain Output	

Table 4-4. Pin Listing by Pin Number

Pin Number	Pin Name	Signal Buffer Type	Direction
A13	TCK	CMOS	Input
A14	VSS	Power/Other	
A15	ITP_CLK[1]	CMOS	input
A16	ITP_CLK[0]	CMOS	input
A17	VSS	Power/Other	
A18	THERMDC	Power/Other	
A19	D[0]#	Source Synch	Input/Output
A20	VSS	Power/Other	
A21	D[6]#	Source Synch	Input/Output
A22	D[2]#	Source Synch	Input/Output
A23	VSS	Power/Other	
A24	D[4]#	Source Synch	Input/Output
A25	D[1]#	Source Synch	Input/Output
A26	VSS	Power/Other	
AA1	VSS	Power/Other	
AA2	A[16]#	Source Synch	Input/Output
AA3	A[14]#	Source Synch	Input/Output
AA4	VSS	Power/Other	
AA5	VCC	Power/Other	
AA6	VSS	Power/Other	
AA7	VCC	Power/Other	
AA8	VSS	Power/Other	
AA9	VCC	Power/Other	
AA10	VSS	Power/Other	
AA11	VCC	Power/Other	
AA12	VSS	Power/Other	
AA13	VCC	Power/Other	
AA14	VSS	Power/Other	
AA15	VCC	Power/Other	
AA16	VSS	Power/Other	
AA17	VCC	Power/Other	
AA18	VSS	Power/Other	
AA19	VCC	Power/Other	
AA20	VSS	Power/Other	
AA21	VCC	Power/Other	
AA22	VSS	Power/Other	
AA23	D[40]#	Source Synch	Input/Output
AA24	D[33]#	Source Synch	Input/Output

Table 4-4. Pin Listing by Pin Number

Pin **Signal Buffer Pin Name Direction** Number **Type** VSS AA25 Power/Other AA26 D[46]# Source Synch Input/Output AB1 COMP[3] Power/Other Input/Output AB2 COMP[2] Power/Other Input/Output AB3 VSS Power/Other AB4 A[24]# Source Synch Input/Output VSS AB5 Power/Other AB6 VCC Power/Other VSS AB7 Power/Other VCC AB8 Power/Other AB9 VSS Power/Other AB10 VCC Power/Other AB11 VSS Power/Other AB12 VCC Power/Other AB13 VSS Power/Other AB14 VCC Power/Other AB15 VSS Power/Other VCC **AB16** Power/Other AB17 VSS Power/Other AB18 VCC Power/Other **AB19** VSS Power/Other **AB20** VCC Power/Other AB21 VSS Power/Other AB22 VCC Power/Other AB23 VSS Power/Other AB24 D[50]# Source Synch Input/Output AB25 D[48]# Source Synch Input/Output AB26 VSS Power/Other AC1 RSVD Reserved AC2 VSS Power/Other AC3 A[20]# Source Synch Input/Output AC4 A[18]# Source Synch Input/Output AC5 VSS Power/Other AC6 A[25]# Source Synch Input/Output AC7 A[19]# Source Synch Input/Output AC8 VSS Power/Other AC9 VCC Power/Other

Table 4-4. Pin Listing by Pin Number

Pin Number	Pin Name	Signal Buffer Type	Direction
AC11	VCC	Power/Other	
AC12	VSS	Power/Other	
AC13	VCC	Power/Other	
AC14	VSS	Power/Other	
AC15	VCC	Power/Other	
AC16	VSS	Power/Other	
AC17	VCC	Power/Other	
AC18	VSS	Power/Other	
AC19	VCC	Power/Other	
AC20	D[51]#	Source Synch	Input/Output
AC21	VSS	Power/Other	
AC22	D[52]#	Source Synch	Input/Output
AC23	D[49]#	Source Synch	Input/Output
AC24	VSS	Power/Other	
AC25	D[53]#	Source Synch	Input/Output
AC26	VCCA[3]	Power/Other	
AD1	VSS	Power/Other	
AD2	A[23]#	Source Synch	Input/Output
AD3	A[21]#	Source Synch	Input/Output
AD4	VSS	Power/Other	
AD5	A[26]#	Source Synch	Input/Output
AD6	A[28]#	Source Synch	Input/Output
AD7	VSS	Power/Other	
AD8	VCC	Power/Other	
AD9	VSS	Power/Other	
AD10	VCC	Power/Other	
AD11	VSS	Power/Other	
AD12	VCC	Power/Other	
AD13	VSS	Power/Other	
AD14	VCC	Power/Other	
AD15	VSS	Power/Other	
AD16	VCC	Power/Other	
AD17	VSS	Power/Other	
AD18	VCC	Power/Other	
AD19	VSS	Power/Other	
AD20	DINV[3]#	Source Synch	Input/Output
AD21	D[60]#	Source Synch	Input/Output
AD22	VSS	Power/Other	

AC10

VSS

Power/Other

Table 4-4. Pin Listing by Pin Number

Pin **Signal Buffer Pin Name Direction** Number **Type** AD23 D[54]# Source Synch Input/Output AD24 D[57]# Source Synch Input/Output AD25 VSS Power/Other AD26 **GTLREF** Power/Other AE1 A[30]# Source Synch Input/Output AE2 A[27]# Source Synch Input/Output AE3 VSS Power/Other AE4 A[22]# Source Synch Input/Output AE5 ADSTB[1]# Source Synch Input/Output AE6 VSS Power/Other AE7 **VCCSENSE** Power/Other Output AE8 VSS Power/Other AE9 VCC Power/Other Power/Other AE10 VSS AE11 VCC Power/Other AE12 VSS Power/Other Power/Other AE13 VCC AE14 VSS Power/Other AE15 VCC Power/Other AE16 VSS Power/Other VCC AE17 Power/Other AE18 VSS Power/Other AE19 VCC Power/Other AE20 VSS Power/Other AE21 D[59]# Source Synch Input/Output AE22 D[55]# Source Synch Input/Output AE23 VSS Power/Other AE24 DSTBN[3]# Source Synch Input/Output AE25 DSTBP[3]# Source Synch Input/Output AE26 VSS Power/Other AF1 A[31]# Source Synch Input/Output AF2 VSS Power/Other AF3 A[29]# Source Synch Input/Output AF4 A[17]# Source Synch Input/Output AF5 VSS Power/Other AF6 **VSSSENSE** Power/Other Output AF7 RSVD Reserved AF8 VCC Power/Other

