

Intel[®] Wireless Flash Memory (W18/W30 SCSP)

64WQ Family with Asynchronous RAM

Datasheet

Product Features

Device Architecture

- —Flash Density: 64-Mbit
- —Async PSRAM Density: 8-, 16-, 32-Mbit
- —Async SRAM Density: 4-, 8-, 16-Mbit
- —Top, Bottom or Dual flash parameter configuration

Device Voltage

- —Flash $V_{CC} = 1.8 \text{ V } (90 \text{ nm or } 130 \text{ nm})$
- —Flash $V_{CCO} = 1.8 \text{ V } (90 \text{ nm})$
- —Flash $V_{CCQ} = 1.8 \text{ V or } 3.0 \text{ V (130 nm)}$ —RAM $V_{CC} = 3.0 \text{ V}$
- --RAM $V_{CCO} = 1.8 \text{ V or } 3.0 \text{ V}$

Device Packaging

- -88 balls (8 x 10 active ball matrix)
- —Area: 8x10 mm
- —Height: 1.2 mm to 1.4 mm

PSRAM Performance

- -88 ns initial access, 30 ns async page reads at 1.8 V I/O
- —70 ns initial access, 25 ns async page reads at 1.8 V I/O
- -85 ns initial access, 35 ns async page reads at 3.0 V I/O
- -70 ns initial access, 25 ns async page reads at 3.0 V I/O

SRAM Performance

-70 ns initial access at 1.8 V or 3.0 V I/O

Flash Performance

- -65 ns initial access at 1.8 V I/O
- —70 ns initial access at 3.0 V I/O
- -25 ns async page at 1.8 V or 3.0 V I/O
- —14 ns sync reads (t_{CHOV}) at 1.8 V I/O
- -20 ns sync reads (t_{CHOV}) at 3.0 V I/O
- —Enhanced Factory Programming: 3.10 µs/Word (Typ)

■ Flash Architecture

- -Read-While-Write/Erase
- —Asymmetrical blocking structure
- —4-KWord parameter blocks (Top or Bottom)
- -32-KWord main blocks
- —4-Mbit partition size
- -128-bit One-Time Programmable (OTP) **Protection Register**
- -Zero-latency block locking
- -Absolute write protection with block lock using F-VPP and F-WP#

Flash Software

- —Intel[®] Flash Data Integrator (FDI)
- —Common Flash Interface (CFI)

Quality and Reliability

- –Extended Temperature: −25 °C to +85 °C
- —Minimum 100K flash block erase cycle
- —90 nm ETOXTM IX flash technology
- —130 nm ETOXTM VIII flash technology

The Intel® Wireless Flash Memory (W18/W30 SCSP) family offers a variety of flash plus static RAM combinations in a common package footprint. The flash memory features 1.8 V low-power operations with flexible, multi-partition, dual-operation Read-While-Write / Read-While-Erase, asynchronous, and synchronous reads. This SCSP device integrates up to two flash die, one PSRAM die, and one SRAM die in a low-profile package compatible with other SCSP families with QUAD+ ballout.

Notice: This document contains information on products in the sampling and initial production phases of development. The specifications are subject to change without notice. Verify with your local Intel sales office that you have the latest datasheet before finalizing a design.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO SALE AND/OR USE OF INTEL PRODUCTS, INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT.

Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.

Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

IMPORTANT - PLEASE READ BEFORE INSTALLING OR USING INTEL® PRE-RELEASE PRODUCTS

Please review the terms at http://www.intel.com/design/prerelease_terms.htm carefully before using any Intel® pre-release product, including any evaluation, development or reference hardware and/or software product (collectively, "Pre-Release Product"). By using the Pre-Release Product, you indicate your acceptance of these terms, which constitute the agreement (the "Agreement") between you and Intel Corporation ("Intel"). In the event that you do not agree with any of these terms and conditions, do not use or install the Pre-Release Product and promptly return it unused to Intel.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel^(R) WIRELESS FLASH MEMORY 64WQ FAMILY may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

This Datasheet as well as the software described in it is furnished under license and may only be used or copied in accordance with the terms of the license. The information in this manual is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this document or any software that may be provided in association with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the express written consent of Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

*Other names and brands may be claimed as the property of others.

Copyright © 2004, Intel Corporation

2 Datasheet

1.0	Intro	duction	7
	1.1	Nomenclature	
	1.2	Conventions	
2.0		ctional Overview	
	2.1 2.2	Block DiagramFlash Memory Map and Partitioning	
3.0	Pack	age Information	
4.0	Ballo	out and Signal Description	14
	4.1	Signal Ballout	14
	4.2	Signal Descriptions	
5.0	Maxi	mum Ratings and Operating Conditions	17
	5.1	Absolute Maximum Ratings	17
	5.2	Operating Conditions	18
6.0	Elect	trical Specifications	20
	6.1	DC Characteristics	20
7.0	AC C	Characteristics	23
	7.1	Flash AC Characteristics	
	7.2 7.3	SRAM AC CharacteristicsPSRAM AC Characteristics	
	7.3 7.4	Device AC Test Conditions	
8.0	Flash	h Power Consumption	31
9.0	Devi	ce Operation	31
	9.1	Bus Operations	31
	9.2	Flash Command Definitions	35
10.0	Flash	h Read Operations	35
11.0	Flash	h Program Operations	35
12.0	Flash	h Erase Operations	35
13.0	Flash	h Security Modes	35
14.0	Flash	h Read Configuration Register	35
15.0	SRA	M Operations	36
	15.1	Power-up Sequence and Initialization	
	15.2	Data Retention Mode	
16.0		AM Operations	
	16.1	Power-Up Sequence and Initialization	
	10.2	Standby Mode/ Deep Fower-Down Mode	40

Contents

	16.3	PSRAM Special Read and Write Constraints	41
Appei	ndix A	Write State Machine	42
Appei	ndix B	Common Flash Interface	42
Appei	ndix C	Flash Flowcharts	42
Appei	ndix D	Additional Information	42
Appei	ndix E	Ordering Information	43

Revision History

Date	Revision	Description
June 2003	-001	Initial release.
September 2003	-002	Changed PSRAM Read values. Added new Transient Equivalent Testing Load Circuit figure. General text edits.
May 2004	-006	Reformatted the datasheet and moved sections around according to the new layout.
August 2004	-007	Added 90 nm product information. Added line items to Table 24 "64WQ W18/W30 SCSP Ordering Information" on page 45. Added DC and AC specs for the new line items and edits to related sections.

Datasheet 5

Contents

6 Datasheet

1.0 Introduction

This document contains information pertaining to the products in the Intel $^{\circledR}$ Wireless Flash Memory (W18/W30 SCSP) family with asynchronous RAM. This W18/W30 SCSP 64WQ family offers a wide variety of stacked combinations that include single flash die, two flash die, flash + PSRAM, and flash + SRAM options. This document provides information where this SCSP family differs from the Intel $^{\circledR}$ Wireless Flash Memory (W18/W30) discrete device.

Refer to the discrete datasheets *Intel*® *Wireless Flash Memory (W18) Datasheet* (order number 290701) and *Intel*® *Wireless Flash Memory (W30) Datasheet* (order number 290702) for flash product details not included in this SCSP datasheet.

1.1 Nomenclature

0x Hexadecimal prefix 0b Binary prefix

Byte 8 bits

CFI Common Flash Interface CUI Command User Interface

DU Don't Use

ETOX EPROM Tunnel Oxide

FDI Flash Data Integrator (Intel® software solution)

k (noun) 1 thousand
Kb 1024 bits
KB 1024 bytes
Kword 1024 words
M (noun) 1 million
Mb 1,048,576 bits
MB 1,048,576 bytes

OTP One-Time Programmable
PLR Protection Lock Register
PR Protection Register
PRD Protection Register Data
RCR Read Configuration Register
RFU Reserved for Future Use
SCSP Stacked Chip Scale Package

SR Status Register SRD Status Register Data

Word 16 bits

WSM Write State Machine

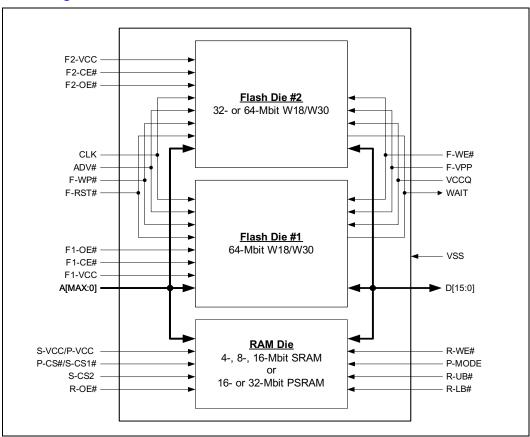
1.2 Conventions

- **Group Membership Brackets:** Square brackets are used to designate group membership or to define a group of signals with a similar function, such as A[21:1] and SR[4,1].
- **VCC vs.** V_{CC} : When referring to a signal or package-connection name, the notation used is VCC, etc. When referring to a timing or electrical level, the notation used is subscripted such as V_{CC} , etc.
- **Device:** This term is used interchangeably throughout this document to denote either a particular die, or the combination of multiple die within a single package.
- **F[3:1]-CE#**, **F[2:1]-OE#**: This is the method used to refer to more than one chip-enable or output enable at the same time. When each is referred to individually, the reference will be F1-CE# and F1-OE# (for die #1), and F2-CE# and F2-OE# (for die #2).
- **F-VCC**, **P-VCC** or **S-VCC**: When referencing flash memory signals or timings, the notation used is F-VCC or F-V_{CC}, respectively. When the reference is to PSRAM signals or timings, the notation is prefixed with "P-" (e.g., P-VCC, P-V_{CC}). When referencing SRAM signals or timings, the notation is prefixed with "S-" (e.g., S-VCC or S-V_{CC}). P-VCC and S-VCC are RFU for stacked combinations that do not include PSRAM or SRAM.
- **R-OE#, R-LB#, R-UB#, R-WE#:** These are used to identify RAM OE#, LB#, UB#, WE# signals, and are usually shared between 2 or more RAM die. R-OE#, R-LB#, R-UB# and R-WE are RFU for stacked combinations that do not include PSRAM or SRAM.

2.0 Functional Overview

This section provides an overview of the features and capabilities of the Intel® Wireless Flash Memory (W18/W30 SCSP) family with asynchronous RAM device.

The W18/W30 SCSP device provides flash + RAM die combinations. Products range from single flash die, two flash die, flash + PSRAM, or flash + SRAM. You can choose a W18 SCSP device or a W30 SCSP device with SRAM or PSRAM offered with the same package footprint and signal ballout.


Table 24, "64WQ W18/W30 SCSP Ordering Information" on page 45 lists possible product combinations for the 64-Mbit W18/W30 SCSP family.

2.1 Block Diagram

Figure 1 shows all internal package connections for the SCSP family with multiple die. See Table 24 for valid combinations of flash and RAM die. Unused connections on combinations with less than three die are reserved and should not be used.

Please contact your local Intel representative for details regarding any reserved or RFU pins.

Figure 1. Block Diagram

2.2 Flash Memory Map and Partitioning

Consult the latest *Intel*® *Wireless Flash Memory (W18) Datasheet* (order number 290701) and the *Intel*® *Wireless Flash Memory (W30) Datasheet* (order number 290702), for individual flash die memory map and partitioning information.

Table 1 and Table 2 show memory map and partitioning information for dual-flash memory die configurations. Flash Die #1 (with F1-CE# as its Chip Select) is configured as a bottom boot while Flash Die #2 (with F2-CE# as its Chip Select) is configured as top boot.

Table 1. 64-Mbit Flash + 32-Mbit Flash Die W18/W30 SCSP Memory Map and Partitioning

	Partitioning		Block Size (KW)	Block #	Address Range
	Parameter	Partition 0	4	63-70	1F8000-1FFFFF
	Partition	1 artition o	32	56-62	1C0000-1F7FFF
Flash Die #2		Partition 1	32	48-55	180000-1BFFFF
(32-Mbit)	Main	Partition 2	32	40-47	140000-17FFFF
	Partitions	Partition 3	32	32-39	100000-13FFFF
		Partitions 4-7	32	0-31	000000-0FFFF
		Partitions 8-15	32	71-134	200000-3FFFF
		Partitions 4-7	32	39-70	100000-1FFFFF
	Main Partitions	Partition 3	32	31-38	0C0000-0FFFFF
Flash Die #1 (64-Mbit)		Partition 2	32	23-30	080000-0BFFFF
()		Partition 1	32	15-22	040000-07FFFF
	Parameter	Partition 0	32	8-14	008000-03FFFF
	Partition	i aitition o	4	0-7	000000-007FFF