Table 4-4. Pin Listing by Pin Number

Pin Number	Pin Name	Signal Buffer Type	Direction
AF9	VSS	Power/Other	
AF10	VCC	Power/Other	
AF11	VSS	Power/Other	
AF12	VCC	Power/Other	
AF13	VSS	Power/Other	
AF14	VCC	Power/Other	
AF15	VSS	Power/Other	
AF16	VCC	Power/Other	
AF17	VSS	Power/Other	
AF18	VCC	Power/Other	
AF19	VSS	Power/Other	
AF20	D[58]#	Source Synch	Input/Output
AF21	VSS	Power/Other	
AF22	D[62]#	Source Synch	Input/Output
AF23	D[56]#	Source Synch	Input/Output
AF24	VSS	Power/Other	
AF25	D[61]#	Source Synch	Input/Output
AF26	D[63]#	Source Synch	Input/Output
B1	VCCA[1]	Power/Other	
B2	RSVD	Reserved	
В3	VSS	Power/Other	
B4	SMI#	CMOS	Input
B5	INIT#	CMOS	Input
B6	VSS	Power/Other	
B7	DPSLP#	CMOS	Input
B8	BPM[1]#	Common Clock	Output
B9	VSS	Power/Other	
B10	PREQ#	Common Clock	Input
B11	RESET#	Common Clock	Input
B12	VSS	Power/Other	
B13	TRST#	CMOS	Input
B14	BCLK[1]	Bus Clock	Input
B15	BCLK[0]	Bus Clock	Input
B16	VSS	Power/Other	
B17	PROCHOT#	Open Drain	Output
B18	THERMDA	Power/Other	
B19	VSS	Power/Other	
B20	D[7]#	Source Synch Input/Output	

Table 4-4. Pin Listing by Pin Number

Pin **Signal Buffer Pin Name Direction** Number **Type** D[3]# B21 Source Synch Input/Output B22 VSS Power/Other B23 D[13]# Source Synch Input/Output B24 D[9]# Source Synch Input/Output B25 VSS Power/Other B26 D[5]# Source Synch Input/Output VSS C1 Power/Other C2 CMOS A20M# Input СЗ **RSVD** Reserved C4 VSS Power/Other C5 TEST1 Test C6 STPCLK# **CMOS** Input C7 VSS Power/Other C8 BPM[0]# Common Clock Output C9 BPM[3]# Common Clock Input/Output C10 VSS Power/Other C11 **TMS CMOS** Input TDI C12 **CMOS** Input C13 VSS Power/Other C14 BSEL[1] CMOS Output C15 VSS Power/Other C16 BSEL[0] **CMOS** Output C17 THERMTRIP# Open Drain Output C18 VSS Power/Other C19 DPWR# Common Clock Input C20 D[8]# Source Synch Input/Output C21 VSS Power/Other C22 DSTBP[0]# Source Synch Input/Output C23 DSTBN[0]# Source Synch Input/Output C24 VSS Power/Other C25 D[15]# Source Synch Input/Output C26 D[12]# Source Synch Input/Output D1 LINT0 **CMOS** Input D2 VSS Power/Other D3 FERR# Open Drain Output D4 LINT1 **CMOS** Input D5 VSS Power/Other

Table 4-4. Pin Listing by Pin Number

Table 4-4. Fill Listing by Fill Number			
Pin Number	Pin Name	Signal Buffer Type	Direction
D7	VSS	Power/Other	
D8	VCC	Power/Other	
D9	VSS	Power/Other	
D10	VCCP	Power/Other	
D11	VSS	Power/Other	
D12	VCCP	Power/Other	
D13	VSS	Power/Other	
D14	VCCP	Power/Other	
D15	VSS	Power/Other	
D16	VCCP	Power/Other	
D17	VSS	Power/Other	
D18	VCC	Power/Other	
D19	VSS	Power/Other	
D20	VCC	Power/Other	
D21	VSS	Power/Other	
D22	VCC	Power/Other	
D23	VSS	Power/Other	
D24	D[10]#	Source Synch	Input/Output
D25	DINV[0]#	Source Synch	Input/Output
D26	VSS	Power/Other	
E1	PSI#	CMOS	Output
E2	VID[0]	CMOS	Output
E3	VSS	Power/Other	
E4	PWRGOOD	CMOS	Input
E5	VCC	Power/Other	
E6	VSS	Power/Other	
E7	VCC	Power/Other	
E8	VSS	Power/Other	
E9	VCC	Power/Other	
E10	VSS	Power/Other	
E11	VCCP	Power/Other	
E12	VSS	Power/Other	
E13	VCCP	Power/Other	
E14	VSS	Power/Other	
E15	VCCP	Power/Other	
E16	VSS	Power/Other	
E17	VCC	Power/Other	
E18	VSS	Power/Other	

VCC

Power/Other

D6

Pin Number	Pin Name	Signal Buffer Type	Direction
E19	VCC	Power/Other	
E20	VSS	Power/Other	
E21	VCC	Power/Other	
E22	VSS	Power/Other	
E23	D[14]#	Source Synch	Input/Output
E24	D[11]#	Source Synch	Input/Output
E25	VSS	Power/Other	
E26	RSVD	Reserved	
F1	VSS	Power/Other	
F2	VID[1]	CMOS	Output
F3	VID[2]	CMOS	Output
F4	VSS	Power/Other	
F5	VSS	Power/Other	
F6	VCC	Power/Other	
F7	VSS	Power/Other	
F8	VCC	Power/Other	
F9	VSS	Power/Other	
F10	VCCP	Power/Other	
F11	VSS	Power/Other	
F12	VCCP	Power/Other	
F13	VSS	Power/Other	
F14	VCCP	Power/Other	
F15	VSS	Power/Other	
F16	VCCP	Power/Other	
F17	VSS	Power/Other	
F18	VCC	Power/Other	
F19	VSS	Power/Other	
F20	VCC	Power/Other	
F21	VSS	Power/Other	
F22	VCC	Power/Other	
F23	TEST2	Test	
F24	VSS	Power/Other	
F25	D[21]#	Source Synch	Input/Output
F26	VCCA[0]	Power/Other	
G1	RSVD	Reserved	
G2	VSS	Power/Other	
G3	VID[3]	CMOS	Output
G4	VID[4]	CMOS	Output

Table 4-4. Pin Listing by Pin Number

Table 4-4. Pin Listing by Pin Number

Pin Number	Pin Name	Signal Buffer Type Direction		
G5	VCC	Power/Other		
G6	VSS	Power/Other		
G21	VCC	Power/Other		
G22	VSS	Power/Other		
G23	VSS	Power/Other		
G24	D[22]#	Source Synch	Input/Output	
G25	D[17]#	Source Synch	Input/Output	
G26	VSS	Power/Other		
H1	RS[0]#	Common Clock	Input	
H2	DRDY#	Common Clock	Input/Output	
НЗ	VSS	Power/Other		
H4	VID[5]	CMOS	Output	
H5	VSS	Power/Other		
H6	VCC	Power/Other		
H21	VSS	Power/Other		
H22	VCC	Power/Other		
H23	D[16]#	Source Synch	Input/Output	
H24	D[20]#	Source Synch	Input/Output	
H25	VSS	Power/Other		
H26	D[29]#	Source Synch	Input/Output	
J1	VSS	Power/Other		
J2	LOCK#	Common Clock	Input/Output	
J3	BPRI#	Common Clock	Input	
J4	VSS	Power/Other		
J5	VCC	Power/Other		
J6	VSS	Power/Other		
J21	VCC	Power/Other		
J22	VSS	Power/Other		
J23	D[23]#	Source Synch	Input/Output	
J24	VSS	Power/Other		
J25	D[25]#	Source Synch	Input/Output	
J26	DINV[1]#	Source Synch	Input/Output	
K1	RS[1]#	Common Clock	Input	
K2	VSS	Power/Other		
K3	HIT#	Common Clock	Input/Output	
K4	HITM#	Common Clock	Input/Output	
K5	VSS	Power/Other		
K6	VCCP	Power/Other		

Table 4-4. Pin Listing by Pin Number

Pin **Signal Buffer Pin Name Direction** Number **Type** VSS K21 Power/Other K22 VCC Power/Other K23 VSS Power/Other K24 DSTBN[1]# Source Synch Input/Output K25 D[31]# Source Synch Input/Output K26 VSS Power/Other BNR# Common Clock Input/Output L2 RS[2]# Common Clock Input L3 VSS Power/Other L4 DEFER# Common Clock Input L5 **VCCP** Power/Other L6 VSS Power/Other L21 **VCCP** Power/Other L22 VSS Power/Other L23 D[18]# Source Synch Input/Output L24 DSTBP[1]# Source Synch Input/Output L25 VSS Power/Other L26 D[26]# Source Synch Input/Output M1 VSS Power/Other M2 DBSY# Common Clock Input/Output МЗ TRDY# Common Clock Input M4 VSS Power/Other M5 VSS Power/Other M6 **VCCP** Power/Other M21 VSS Power/Other M22 VCCP Power/Other M23 D[24]# Source Synch Input/Output M24 VSS Power/Other M25 D[28]# Source Synch Input/Output M26 D[19]# Source Synch Input/Output VCCA[2] N1 Power/Other N2 ADS# Common Clock Input/Output N3 VSS Power/Other N4 BR0# Common Clock Input/Output N5 VCCP Power/Other N6 VSS Power/Other N21 VCCP Power/Other N22 VSS Power/Other

Table 4-4. Pin Listing by Pin Number

Pin Number	Pin Name	Signal Buffer Type	Direction	
N23	VSS	Power/Other		
N24	D[27]#	Source Synch	Input/Output	
N25	D[30]#	Source Synch	Input/Output	
N26	VSS	Power/Other		
P1	REQ[3]#	Source Synch	Input/Output	
P2	VSS	Power/Other		
P3	REQ[1]#	Source Synch	Input/Output	
P4	A[3]#	Source Synch	Input/Output	
P5	VSS	Power/Other		
P6	VCCP	Power/Other		
P21	VSS	Power/Other		
P22	VCCP	Power/Other		
P23	VCCQ[0]	Power/Other		
P24	VSS	Power/Other		
P25	COMP[0]	Power/Other	Input/Output	
P26	COMP[1]	Power/Other	Input/Output	
R1	VSS	Power/Other		
R2	REQ[0]#	Source Synch	Input/Output	
R3	A[6]#	Source Synch	Input/Output	
R4	VSS	Power/Other		
R5	VCCP	Power/Other		
R6	VSS	Power/Other		
R21	VCCP	Power/Other		
R22	VSS	Power/Other		
R23	D[39]#	Source Synch	Input/Output	
R24	D[37]#	Source Synch	Input/Output	
R25	VSS	Power/Other		
R26	D[38]#	Source Synch	Input/Output	
T1	REQ[4]#	Source Synch	Input/Output	
T2	REQ[2]#	Source Synch	Input/Output	
T3	VSS	Power/Other		
T4	A[9]#	Source Synch	Input/Output	
T5	VSS	Power/Other		
T6	VCCP	Power/Other		
T21	VSS	Power/Other		
T22	VCCP	Power/Other		
T23	VSS	Power/Other		
T24	DINV[2]#	CMOS	Input/Output	

Table 4-4. Pin Listing by Pin Number

Pin Number	Pin Name	Signal Buffer Type Directio		
T25	D[34]#	Source Synch	Input/Output	
T26	VSS	Power/Other		
U1	A[13]#	Source Synch	Input/Output	
U2	VSS	Power/Other		
U3	ADSTB[0]#	Source Synch	Input/Output	
U4	A[4]#	Source Synch	Input/Output	
U5	VCC	Power/Other		
U6	VSS	Power/Other		
U21	VCCP	Power/Other		
U22	VSS	Power/Other		
U23	D[35]#	Source Synch	Input/Output	
U24	VSS	Power/Other		
U25	D[43]#	Source Synch	Input/Output	
U26	D[41]#	Source Synch	Input/Output	
V1	VSS	Power/Other		
V2	A[7]#	Source Synch	Input/Output	
V3	A[5]#	Source Synch	Input/Output	
V4	VSS	Power/Other		
V5	VSS	Power/Other		
V6	VCC	Power/Other		
V21	VSS	Power/Other		
V22	VCC	Power/Other		
V23	D[36]#	Source Synch	Input/Output	
V24	D[42]#	Source Synch	Input/Output	
V25	VSS	Power/Other		
V26	D[44]#	Source Synch	Input/Output	
W1	A[8]#	Source Synch	Input/Output	
W2	A[10]#	Source Synch	Input/Output	
W3	VSS	Power/Other		
W4	VCCQ[1]	Power/Other		
W5	VCC	Power/Other		
W6	VSS	Power/Other		
W21	VCC	Power/Other		
W22	VSS	Power/Other		
W23	VSS	Power/Other		
W24	DSTBP[2]#	Source Synch	Input/Output	
W25	DSTBN[2]#	Source Synch	Input/Output	
W26	VSS	Power/Other		

Table 4-4. Pin Listing by Pin Number

Pin Number	Pin Name	Signal Buffer Type	Direction
Y1	A[12]#	Source Synch	Input/Output
Y2	VSS	Power/Other	
Y3	A[15]#	Source Synch	Input/Output
Y4	A[11]#	Source Synch	Input/Output
Y5	VSS	Power/Other	
Y6	VCC	Power/Other	
Y21	VSS	Power/Other	
Y22	VCC	Power/Other	
Y23	D[45]#	Source Synch	Input/Output
Y24	VSS	Power/Other	
Y25	D[47]#	Source Synch	Input/Output
Y26	D[32]#	Source Synch	Input/Output

4.2 Alphabetical Signals Reference

Table 4-5. Signal Description (Sheet 1 of 7)