Table 2. 64-Mbit Dual-Flash Die W18/W30 SCSP Memory Map and Partitioning

	Partitioning		Block Size (KW)	Block #	Address Range
	Parameter	Partition 0	4	127-134	3F8000-3FFFFF
	Partition	Faithorio	32	120-126	3C0000-3F7FFF
_		Partition 1	32	112-119	380000-3BFFFF
Top Parameter		Partition 2	32	104-111	340000-37FFFF
	Main Partitions	Partition 3	32	96-103	300000-33FFFF
		Partitions 4-7	32	64-95	200000-2FFFFF
		Partitions 8-15	32	0-63	000000-1FFFFF
		Partitions 8-15	32	71-134	200000-3FFFFF
		Partitions 4-7	32	39-70	100000-1FFFFF
	Main Partitions	Partition 3	32	31-38	0C0000-0FFFF
Bottom Parameter		Partition 2	32	23-30	080000-0BFFFF
		Partition 1	32	15-22	040000-07FFFF
	Parameter	Partition 0	32	8-14	008000-03FFFF
	Partition	Partition U	4	0-7	000000-007FFF

3.0 Package Information

The following packages are offered with the 64WQ Family:

- Figure 2, "Mechanical Specifications for 1- or 2-Die SCSP Device (8x10x1.2 mm)"
- Figure 3, "Mechanical Specifications for Triple-Die SCSP Device (8x10x1.4 mm)"

Figure 2. Mechanical Specifications for 1- or 2-Die SCSP Device (8x10x1.2 mm)

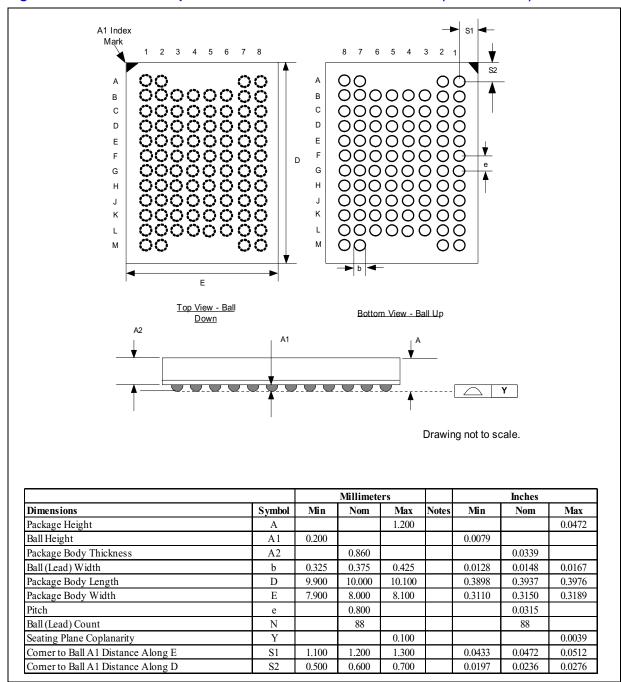
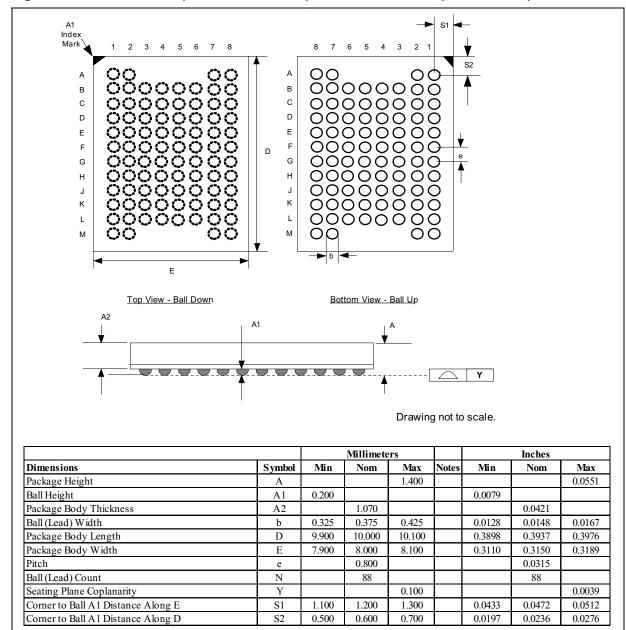
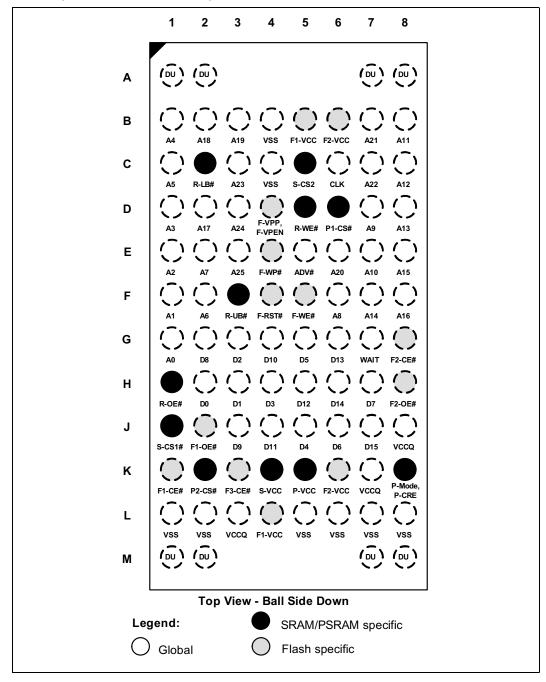



Figure 3. Mechanical Specifications for Triple-Die SCSP Device (8x10x1.4 mm)



4.0 Ballout and Signal Description

4.1 Signal Ballout

Figure 4 shows the 64WQ W18/W30 SCSP family 88-ball (8x10 active ball matrix) device.

Figure 4. 88-Ball (8x10 Active Ball Matrix) QUAD+ Ballout

4.2 Signal Descriptions

Table 3 describes active signals used on the 64WQ W18/W30 SCSP family.

Table 3. Signal Descriptions (Sheet 1 of 2)