Name	Туре		Description		
A[31:3]#	Input/ Output	A[31:3]# (Address) define a 2 ³² -byte physical memory address space. In subphase 1 of the address phase, these pins transmit the address of a transaction. In sub-phase 2, these pins transmit transaction type information. These signals must connect the appropriate pins of both agents on the Intel®Pentium® M Processor FSB. A[31:3]# are source synchronous signals and are latched into the receiving buffers by ADSTB[1:0]#. Address signals are used as straps which are sampled before RESET# is deasserted.			
A20M#	Input	bit 20 (A20#) before looking read/write transaction on the processor's address wrap-a is only supported in real mo	up a line in any internal be bus. Asserting A20M# round at the 1-Mbyte bo de.	emulates the 8086 undary. Assertion of A20M#	
			ite instruction, it must be	ure recognition of this signal valid along with the TRDY# us transaction.	
ADS#	Input/ Output	ADS# (Address Strobe) is asserted to indicate the validity of the transaction address on the A[31:3]# and REQ[4:0]# pins. All bus agents observe the ADS# activation to begin parity checking, protocol checking, address decode, internal snoop, or deferred reply ID match operations associated with the new transaction.			
ADSTB[1:0]#	Input/ Output	Address strobes are used to falling edges. Strobes are as			
		Signals	Associated Strobe		
		REQ[4:0]#, A[16:3]#	ADSTB[0]#		
		A[31:17]#	ADSTB[1]#		
BCLK[1:0]	Input	The differential pair BCLK (Eagents must receive these standard and all external timing paramete BCLK0 crossing V _{CROSS} .	signals to drive their outp	outs and latch their inputs.	
BNR#	Input/ Output	BNR# (Block Next Request) is used to assert a bus stall by any bus agent who is unable to accept new bus transactions. During a bus stall, the current bus owner cannot issue any new transactions.			
BPM[2:0]# BPM[3]	Output Input/ Output	BPM[3:0]# (Breakpoint Monitor) are breakpoint and performance monitor signals. They are outputs from the processor which indicate the status of breakpoints and programmable counters used for monitoring processor performance. BPM[3:0]# should connect the appropriate pins of all Intel® Pentium® M FSB agents. This includes debug or performance monitoring tools.			
BPRI#	Input	Please refer to the platform design guides for more detailed information. BPRI# (Bus Priority Request) is used to arbitrate for ownership of the FSB. It must connect the appropriate pins of both FSB agents. Observing BPRI# active (as asserted by the priority agent) causes the other agent to stop issuing new requests, unless such requests are part of an ongoing locked operation. The priority agent keeps BPRI# asserted until all of its requests are completed, then			
BR0#	Input/ Output	releases the bus by deasser BR0# is used by the process between Intel®Pentium® M MCH-M (High Priority Agent	sor to request the bus. T (Symmetric Agent) and I	he arbitration is done intel 855 chipset family	

Package Mechanical Specifications and Pin Information

Table 4-5. Signal Description (Sheet 2 of 7)

Name	Туре			Description		
BSEL[1:0]	Output	These signals are used to select the FSB clock frequency. They should be connected between the processor and the chipset MCH and clock generator on Intel 915 chipset family based platforms. These signals must be left unconnected on platforms designed with the Intel 855 chipset family. On these platforms, FSB clock frequency should be configured on the motherboard.				
COMP[3:0]	Analog	COMP[3:0] must tolerance) resisto implementation.	be terminated on ors. Refer to the pl	the system boar atform design gu	d using precision (1% uides for more details on	
D[63:0]#	Input/ Output	between the FSE The data driver a D[63:0]# are qua common clock po DSTBP[3:0]# and pair of one DSTE	D[63:0]# (Data) are the data signals. These signals provide a 64-bit data path between the FSB agents, and must connect the appropriate pins on both agents. The data driver asserts DRDY# to indicate a valid data transfer. D[63:0]# are quad-pumped signals and will thus be driven four times in a common clock period. D[63:0]# are latched off the falling edge of both DSTBP[3:0]# and DSTBN[3:0]#. Each group of 16 data signals correspond to a pair of one DSTBP# and one DSTBN#. The following table shows the grouping of data signals to data strobes and DINV#.			
		Data Group	DSTBN#/ DSTBP#	DINV#		
		D[15:0]#	0	0		
		D[31:16]#	1	1		
		D[47:32]#	2	2		
		D[63:48]#	3	3		
		Furthermore, the DINV# pins determine the polarity of the data signals. Each group of 16 data signals corresponds to one DINV# signal. When the DINV# signal is active, the corresponding data group is inverted and therefore sampled active high.				
DBR#	Output	DBR# (Data Bus Reset) is used only in processor systems where no debug port is implemented on the system board. DBR# is used by a debug port interposer so that an in-target probe can drive system reset. If a debug port is implemented in the system, DBR# is a no connect in the system. DBR# is not a processor signal.				
DBSY#	Input/ Output	DBSY# (Data Bus Busy) is asserted by the agent responsible for driving data on the FSB to indicate that the data bus is in use. The data bus is released after DBSY# is deasserted. This signal must connect the appropriate pins on both FSB agents.				
DEFER#	Input	guaranteed in-or- responsibility of t	der completion. As	ssertion of DEFE mory or Input/Ou	transaction cannot be R# is normally the tput agent. This signal must	

Table 4-5. Signal Description (Sheet 3 of 7)

Name	Туре	Description			
DINV[3:0]#	Input/ Output	polarity of the D[63:0]# data on the data bus is	NV[3:0]# (Data Bus Inversion) are source synchronous and indicate the larity of the D[63:0]# signals. The DINV[3:0]# signals are activated when the ta on the data bus is inverted. The bus agent will invert the data bus signals if ore than half the bits, within the covered group, would change level in the next cle.		
		DINV[3:0]# Assignment To Data Bus			
		Bus Signal	Data Bus Signals		
		DINV[3]#	D[63:48]#		
		DINV[2]#	D[47:32]#		
		DINV[1]#	D[31:16]#		
		DINV[0]#	D[15:0]#		
DPSLP#	Input	DPSLP# when asserted on the platform causes the processor to transition from the Sleep State to the Deep Sleep state. In order to return to the Sleep state, DPSLP# must be deasserted. DPSLP# is driven by the ICH4-M component and also connects to the Intel 855 chipset family MCH-M component.			
DPWR#	Input	DPWR# is a control signal from the Intel [®] 852/855 and 915 chipset family used to reduce power on the Intel [®] Pentium [®] M data bus input buffers.			
DRDY#	Input/ Output	DRDY# (Data Ready) is asserted by the data driver on each data transfer, indicating valid data on the data bus. In a multi-common clock data transfer, DRDY# may be deasserted to insert idle clocks. This signal must connect the appropriate pins of both FSB agents.			
DSTBN[3:0]#	Input/ Output	Data strobe used to latch in D[63:0]#.			
	2 2 4 2 2	Signals	Associated Stro	obe	
		D[15:0]#, DINV[0]#	DSTBN[0]#		
		D[31:16]#, DINV[1]#	DSTBN[1]#		
		D[47:32]#, DINV[2]#	DSTBN[2]#		
		D[63:48]#, DINV[3]#	DSTBN[3]#		
DSTBP[3:0]#	Input/ Output	Data strobe used to latch in D[63:0]#.			
		Signals	Associated Stro	obe	
		D[15:0]#, DINV[0]#	DSTBP[0]#		
		D[31:16]#, DINV[1]#	DSTBP[1]#		
		D[47:32]#, DINV[2]#	DSTBP[2]#		
		D[63:48]#, DINV[3]#	DSTBP[3]#		

Table 4-5. Signal Description (Sheet 4 of 7)