Symbol	Туре	Name and Function
A[21:0]	Input	ADDRESS INPUTS: Inputs for all die addresses during read and write operations. Addresses are internally latched during write operations. • 4-Mbit: A[17:0] • 8-Mbit: A[18:0] • 16-Mbit: A[19:0] • 32-Mbit: A[20:0] • 64-Mbit: A[21:0] A0 is the lowest-order word address. A[25:22] denote high-order addresses reserved for future device densities
D[15:0]	Input/ Output	DATA INPUTS/OUTPUTS: Inputs data and commands during write cycles; outputs data during read cycles. Data signals float when the device or its outputs are deselected. Data are internally latched during writes.
CLK	Input	FLASH CLOCK: CLK synchronizes the selected flash die to the memory bus frequency in synchronous-read mode. During synchronous read operations, the initial address is latched on the rising edge of ADV#, or the rising/ falling edge of CLK when ADV# is low, whichever occurs first. CLK is only used in synchronous-read mode. Refer to the flash discrete product datasheet for information on how to use this signal in asynchronous-read mode.
ADV#	Input	FLASH ADDRESS VALID: Low-true; During synchronous read operations, the initial address is latched on the rising edge of ADV#, or the rising/ falling edge of CLK when ADV# is low, whichever occurs first. Refer to the flash discrete product datasheet for information on how to use this signal in asynchronous-read mode.
WAIT	Output	FLASH WAIT: When asserted, WAIT indicates invalid data from the selected flash die on D[15:0]. WAIT is High-Z whenever the flash die is deselected (CE# = V _{IL}). WAIT is not gated by OE#. WAIT is only used in synchronous array-read mode. Refer to the flash discrete product datasheet for information on how to use this signal in asynchronous-read mode.
F[3:1]-CE#	Input	FLASH CHIP ENABLE: Low-true; CE#-low selects the associated flash memory die. When asserted, flash internal control logic, input buffers, decoders, and sense amplifiers are active. When deasserted, the associated flash die is deselected; power is reduced to standby levels, data and WAIT outputs are placed in High-Z. F1-CE# selects flash die #1; F2-CE# selects flash die #2 and is RFU on combinations with only one flash die. F3-CE# selects flash die #3 and is RFU on SCSP combinations with only one or two flash die.
S-CS1# S-CS2	Input	SRAM CHIP SELECTS: When both SRAM chip selects are asserted, SRAM internal control logic, input buffers, decoders, and sense amplifiers are active. When either/both SRAM chip selects are deasserted (S-CS1# = V_{IH} and/or S-CS2 = V_{IL}), the SRAM is deselected and its power is reduced to standby levels. S-CS1# and S-CS2 are only available on SCSP combinations with SRAM die.
P[2:1]-CS#	Input	PSRAM CHIP SELECTS: Low-true; When asserted, PSRAM internal control logic, input buffers, decoders, and sense amplifiers are active. When deasserted, the PSRAM is deselected and its power is reduced to standby levels. P1-CS# selects PSRAM die #1 and is available only on SCSP combinations with PSRAM die. This ball is RFU on SCSP combinations without PSRAM. P2-CS# selects PSRAM die #2 and is available only on SCSP combinations with two PSRAM die. This ball is RFU on SCSP combinations without PSRAM or with a single PSRAM.

Table 3. Signal Descriptions (Sheet 2 of 2)

Symbol	Type	Name and Function
		FLASH OUTPUT ENABLE: Low-true; OE#-low enables the flash output buffers. OE#-high disables the flash output buffers, and places the flash outputs in High-Z.
F[2:1]-OE#	Input	F1-OE# controls the outputs of flash die #1; F2-OE# controls the outputs of flash die #2 and #3, and is available only on SCSP combinations with two or three flash die and is RFU on SCSP combinations with only one flash die.
R-OE#	Input	RAM OUTPUT ENABLE: Low-true; R-OE#-low enables the RAM output buffers. R-OE#-high disables the RAM output buffers, and places the RAM outputs in High-Z. R-OE# is only available on SCSP combinations with RAM die.
R-UB# R-LB#	Input	RAM UPPER/ LOWER BYTE ENABLES: Low-true; During RAM reads, R-UB#-low enables the RAM high-order bytes on D[15:8], and R-LB#-low enables the RAM low-order bytes on D[7:0]. R-UB# and R-LB# are only available on SCSP combinations with either SRAM die or PSRAM die.
F-WE#	Input	FLASH WRITE ENABLE: Low-true; WE# controls writes to the selected flash die. Address and data are latched on the rising edge of WE#.
R-WE#	Input	RAM WRITE ENABLE: Low-true; R-WE# controls writes to the RAM die. R-WE# is only available on SCSP combinations with RAM die.
F-WP#	Input	FLASH WRITE PROTECT: Low-true; WP# enables/disables the lock-down protection mechanism of the flash die. WP#-low enables the lock-down mechanism- locked down blocks cannot be unlocked with software commands. WP#-high disables the lock-down mechanism, allowing locked down blocks to be unlocked with software commands.
F-RST#	Input	FLASH RESET: Low-true; RST#-low initializes flash internal circuitry and disables flash operations. RST#-high enables flash operation. Exit from reset places the flash in asynchronous read array mode.
F-VPP F-VPEN	Power	FLASH PROGRAM/ ERASE POWER: A valid F-V _{PP} voltage on this ball enables flash program/erase operations. Flash memory array contents cannot be altered when F-V _{PP} (V _{PEN}) < V _{PPLK} (V _{PENLK}). Erase/ program operations at invalid F-V _{PP} (V _{PEN}) voltages should not be attempted. Refer to the flash discrete product datasheet for additional details.
		F-V _{PEN} (Erase/Program/Block Lock Enables) is not available for W18/W30 products.
P-MODE	Input	PSRAM MODE: Low-true; P-MODE is used to enter/exit low power mode. Low power mode is not applicable to 38F2020W0ZTQ1, 38F2020W0ZBQ1, 38F2030W0YTQ1, 38F2030W0ZBQ1, 38F2030W0ZTQ2, 38F2030W0ZBQ2.
		P-Mode is only available on SCSP combinations with PSRAM die.
F[2:1]-VCC	Power	FLASH LOGIC Power: F1-VCC supplies power to the core logic of flash die #1; F2-VCC supplies power to the core logic of flash die #2 and #3. Write operations are inhibited when F-V _{CC} < V _{LKO} . Device operations at invalid F-V _{CC} voltages should not be attempted.
		F2-VCC is only available on SCSP combinations with two or three flash die, and is RFU on SCSP combinations with only one flash die.
S-VCC	Power	SRAM Power Supply: Supplies power to the SRAM die. S-VCC is only available on SCSP combinations with SRAM die.
P-VCC	Power	PSRAM Power Supply: Supplies power to the PSRAM die. P-VCC is only available on SCSP combinations with PSRAM die.
VCCQ	Power	FLASH OUTPUT-BUFFER Power: Supplies power for the I/O output buffers.
VSS	Power	Ground: Connect to ground. Do not float any VSS connection.
RFU	_	Reserved for Future Use: Reserve for future device functionality/ enhancements.
DU	_	Do Not Use: Do not connect to any other signal, or power supply; must be left floating.

5.0 Maximum Ratings and Operating Conditions

5.1 Absolute Maximum Ratings

Warning:

Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only.

NOTICE: This document contains information available at the time of its release. The specifications are subject to change without notice. Verify with your local Intel sales office that you have the latest datasheet before finalizing a design.

Table 4. Absolute Maximum Ratings

Parameter	Parameter		Max	Unit	Notes
Temperature under Bias Expanded		-25	+85	°C	7
Storage Temperature	Storage Temperature			°C	
Voltage On Any Signal (except F[2:1]-V _{CC} ,	1.8 V I/O	-0.2	+2.45	V	1,2,3
V _{CCQ,} F-V _{PP,} S-V _{CC} and P-V _{CC)}	3.0 V I/O	-0.2	+3.6	V	1,2,3
F[2:1]-V _{CC} Voltage		-0.5	+2.45	V	2,3
V _{CCO} , S-V _{CC} and P-V _{CC} Voltage	1.8 V I/O	-0.2	+2.45	V	1,2,3
VCCQ, 3-VCC and 1-VCC voltage	3.0 V I/O	-0.2	+3.6	V	1,2,3
F-V _{PP} Voltage	-0.2	+14.0	V	2,3,4,5	
I _{SH} Output Short Circuit Current		_	100	mA	6

- 1. 90 nm is only avail with the 1.8 V I/O.
- All Specified voltages are relative to V_{SS}. Minimum DC voltage is -0.2 V on input/output signals, -0.2 V on F[2:1]-VCC and F-VPP signals. For 90 nm devices, during transitions, this level may overshoot to -1.5 V for periods < 20 ns, during transitions, may overshoot to F-V_{CC} + 1.5 V for periods < 20 ns.
- All Specified voltages are relative to V_{SS}. Minimum DC voltage is -0.2 V on input/output signals, 0.2 V on F[2:1]-VCC and F-VPP signals. For 130 nm devices, during transitions, this level may
 overshoot to -2 V for periods < 20 ns, during transitions, may overshoot to F-V_{CC} + 2 V for periods <
 20 ns
- 4. Maximum DC voltage on F-VPP may overshoot to +14.0 V for periods < 20 ns.
- 5. F-V_{PP} program voltage is normally V_{PP1}. The maximum DC voltage on F-V_{PP} may overshoot to +14 V for periods < 20 ns. F-V_{PP} can be V_{PP2} for 1000 erase cycles on main blocks, 2500 cycles on parameter blocks.
- 6. Output shorted for no more than one second. No more than one output shorted at a time.
- 7. Devices available with -30 C temperature specifications are: 38F2020W0ZTQ1, 38F2020W0ZBQ1, 38F2030W0YTQ1, 38F2030W0YBQ1, 38F2030W0ZTQ2, 38F2030W0ZBQ2.

5.2 Operating Conditions

Warning:

Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

Table 5. Operating Conditions

Symbol	Parameter		Flash + Flash + SRAM		Flash + PSRAM		Unit	Notes		
			Min	Max	Min	Max	Min	Max		
T _C	Operating Temperature Flash Supply Voltage		-25	+85	-25	+85	-25	+85	°C	2
F-V _{CC}			1.7	1.95	1.7	1.95	1.7	1.95	V	
V _{CCQ}	Flash I/O Voltage PSRAM and SRAM Supply Voltage	3.0 V I/O	2.2	3.3	2.2	3.3	2.7	3.1	V	
S-V _{CC} P-V _{CC}		1.8 V I/O	1.7	1.95	1.7	1.95	1.8	1.95	>	
V _{PP1}	Flash Program Logic Level		0.9	1.95	0.9	1.95	0.9	1.95	V	
V _{PP2}	Flash Factory Program	/oltage	11.4	12.6	11.4	12.6	11.4	12.6	V	1

F-V_{PP} is normally V_{PP1}. F-VPP can be connected to 11.4 V-12.6 V for 1000 cycles on main blocks for extended temperatures and 2500 cycles on parameter blocks at extended temperature.

Devices available with -30 C temperature specifications are: 38F2020W0ZTQ1, 38F2020W0ZBQ1, 38F2030W0YTQ1, 38F2030W0YBQ1, 38F2030W0ZTQ2, 38F2030W0ZBQ2.

Capacitance

NOTICE: Refer to the 1.8-Volt Intel® Wireless Flash Memory Datasheet (order number 290701) and 1.8-Volt Intel® Wireless Flash Memory with 3 Volt II0 Datasheet (order number 290702) for flash capacitance details. For SCSP products with two flash die, flash capacitances for each of the flash die need to be considered accordingly.

Table 6. SRAM, PSRAM Capacitance

S	ymbol	Parameter	Тур	Unit	Condition
	CIN	Input Capacitance	10	pF	$V_{IN} = 0.0 \text{ V}, T_c=25 \text{ °C}, f=1 \text{ MHz}$
	C _{OUT}	Output Capacitance	10	pF	V _{OUT} = 0.0 V, T _c =25 °C, f=1 MHz

6.0 Electrical Specifications

6.1 DC Characteristics

SRAM and PSRAM DC characteristics are shown in Table 7, Table 8 and Table 9. Refer to the *Intel*[®] *Wireless Flash Memory (W18) Datasheet* (order number 290701) and the *Intel*[®] *Wireless Flash Memory (W30) Datasheet* (order number 290702) for flash DC characteristics.

NOTICE: DC Characteristics of all die in a SCSP device need to be considered accordingly, depending on the SCSP device operation.

Table 7. SRAM DC Characteristics (Sheet 1 of 2)

D	Description Test Conditions		1.8 V SRAM		3.0 V SRAM			
Parameter	Description	lest Conditions		Min	Max	Min	Max	Unit
S-V _{CC}	Voltage Range			1.7	1.95	2.2	3.3	V
V_{DR}	V _{CC} for Data Retention			1.0	-	1.5	_	V
			4M	_	25	_	45	
I_{CC}	Operating Current at min cycle time	$I_{IO} = 0 \text{ mA}$	8M	_	35	_	50	mA
	eyele ue		16M	_	40	_	55	
I _{CC2}			4M	_	4	_	10	
	Operating Current at max cycle time (1 μs)	I _{IO} = 0 mA	8M	_	6	_	10	mA
			16M	_	10	_	15	1
	Standby Current	S-CS1# ≥ S-V _{CC} -0.2V	4M	_	12	_	15	μΑ
I_{SB}		or S-CS2 \leq V _{SS} +0.2V	8M	_	20	_	25	
		Address/Data toggling at minimum cycle time	16M	-	30	_	45	
	Current in Data	1.8 V SRAM: S-V _{CC} = 1.0 V 3.0 V SRAM: S-V _{CC} = 1.5 V	4M	_	6	_	5	
I_{DR}			8M	_	10	_	12	μΑ
DIX	Retention mode		16M	_	18	-	15	
V _{OH}	Output HIGH Voltage	I _{OH} = -100 μA	l	S-V _{CC} - 0.15	_	S-V _{CC} - 0.1	_	V
V _{OL}	Output LOW Voltage	I _{OL} = 100 μA, V _{CCMIN}		-0.1	0.2	-0.1	0.1	٧
V _{IH}	Input HIGH Voltage			S-V _{CC} - 0.4	S-V _{CC} + 0.2	S-V _{CC} - 0.4	S-V _{CC} + 0.2	٧
V _{IL}	Input LOW Voltage			-0.2	0.4	-0.2	0.6	V
I _{OH}	Output HIGH Current			_	-	_	_	m/
I _{OL}	Output LOW Current			_	-	_	_	m/

Table 7. **SRAM DC Characteristics (Sheet 2 of 2)**

*I _{IL}	Input Leakage Current	-0.2 < V _{IN} < S-V _{CC} +0.2 V	-1	+1	-1	+1	μΑ
*I _{LDR}	Input Leakage Current in Data Retention Mode	$-0.2 < V_{IN} < S-V_{CC}+0.2 V$ $S-V_{CC} = V_{DR}$	-1	+1	-1	+1	μА

^{*} Input leakage currents include Hi-Z output leakage for bi-directional buffers with tri-state outputs.