Name	Type	Description
FERR#/PBE#	Output	FERR# (Floating-point Error)PBE#(Pending Break Event) is a multiplexed signal and its meaning is qualified with STPCLK#. When STPCLK# is not asserted, FERR#/PBE# indicates a floating point when the processor detects an unmasked floating-point error. FERR# is similar to the ERROR# signal on the Intel 387 coprocessor, and is included for compatibility with systems using MSDOS*-type floating-point error reporting. When STPCLK# is asserted, an assertion of FERR#/PBE# indicates that the processor has a pending break event waiting for service. The assertion of FERR#/PBE# indicates that the processor should be returned to the Normal state. When FERR#/PBE# is asserted, indicating a break event, it will remain asserted until STPCLK# is deasserted. Assertion of PREQ# when STPCLK# is active will also cause an FERR# break event.
		For additional information on the pending break event functionality, including identification of support of the feature and enable/disable information, refer to Volume 3 of the Intel® Architecture Software Developer's Manual and the Intel® Processor Identification and CPUID Instruction application note.
		For termination requirements please refer to the platform design guides.
GTLREF	Input	GTLREF determines the signal reference level for AGTL+ input pins. GTLREF should be set at $2/3 V_{CCP}$. GTLREF is used by the AGTL+ receivers to determine if a signal is a logical 0 or logical 1. Please refer to the platform design guides for details on GTLREF implementation.
HIT#	Input/ Output	HIT# (Snoop Hit) and HITM# (Hit Modified) convey transaction snoop operation results. Either FSB agent may assert both HIT# and HITM# together to indicate that it requires a snoop stall, which can be continued by reasserting HIT# and
111111111	Input/ Output	HITM# together.
IERR#	Output	IERR# (Internal Error) is asserted by a processor as the result of an internal error. Assertion of IERR# is usually accompanied by a SHUTDOWN transaction on the FSB. This transaction may optionally be converted to an external error signal (e.g., NMI) by system core logic. The processor will keep IERR# asserted until the assertion of RESET#, BINIT#, or INIT#.
		For termination requirements please refer to the platform design guides.
IGNNE#	Input	IGNNE# (Ignore Numeric Error) is asserted to force the processor to ignore a numeric error and continue to execute noncontrol floating-point instructions. If IGNNE# is deasserted, the processor generates an exception on a noncontrol floating-point instruction if a previous floating-point instruction caused an error. IGNNE# has no effect when the NE bit in control register 0 (CR0) is set.
		IGNNE# is an asynchronous signal. However, to ensure recognition of this signal following an Input/Output write instruction, it must be valid along with the TRDY# assertion of the corresponding Input/Output Write bus transaction.
INIT#	Input	INIT# (Initialization), when asserted, resets integer registers inside the processor without affecting its internal caches or floating-point registers. The processor then begins execution at the power-on Reset vector configured during power-on configuration. The processor continues to handle snoop requests during INIT# assertion. INIT# is an asynchronous signal. However, to ensure recognition of this signal following an Input/Output Write instruction, it must be valid along with the TRDY# assertion of the corresponding Input/Output Write bus transaction. INIT# must connect the appropriate pins of both FSB agents.
		If INIT# is sampled active on the active to inactive transition of RESET#, then the processor executes its Built-in Self-Test (BIST) For termination requirements please refer to the platform design guides.
ITD OLLEGE	Lee 1	
ITP_CLK[1:0]	Input	ITP_CLK[1:0] are copies of BCLK that are used only in processor systems where no debug port is implemented on the system board. ITP_CLK[1:0] are used as BCLK[1:0] references for a debug port implemented on an interposer. If a debug port is implemented in the system, ITP_CLK[1:0] are no connects in the system. These are not processor signals.

Table 4-5. Signal Description (Sheet 5 of 7)

Name	Type	Description
LINT[1:0]	Input	LINT[1:0] (Local APIC Interrupt) must connect the appropriate pins of all APIC Bus agents. When the APIC is disabled, the LINT0 signal becomes INTR, a maskable interrupt request signal, and LINT1 becomes NMI, a nonmaskable interrupt. INTR and NMI are backward compatible with the signals of those names on the Pentium Processor. Both signals are asynchronous.
		Both of these signals must be software configured via BIOS programming of the APIC register space to be used either as NMI/INTR or LINT[1:0]. Because the APIC is enabled by default after reset, operation of these pins as LINT[1:0] is the default configuration.
LOCK#	Input/ Output	LOCK# indicates to the system that a transaction must occur atomically. This signal must connect the appropriate pins of both FSB agents. For a locked sequence of transactions, LOCK# is asserted from the beginning of the first transaction to the end of the last transaction.
		When the priority agent asserts BPRI# to arbitrate for ownership of the FSB, it will wait until it observes LOCK# deasserted. This enables symmetric agents to retain ownership of the FSB throughout the bus locked operation and ensure the atomicity of lock.
PRDY#	Output	Probe Ready signal used by debug tools to determine processor debug readiness. Please refer to the platform design guides for more implementation details.
PREQ#	Input	Probe Request signal used by debug tools to request debug operation of the
		processor. Please refer to the platform design guides for more implementation details.
PROCHOT#	Output	PROCHOT# (Processor Hot) will go active when the processor temperature monitoring sensor detects that the processor has reached its maximum safe operating temperature. This indicates that the processor Thermal Control Circuit has been activated, if enabled. See Chapter 5 for more details.
		For termination requirements please refer to the platform design guides.
		This signal may require voltage translation on the motherboard. Please refer to the platform design guides for more details.
PSI#	Output	Processor Power Status Indicator signal. This signal is asserted when the processor is in a lower state (Deep Sleep and Deeper Sleep). See Section 2.1.6 for more details.
PWRGOOD	Input	PWRGOOD (Power Good) is a processor input. The processor requires this signal to be a clean indication that the clocks and power supplies are stable and within their specifications. Clean implies that the signal will remain low (capable of sinking leakage current), without glitches, from the time that the power supplies are turned on until they come within specification. The signal must then transition monotonically to a high state.
		The PWRGOOD signal must be supplied to the processor; it is used to protect internal circuits against voltage sequencing issues. It should be driven high throughout boundary scan operation.
		For termination requirements please refer to the platform design guides.
REQ[4:0]#	Input/ Output	REQ[4:0]# (Request Command) must connect the appropriate pins of both FSB agents. They are asserted by the current bus owner to define the currently active transaction type. These signals are source synchronous to ADSTB[0]#.
RESET#	Input	Asserting the RESET# signal resets the processor to a known state and invalidates its internal caches without writing back any of their contents. For a power-on Reset, RESET# must stay active for at least two milliseconds after Vcc and BCLK have reached their proper specifications. On observing active RESET#, both FSB agents will deassert their outputs within two clocks. All processor straps must be valid within the specified setup time before RESET# is deasserted.
		Please refer to the <i>Platform Design Guides</i> for termination requirements and implementation details. There is a 55 ohm (nominal) on die pullup resistor on this signal.