PSRAM DC Characteristics⁽³⁾ Table 8.

Davamatar	Description	Test Conditio		1.8 V I	PSRAM	3.0 V F	PSRAM	I I m i 4	Note
Parameter	Description	rest Conditio	ns	Min	Max	Min	Max	Unit	Note
V _{CC}	Voltage Range			1.8	1.95	2.7	3.1	V	3
Icc	Operating Current	I _{IO} = 0 mA	16M	_	-	_	35	mA	2, 3
	at min cycle time	10 0	32M	-	35	-	45		_, 0
	Operating Current at max cycle time	I _{IO} = 0 mA	16M	-	_	-	7	mA	2, 3
I _{CC2}	(1 μs)	10 - 0 1114	32M	_	_	_	7	IIIA	2, 3
		P-CS# ≥ P-V _{CC} - 0.2V or	16M	_	_	-	85		
I _{SB}	Standby Current	P-Mode ≥ P-V _{CC} - 0.2V						μА	2, 3
-36		Address/Data toggling at minimum cycle time	32M	-	100	-	100	F 1	_, _
I _{sbd}	Deep Power-Down	P-Mode ≤ 0.2 V	16M	-	_	1	10	μА	2, 3
'SDQ	Beep I ower Bown	1 Wode = 0.2 V	32M	-	30	1	10	μπ	2,0
V _{OH}	Output HIGH Voltage	I _{OH} = -0.5 m/	4	0.8P-V _{CC}	-	2.4	_	V	3
V _{OL}	Output LOW Voltage	I _{OL} = 1 mA,		-	0.2P-V _{CC}	-	0.4	V	3
V _{IH}	Input HIGH Voltage			0.8P-V _{CC}	P-V _{CC} +0.3	P-V _{CC} - 0.3	P-V _{CC} + 0.2	V	3
V _{IL}	Input LOW Voltage			-0.3	0.2P-V _{CC}	-0.2	0.5	V	3
Іон	Output HIGH Current			-	-	_	_	mA	2, 3
I _{OL}	Output LOW Current			-	_	_	_	mA	2, 3
I _{IL}	Input Leakage Current	-0.2 < V _{IN} < P-V _{CC} +0.2 V		-1	+1	-1	+1	μА	1, 2, 3
I _{OL}	Output Leakage Current	$-0.2 < V_{IN} < P-V_{CC}$ $P-V_{CC} = V_{DF}$		-1	+1	-1	+1	μА	1, 2, 3

- Input Leakage currents include Hi-Z output leakage for bi-directional buffers with tri-state outputs. All currents are in RMS unless noted otherwise. 1.
- 2.
- Not applicable to 38F2020W0ZTQ1, 38F2020W0ZBQ1, 38F2030W0YTQ1, 38F2030W0YBQ1, 38F2030W0ZTQ2, 38F2030W0ZBQ2.

Table 9. **PSRAM DC Characteristics (See Note 3)**

Parameter	Description	Test Conditio		1.8 V I	PSRAM	3.0 V F	PSRAM	Unit	2 2 2
Parameter	Description	rest Conditio	ns	Min	Max	Min	Max	Unit	Note
v _{cc}	Voltage Range			1.8	1.95	2.7	3.1	V	
Icc	Operating Current	I _{IO} = 0 mA	8M	_	-	-	30	mA	2
Ç	at min cycle time	10	16M	_	30	_	35		
	Operating Current	I = 0 A	8M	_	_	-	5	mA	2
I _{CC2}	at max cycle time (1 μs)	I _{IO} = 0 mA	16M	-	5	1	7	mA	2
		P-CS# ≥ P-V _{CC} - 0.2V.	8M	-	-	-	80		
I _{SB}	Standby Current	All inputs stable (either high or low)	16M	-	100	-	100	μΑ	2
V _{OH}	Output HIGH Voltage	I _{OH} = -0.1 m/	4	1.4	_	P-V _{CC} - 0.3	_	V	
V _{OL}	Output LOW Voltage	I _{OL} = 0.1 mA, V _O	CCMin	-0.1	0.2	-0.1	0.3	V	
V _{IH}	Input HIGH Voltage			P-V _{CC} -0.3	P-V _{CC} +0.2	P-V _{CC} - 0.4	P-V _{CC} + 0.2	V	
V _{IL}	Input LOW Voltage			-0.2	0.4	-0.2	0.6	V	
l _{ОН}	Output HIGH Current			_	_	_	_	mA	2
I _{OL}	Output LOW Current			-	-	-	-	mA	2
I _{IL}	Input Leakage Current	-0.2 < V _{IN} < P-V _{CC}	+0.2 V	-1	+1	-1	+1	μА	1, 2
I _{OL}	Output Leakage Current	$-0.2 < V_{IN} < P-V_{CC}+0.2 V$ $P-V_{CC} = V_{DR}$		-1	+1	-1	+1	μΑ	1, 2

- Input Leakage currents include Hi-Z output leakage for bi-directional buffers with tri-state outputs. 1.
- 2. 3. Applicable to 38F2020W0ZTQ1, 38F2020W0ZBQ1, 38F2030W0YTQ1, 38F2030W0ZTQ2, 38F2030W0ZTQ2.

7.0 AC Characteristics

7.1 Flash AC Characteristics

Refer to the *Intel*[®] *Wireless Flash Memory (W18) Datasheet* (order number 290701) and *Intel*[®] *Wireless Flash Memory (W30) Datasheet* (order number 290702) for flash AC characteristics details not included in Table 10 below.