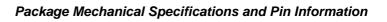


Table 4-5. Signal Description (Sheet 6 of 7)

Name	Туре	Description
DSI3:01#		·
RS[2:0]#	Input	RS[2:0]# (Response Status) are driven by the response agent (the agent responsible for completion of the current transaction), and must connect the appropriate pins of both FSB agents.
RSVD	Reserved/ No Connect	These pins are RESERVED and must be left unconnected on the board. However, it is recommended that routing channels to these pins on the board be kept open for possible future use. Please refer to the platform design guides for more details.
SLP#	Input	SLP# (Sleep), when asserted in Stop-Grant state, causes the processor to enter the Sleep state. During Sleep state, the processor stops providing internal clock signals to all units, leaving only the Phase-Locked Loop (PLL) still operating. Processors in this state will not recognize snoops or interrupts. The processor will recognize only assertion of the RESET# signal, deassertion of SLP#, and removal of the BCLK input while in Sleep state. If SLP# is deasserted, the processor exits Sleep state and returns to Stop-Grant state, restarting its internal clock signals to the bus and processor core units. If DPSLP# is asserted while in the Sleep state, the processor will exit the Sleep state and transition to the Deep Sleep state.
SMI#	Input	SMI# (System Management Interrupt) is asserted asynchronously by system logic. On accepting a System Management Interrupt, the processor saves the current state and enter System Management mode (SMM). An SMI Acknowledge transaction is issued, and the processor begins program execution from the SMM handler. If SMI# is asserted during the deassertion of RESET# the processor will tristate its outputs.
0770114		its outputs.
STPCLK#	Input	STPCLK# (Stop Clock), when asserted, causes the processor to enter a low power Stop-Grant state. The processor issues a Stop-Grant Acknowledge transaction, and stops providing internal clock signals to all processor core units except the FSB and APIC units. The processor continues to snoop bus transactions and service interrupts while in Stop-Grant state. When STPCLK# is deasserted, the processor restarts its internal clock to all units and resumes execution. The assertion of STPCLK# has no effect on the bus clock; STPCLK# is an asynchronous input.
TCK	Input	TCK (Test Clock) provides the clock input for the processor test bus (also known as the Test Access Port).
		Please refer to the platform design guides for termination requirements and implementation details.
TDI	Input	TDI (Test Data In) transfers serial test data into the processor. TDI provides the serial input needed for JTAG specification support.
		Please refer to the platform design guides for termination requirements and implementation details.
TDO	Output	TDO (Test Data Out) transfers serial test data out of the processor. TDO provides the serial output needed for JTAG specification support.
		Please refer to the platform design guides for termination requirements and implementation details.
TEST1, TEST2	Input	TEST1 and TEST2 must have a stuffing option of separate pull down resistors to V _{SS} . Please refer to the platform design guides for more details.
THERMDA	Other	Thermal Diode Anode.
THERMDC	Other	Thermal Diode Cathode.
THERMTRIP#	Output	The processor protects itself from catastrophic overheating by use of an internal thermal sensor. This sensor is set well above the normal operating temperature to ensure that there are no false trips. The processor will stop all execution when the junction temperature exceeds approximately 125 °C. This is signalled to the system by the THERMTRIP# (Thermal Trip) pin. For termination requirements please refer to the platform design guides.

Package Mechanical Specifications and Pin Information

Table 4-5. Signal Description (Sheet 7 of 7)

Name	Туре	Description
TMS	Input	TMS (Test Mode Select) is a JTAG specification support signal used by debug tools. Please refer to the platform design guides for termination requirements and implementation details.
TRDY#	Input	TRDY# (Target Ready) is asserted by the target to indicate that it is ready to receive a write or implicit writeback data transfer. TRDY# must connect the appropriate pins of both FSB agents.
TRST#	Input	TRST# (Test Reset) resets the Test Access Port (TAP) logic. TRST# must be driven low during power on Reset. Please refer to the platform design guides for termination requirements and implementation details.
V _{CC}	Input	Processor core power supply.
V _{CCA} [3:0]	Input	V_{CCA} provides isolated power for the internal processor core PLL's. Refer to the platform design guides for complete implementation details.
V _{CCP}	Input	Processor I/O power supply.
V _{ccQ} [1:0]	Input	Quiet power supply for on die COMP circuitry. These pins should be connected to V_{CCP} on the motherboard. However, these connections should enable addition of decoupling on the V_{CCQ} lines if necessary.
V _{CCSENSE}	Output	V_{CCSENSE} is an isolated low impedance connection to processor core power (V_{CC}). It can be used to sense or measure power near the silicon with little noise. Please refer to the platform design guides for termination recommendations and more details.
VID[5:0]	Output	VID[5:0] (Voltage ID) pins are used to support automatic selection of power supply voltages (Vcc). Unlike some previous generations of processors, these are CMOS signals that are driven by the Intel®Pentium® M processor. The voltage supply for these pins must be valid before the VR can supply Vcc to the processor. Conversely, the VR output must be disabled until the voltage supply for the VID pins becomes valid. The VID pins are needed to support the processor voltage specification variations. See Table 3-1 for definitions of these pins. The VR must supply the voltage that is requested by the pins, or disable itself.
V _{SSSENSE}	Output	V_{SSSENSE} is an isolated low impedance connection to processor core V_{SS} . It can be used to sense or measure ground near the silicon with little noise. Please refer to the platform design guides for termination recommendations and more details.

The Pentium M Processor requires a thermal solution to maintain temperatures within operating limits as set forth in Section 5.1. Any attempt to operate that processor outside these operating limits may result in permanent damage to the processor and potentially other components in the system. As processor technology changes, thermal management becomes increasingly crucial when building computer systems. Maintaining the proper thermal environment is key to reliable, long-term system operation. A complete thermal solution includes both component and system level thermal management features. Component level thermal solutions include active or passive heatsinks or heat exchangers attached to the processor exposed die. The solution should make firm contact to the die while maintaining processor mechanical specifications such as pressure. A typical system level thermal solution may consist of a processor fan ducted to a heat exchanger that is thermally coupled to the processor via a heat pipe or direct die attachment. A secondary fan or air from the processor fan may also be used to cool other platform components or lower the internal ambient temperature within the system.

To allow for the optimal operation and long-term reliability of Intel processor-based systems, the system/processor thermal solution should be designed such that the processor must remain within the minimum and maximum junction temperature (Tj) specifications at the corresponding thermal design power (TDP) value listed in Table 5-1. Thermal solutions not design to provide this level of thermal capability may affect the long-term reliability of the processor and system.

The maximum junction temperature is defined by an activation of the processor Intel Thermal Monitor. Refer to Section 5.1.3 for more details. Analysis indicates that real applications are unlikely to cause the processor to consume the theoretical maximum power dissipation for sustained time periods. Intel recommends that complete thermal solution designs target the TDP indicated in Table 5-1. The Intel Thermal Monitor feature is designed to help protect the processor in the unlikely event that an application exceeds the TDP recommendation for a sustained period of time. For more details on the usage of this feature, refer to Section 5.1.3. In all cases the Intel Thermal Monitor feature must be enabled for the processor to remain within specification.

Table 5-1. Power Specifications for the Intel® Pentium M Processor (Sheet 1 of 3)

Symbol	Processor Number	Core Frequency & Voltage	Thermal Design Power		Unit	Notes		
TDP	765	2.1 GHz & HFM Vcc	21			W	At 100°C, Notes 1,	
	755	2.0 GHz & HFM Vcc		21			4, 5	
	745 1.8 GHz & HFM Vcc 21							
	735	1.7 GHz & HFM Vcc 21						
	725	1.6 GHz & HFM Vcc		21				
	715	1.5 GHz & HFM Vcc		21				
	778	1.6 GHz & HFM Vcc		10				
	758	1.5 GHz & HFM Vcc		10				
	738	1.4 GHz & HFM Vcc		10				
	765/755/745/ 735/725/715 & 778/758/738	600 MHz & LFM Vcc		7.5				
	773	1.3 GHz & HFM Vcc		5.5				
	753	1.2 GHz & HFM Vcc		5.5	I			
	733J	1.1 GHz & HFM Vcc	5.5					
	733	1.1 GHz & HFM Vcc	5.0					
	723	1.0 GHz & HFM Vcc	5.0					
	773/753/733J/ 733/723	600 MHz & LFM Vcc		3.0				
Symbol	Processor Number	Parameter	Min	Тур	Max	Unit	Notes	
P _{AH,} P _{SGNT}	765/755/745/ 735/725/715	Auto Halt, Stop Grant Power:			I.	W	At 50°C, Note 2	
OGIVI		LFM Vcc			3.3			
		HFM Vcc			10.9			
	778/758/738	Auto Halt, Stop Grant Power:			I.	W At	At 50°C, Note 2	
		LFM Vcc			3.3			
		HFM Vcc			4.2			
	773/753/733J	Auto Halt, Stop Grant Power:			I.	W	At 50°C, Note 2, 5	
		LFM Vcc			1.1			
		HFM Vcc			1.9			
	733/723	Auto Halt, Stop Grant Power:		1	ı	W	At 50°C, Note 2	
		LFM Vcc			1.0			
		HFM Vcc			1.8	1		

Table 5-1. Power Specifications for the Intel® Pentium M Processor (Sheet 2 of 3)

Symbol	Processor Number	Parameter	Min	Тур	Max	Unit	Notes
P _{SLP}	765/755/745/	Sleep Power:			W	At 50 °C, Note 2	
	735/725/715	LFM Vcc			3.2		
		HFM Vcc			10.5		
	778/758/738	Sleep Power:			W	At 50 °C, Note 2	
		LFM Vcc			3.2		
		HFM Vcc			4.0		
	773/753/733J	Sleep Power:		I		W	At 50 °C, Note 2, 5
		LFM Vcc			1.0		
		HFM Vcc			1.7		
	733/723	Sleep Power:			W	At 50 °C, Note 2	
		LFM Vcc			0.9		
		HFM Vcc			1.7		
P _{DSLP}	765/755/745/	Deep Sleep Power:	leep Power:		W	At 35 °C, Note 2	
	735/725/715	LFM Vcc			2.5		
		HFM Vcc			8.8		
	778/758/738	Deep Sleep Power:			W At 35 °C,	At 35 °C, Note 2	
		LFM Vcc			2.5		
		HFM Vcc			2.9	1	
	773/753/733J	Deep Sleep Power:		I	ı	W	At 35 °C, Note 2, 5
		LFM Vcc			0.7		
		HFM Vcc			1.25		
	733/723	Deep Sleep Power:		I	ı	W	At 35 °C, Note 2
		LFM Vcc			0.6		
		HFM Vcc			1.2		
P _{DPRSL} P1	765/755/745/ 735/725/715 & 778/758/738	Deeper Sleep Power @ 0.748V			0.8	W	At 35 °C, Note 2
	753/733J/733/ 723	Deeper Sleep Power (ULV only)@ 0.748V			0.5	W	At 35 °C, Note 2, 5

Table 5-1. Power Specifications for the Intel® Pentium M Processor (Sheet 3 of 3)

Symbol	Processor Number	Parameter	Min	Тур	Max	Unit	Notes
P _{DPRSL} P2	765/755/745/ 735/725/715 & 778/758/738	Deeper Sleep Power @ 0.726V			0.7	W	At 35 °C, Note 2
	753/733J/733/ 723	Deeper Sleep Power (ULV only)@ 0.726			0.4	W	At 35 °C, Note 2, 5
TJ		Junction Temperature	0		100	°C	Notes 3, 4

NOTES:

- The Thermal Design Power (TDP) specification should be used to design the processor thermal solution. The TDP is not the maximum theoretical power the processor can dissipate.
- 2. Not 100% tested. These power specifications are determined by characterization of the processor currents at higher temperatures and extrapolating the values for the temperature indicated.
- As measured by the on-die Intel Thermal Monitor. The Intel Thermal Monitor's automatic mode is used to indicate that the maximum T_J has been reached. Refer to Section 5.1 for more details.
- The Intel Thermal Monitor automatic mode must be enabled for the processor to operate within specifications.
- 5. For 733J, CPU Signature = 06D8h.

5.1 Thermal Specifications

5.1.1 Thermal Diode

The Pentium M Processor incorporates two methods of monitoring die temperature, the Intel Thermal Monitor and the thermal diode. The Intel Thermal Monitor (detailed in Section 5.1) must be used to determine when the maximum specified processor junction temperature has been reached. The second method, the thermal diode, can be read by an off-die analog/digital converter (a thermal sensor) located on the motherboard, or a stand-alone measurement kit. The thermal diode may be used to monitor the die temperature of the processor for thermal management or instrumentation purposes but cannot be used to indicate that the maximum T_J of the processor has been reached. When using the thermal diode, a temperature offset value must be read from a processor Model Specific register (MSR) and applied. See Section 5.1.2 for more details. Please see Section 5.1.3 for thermal diode usage recommendation when the PROCHOT# signal is not asserted. Table 5-2 and Table 5-3 provide the diode interface and specifications.

Note: The reading of the external thermal sensor (on the motherboard) connected to the processor thermal diode signals, will not necessarily reflect the temperature of the hottest location on the die. This is due to inaccuracies in the external thermal sensor, on-die temperature gradients between the location of the thermal diode and the hottest location on the die, and time based variations in the die temperature measurement. Time-based variations can occur when the sampling rate of the thermal diode (by the thermal sensor) is slower than the rate at which the T_I temperature can change.

Offset between the thermal diode based temperature reading and the Intel Thermal Monitor reading may be characterized using the Intel Thermal Monitor's Automatic mode activation of thermal control circuit. This temperature offset must be taken into account when using the processor thermal diode to implement power management events.

5.1.2 Thermal Diode Offset

A temperature offset value (specified as Toffset in Table 5-3) will be programmed into a Pentium M Processor Model Specific Register (MSR). This offset is determined by using a thermal diode ideality factor mean value of n=1.0022 (shown in Table 5-3) as a reference. This offset must be applied to the junction temperature read by the thermal diode. Any temperature adjustments due to differences between the reference ideality value of 1.0022 and the default ideality values programmed into the on-board thermal sensors, will have to be made before the above offset is applied.