Table 10. Flash AC Read Characteristics

Nbr	Sum	Parameter	W	18	W30		Unit				
NDI	Sym	Farameter	Min	Max	Min	Max	Unit				
		Asynchronous Spec	Asynchronous Specifications								
R1	t _{AVAV}	Read Cycle Time	65	_	70	_	ns				
R2	t _{AVQV}	Address to Output Delay	_	65	_	70	ns				
R3	t _{ELQV}	CE# Low to Output Delay	_	65	_	70	ns				
		Latching Specific	cations								
R103	t _{VLQV}	ADV# Low to Output Delay	_	65	_	70	ns				
R108	t _{APA}	Page Address Access Time	_	25	1	25	ns				
	Clock Specifications										
R304	t _{CHQV}	CLK to Output Delay	_	14	_	20	ns				

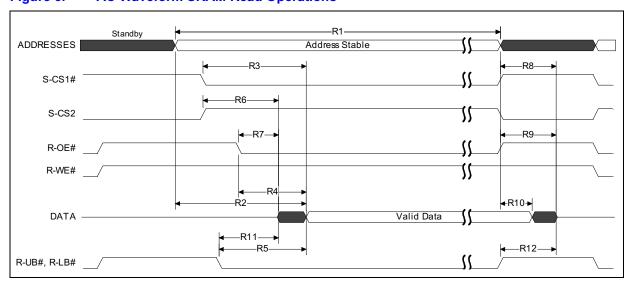
7.2 SRAM AC Characteristics

Table 11. SRAM AC Characteristics — Read Operations

#	Symbol	Parameter	Min	Max	Unit	Notes
R1	t _{RC}	Read Cycle Time	70	-	ns	1
R2	t _{AA}	Address to Output Delay	-	70	ns	1
R3	t _{CO1}	S-CS1# to Output Delay	_	70	ns	1
R3	t _{CO2}	S-CS2 to Output Delay	-	70	ns	1
R4	t _{OE}	R-OE# to Output Delay	-	35	ns	1
R5	t _{BA}	R-UB#, R-LB# to Output Delay	-	70	ns	1
R6	t _{LZ}	S-CS1# or S-CS2 to Output in Low-Z	5	_	ns	1,3,4
R7	t _{OLZ}	R-OE# to Output in Low-Z	0	_	ns	1,4
R8	t _{HZ}	S-CS1# or S-CS2 to Output in High-Z	0	25	ns	1,2,3,4
R9	t _{OHZ}	R-OE# to Output in High-Z	0	25	ns	1,2,4
R10	t _{ОН}	Output Hold (from Address, S-CS1#, S-CS2 or R-OE# Change, whichever occurs first)	0	_	ns	1
R11	t _{BLZ}	R-UB#, R-LB# to Output in Low-Z	0	_	ns	1,4
R12	t _{BHZ}	R-UB#, R-LB# to Output in High-Z	0	25	ns	1,4

- See Figure 5, "AC Waveform SRAM Read Operations".
- Timings of t_{HZ} and t_{OHZ} are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.
- At any given temperature and voltage condition, t_{HZ} (Max) is less than t_{LZ} (Max) both for a given device and from device to device interconnection.
- 4. Sampled but not 100% tested.

Figure 5. AC Waveform SRAM Read Operations



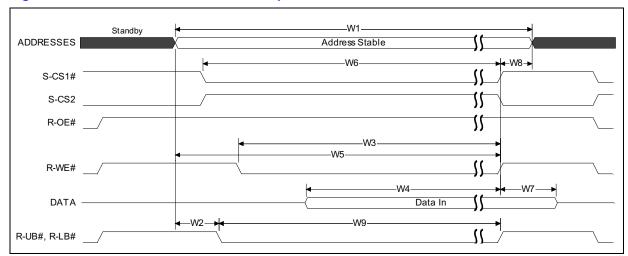


Table 12. **SRAM AC Characteristics — Write Operations**

#	Symbol	Parameter	Min	Max	Unit	Notes
W1	t _{WC}	Write Cycle Time	70	_	ns	1
W2	t _{AS}	Address Setup to R-WE# (S-CS1#) and R-UB#/R-LB# Low	0	_	ns	1,4
W3	t _{WP}	R-WE# (S-CS1#) Pulse Width	55	_	ns	1,2,3
W4	t _{DW}	Data to Write Time Overlap	30	_	ns	1
W5	t _{AW}	Address Setup to R-WE# (S-CS1#) High	60	_	ns	1
W6	t _{CW}	S-CS1# (R-WE#) Setup to R-WE# (S-CS1#) High	60	_	ns	1
W7	t _{DH}	Data Hold from R-WE# (S-CS1#) High	0	_	ns	1
W8	t _{WR}	Write Recovery	0	_	ns	1,5
W9	t _{BW}	R-UB#, R-LB# Setup to R-WE# (S-CS1#) High	60	_	ns	1

- See Figure 6, "AC Waveform SRAM Write Operations" .
- 1. 2. A write occurs during the overlap (t_{WP}) of low S-CS1# and low R-WE#. A write begins when S-CS1# goes low and R-WE# goes low with asserting R-UB# and R-LB# for single byte operation or simultaneously asserting R-UB#R-LB# and R-LB# for double byte operation. A write ends at the earliest high transition of S-CS1# and R-WE#. twp is measured from the beginning to the end of a write.
- t_{WP} is measured from S-CS1# low to the end of a write. 3.
- t_{AS} is measured from the address valid to the beginning of a write. 4.
- twR is measured from the end of write to the address change. twR applied in case a write ends as S-CS1# or R-WE# goes high.

Figure 6. **AC Waveform SRAM Write Operations**

7.3 PSRAM AC Characteristics

Table 13. PSRAM AC Characteristics — Read Operations

#	Cumbal	Parameter ⁶	1.8	3 V	3.0	V	Unit	Notes
#	Symbol	Farameter	Min	Max	Min	Max	Omit	Notes
R1	t _{RC}	Read Cycle Time	88	4,000	85	4,000	ns	1
R2	t _{AA}	Address to Output Delay	_	88	_	85	ns	1
R3	t _{CO}	P-CS# to Output Delay	_	88	_	85	ns	1
R4	t _{OE}	R-OE# to Output Delay	_	65	_	40	ns	1
R5	t _{BA}	R-UB#, R-LB# to Output Delay	_	88	_	85	ns	1
R6	t _{LZ}	P-CS# to Output in Low-Z	10	_	10	_	ns	1,3,4
R7	t _{OLZ}	R-OE# to Output in Low-Z	5	_	0	_	ns	1,4
R8	t _{HZ}	P-CS# to Output in High-Z	_	25	0	25	ns	1,2,3,4
R9	t _{OHZ}	R-OE# to Output in High-Z	_	25	0	25	ns	1,2,4
R10	t _{OH}	Output Hold (from Address, P-CS# or R-OE# change, whichever occurs first)	5	_	0	-	ns	1
R11	t _{BLZ}	R-UB#, R-LB# to Output in Low-Z	5	_	0	_	ns	1,4
R12	t _{BHZ}	R-UB#, R-LB# to Output in High-Z	_	25	0	25	ns	1,4
PR1	t _{PC}	Page Cycle Time	30	_	40	_	ns	5
PR2	t _{PA}	Page Access Time	_	30	_	35	ns	5