Table 5-2. Thermal Diode Interface

Signal Name	Pin/Ball Number	Signal Description
THERMDA	B18	Thermal diode anode
THERMDC	A18	Thermal diode cathode

Table 5-3. Thermal Diode Specification

Symbol	Parameter	Min	Тур	Max	Unit	Notes
I _{FW}	Forward Bias Current	5		300	μΑ	Note 1
Toffset	Thermal diode temperature offset	-4		11	°C	2, 6
n	Reference Diode Ideality Factor used to calculate temperature offset		1.0022			Notes 2, 3, 4
R _T	Series Resistance		3.06		Ohms	2, 3, 5

NOTES:

- Intel does not support or recommend operation of the thermal diode under reverse bias. Intel does not support or recommend operation of the thermal diode when the processor power supplies are not within their specified tolerance range.
- 2. Characterized at 100 °C.
- 3. Not 100% tested. Specified by design/characterization.
- 4. The ideality factor, n, represents the deviation from ideal diode behavior as exemplified by the diode equation:

 $I_{FW}=I_s *(e^{(qVD/nkT)}-1)$

Where l_S = saturation current, q = electronic charge, V_D = voltage across the diode, k = Boltzmann Constant, and T = absolute temperature (Kelvin).

Value shown in the table is not the Pentium M Processor thermal diode ideality factor. It is a reference value used to calculate the Pentium M Processor thermal diode temperature offset.

- $T_{error} = [R_T^*(N-1)^*I_{FWmin}]/[(no/q)^*In N$ 6. Offset value is programmed in processor Model Specific Register.

5.1.3 Intel[®] Thermal Monitor

The Intel Thermal Monitor helps control the processor temperature by activating the TCC when the processor silicon reaches its maximum operating temperature. The temperature at which Intel Thermal Monitor activates the thermal control circuit is not user configurable and is not software visible. Bus traffic is snooped in the normal manner, and interrupt requests are latched (and serviced during the time that the clocks are on) while the TCC is active.

With a properly designed and characterized thermal solution, it is anticipated that the TCC would only be activated for very short periods of time when running the most power intensive applications. The processor performance impact due to these brief periods of TCC activation is expected to be so minor that it would not be detectable. An under-designed thermal solution that is not able to prevent excessive activation of the TCC in the anticipated ambient environment may cause a noticeable performance loss, and may affect the long-term reliability of the processor. In addition, a thermal solution that is significantly under designed may not be capable of cooling the processor even when the TCC is active continuously.

The Intel Thermal Monitor controls the processor temperature by modulating (starting and stopping) the processor core clocks or by initiating an Enhanced Intel SpeedStep technology transition when the processor silicon reaches its maximum operating temperature. The Intel Thermal Monitor uses two modes to activate the TCC: Automatic mode and On-Demand mode. If both modes are activated, Automatic mode takes precedence.

Caution:

The Intel Thermal Monitor Automatic Mode mst be enabled via BIOS for the processor to be operating within specifications.

There are two automatic modes called Intel Thermal Monitor 1 and Intel Thermal Monitor 2. These modes are selected by writing values to the Model Specific registers (MSRs) of the processor. After Automatic mode is enabled, the TCC will activate only when the internal die temperature reaches the maximum allowed value for operation.

Likewise, when Intel Thermal Monitor 2 is enabled, and a high temperature situation exists, the processor will perform an Enhanced Intel SpeedStep technology transition to a lower operating point. When the processor temperature drops below the critical level, the processor will make an Enhanced Intel SpeedStep technology transition to the last requested operating point. Intel Thermal Monitor 2 is the recommended mode on the Intel[®] Pentium[®] M processors.

If a processor load based Enhanced Intel SpeedStep technology transition (through MSR write) is initiated when an Intel Thermal Monitor 2 period is active, there are two possible results:

- 1.If the processor load based Enhanced Intel SpeedStep technology transition target frequency is **higher** than the Intel Thermal Monitor 2 transition based target frequency, the processor load-based transition will be deferred until the Intel Thermal Monitor 2 event has been completed.
- 2. If the processor load-based Enhanced Intel SpeedStep technology transition target frequency is **lower** than the Intel Thermal Monitor 2 transition based target frequency, the processor will transition to the processor load-based Enhanced Intel SpeedStep technology target frequency point.

When Intel Thermal Monitor 1 is enabled, and a high temperature situation exists, the clocks will be modulated by alternately turning the clocks off and on at a 50% duty cycle. Cycle times are processor speed dependent and will decrease linearly as processor core frequencies increase. Once the temperature has returned to a non-critical level, modulation ceases and TCC goes inactive. A small amount of hysteresis has been included to prevent rapid active/inactive transitions of the TCC when the processor temperature is near the trip point. The duty cycle is factory configured

int_{el®}

Thermal Specifications and Design Considerations

and cannot be modified. Also, automatic mode does not require any additional hardware, software drivers, or interrupt handling routines. Processor performance will be decreased by the same amount as the duty cycle when the TCC is active, however, with a properly designed and characterized thermal solution the TCC most likely will never be activated, or only will be activated briefly during the most power intensive applications.

The TCC may also be activated via On-Demand mode. If bit 4 of the ACPI Intel Thermal Monitor Control Register is written to a 1, the TCC will be activated immediately, independent of the processor temperature. When using On-Demand mode to activate the TCC, the duty cycle of the clock modulation is programmable via bits 3:1 of the same ACPI Intel Thermal Monitor Control Register. In automatic mode, the duty cycle is fixed at 50% on, 50% off, however in On-Demand mode, the duty cycle can be programmed from 12.5% on/ 87.5% off, to 87.5% on/12.5% off in 12.5% increments. On-Demand mode may be used at the same time Automatic mode is enabled, however, if the system tries to enable the TCC via On-Demand mode at the same time automatic mode is enabled and a high temperature condition exists, automatic mode will take precedence.

An external signal, PROCHOT# (processor hot) is asserted when the processor detects that its temperature is above the thermal trip point. Bus snooping and interrupt latching are also active while the TCC is active.

Besides the thermal sensor and thermal control circuit, the Intel Thermal Monitor feature also includes one ACPI register, one performance counter register, three model specific registers (MSR), and one I/O pin (PROCHOT#). All are available to monitor and control the state of the Intel Thermal Monitor feature. The Intel Thermal Monitor can be configured to generate an interrupt upon the assertion or deassertion of PROCHOT#.

Note

PROCHOT# will not be asserted when the processor is in the Stop Grant, Sleep, Deep Sleep, and Deeper Sleep low power states (internal clocks stopped), hence the thermal diode reading must be used as a safeguard to maintain the processor junction temperature within the 100 °C (maximum) specification. If the platform thermal solution is not able to maintain the processor junction temperature within the maximum specification, the system must initiate an orderly shutdown to prevent damage. If the processor enters one of the above low power states with PROCHOT# already asserted, PROCHOT# will remain asserted until the processor exits the Low Power state and the processor junction temperature drops below the thermal trip point.

If automatic mode is disabled, the processor will be operating out of specification. Regardless of enabling the automatic or On-Demand modes, in the event of a catastrophic cooling failure, the processor will automatically shut down when the silicon has reached a temperature of approximately 125 °C. At this point the FSB signal THERMTRIP# will go active. THERMTRIP# activation is independent of processor activity and does not generate any bus cycles. When THERMTRIP# is asserted, the processor core voltage must be shut down within the time specified in Chapter 3.

§