- 1. See Figure 7, "AC Waveform of PSRAM Read Operations" on page 29 and Figure 8, "AC Waveform of PSRAM 4-Word Page Read Operation" on page 29
- Timings of t_{HZ} and t_{OHZ} are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.
- At any given temperature and voltage condition, t_{HZ} (Max) is less than t_{LZ} (Max) both for a given device and from device to device interconnection.
- 4. Sampled but not 100% tested.
- 5. 4-Word Page read only available for 32-Mbit PSRAM. No page mode feature for 16-Mbit PSRAM.
- 6. Not applicable to 38F2020W0ZTQ1, 38F2020W0ZBQ1, 38F2030W0YTQ1, 38F2030W0YBQ1, 38F2030W0ZTQ2, 38F2030W0ZBQ2.

Table 14. PSRAM AC Characteristics — Read Operations (Sheet 1 of 2)

#	Symbol	Parameter ⁶	1.8	3 V	3.0	V	Unit	Notes
, "	Symbol	raianietei	Min	Max	Min	Max	Oilit	Notes
R1	t _{RC}	Read Cycle Time	70	15000	70	15000	ns	
R2	t _{AA}	Address to Output Delay	-	70	_	70	ns	
R3	t _{CO}	P-CS# to Output Delay	-	70	_	70	ns	
R4	t _{OE}	R-OE# to Output Delay	-	45	_	45	ns	
R5	t _{BA}	R-UB#, R-LB# to Output Delay	-	70	_	70	ns	
R6	t _{LZ}	P-CS# to Output in Low-Z	5	_	5	-	ns	3
R7	t _{OLZ}	R-OE# to Output in Low-Z	0	_	0	-	ns	

Table 14. PSRAM AC Characteristics — Read Operations (Sheet 2 of 2)

#	Symbol	Parameter ⁶	1.8	3 V	3.0	V	Unit	Notes
"	Symbol	raidiletei	Min	Max	Min	Max	Oilit	Notes
R8	t _{HZ}	P-CS# to Output in High-Z	0	25	0	25	ns	2, 3
R9	t _{OHZ}	R-OE# to Output in High-Z	0	25	0	25	ns	2
R10	t _{OH}	Output Hold (from Address, P-CS# or R-OE# change, whichever occurs first)	0	_	0	-	ns	
R11	t _{BLZ}	R-UB#, R-LB# to Output in Low-Z	0	_	0	_	ns	
R12	t _{BHZ}	R-UB#, R-LB# to Output in High-Z	0	25	0	25	ns	
PR1	t _{PC}	Page Cycle Time	25	-	25	_	ns	4
PR2	t _{PA}	Page Access Time	_	25	ı	25	ns	4

- 1. See Figure 7, "AC Waveform of PSRAM Read Operations" on page 29 and Figure 8, "AC Waveform of PSRAM 4-Word Page Read Operation" on page 29
- 2. Timings of t_{HZ} and t_{OHZ} are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.
- At any given temperature and voltage condition, t_{HZ} (Max) is less than t_{LZ} (Max) both for a given device and from device to device interconnection.
- 4. 4-Word Page read only available for 16-Mbit PSRAM. No page mode feature for 8-Mbit PSRAM.
- 5. 8-Mbit has additional skew limitation of 10 ns. 16-Mbit does not have this limitation.
- Applicable to 38F2020W0ZTQ1, 38F2020W0ZBQ1, 38F2030W0YTQ1, 38F2030W0YBQ1, 38F2030W0ZTQ2, 38F2030W0ZBQ2.

Table 15. PSRAM AC Characteristics—Write Operations (Sheet 1 of 2)

#	Symbol	Parameter ⁶ 1.8 V 3.0 V		V	Unit	Notes		
"	Symbol	raiameter	Min	Max	Min	Max	Oiiit	Notes
W1	t _{WC}	Write Cycle Time	85	4,000	85	4,000	ns	1
W2	t _{AS}	Address Setup to R-WE# (P-CS#) and R-UB#, R-LB# going low	0	-	0	-	ns	1,4
W3	t _{WP}	R-WE#(P-CS#) Pulse Width	60	_	85	_	ns	1,2,3
W4	t _{DW}	Data to Write Time Overlap	30	-	35	-	ns	1
W5	t _{AW}	Address Setup to R-WE# (P-CS#) Going High	70	-	70	-	ns	1
W6	t _{CW}	P-CS# (R-WE#) Setup to R-WE# (P-CS#) Going High	70	-	70	-	ns	1
W7	t _{DH}	Data Hold from R-WE# (P-CS#) High	0	_	0	_	ns	1

Table 15. PSRAM AC Characteristics—Write Operations (Sheet 2 of 2)

W8	t _{WR}	Write Recovery	0	-	20	_	ns	1,5
W 9	t _{BW}	R-UB#, R-LB# Setup to R-WE# (P-CS#) Going High	70	_	70	_	ns	1

Notes:

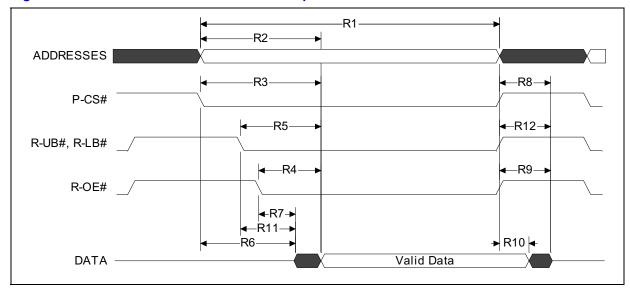
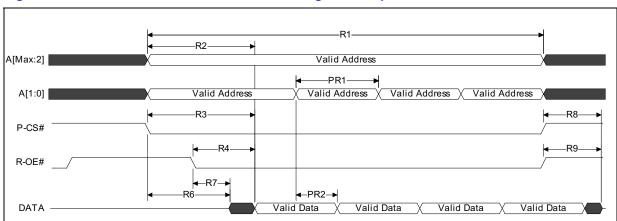
- 1. See Figure 9, "AC Waveform PSRAM Write Operation" .
- 2. A write occurs during the overlap (t_{WP}) of low P-CS# and low R-WE#. A write begins when P-CS# goes low and R-WE# goes low with asserting R-UB# or R-LB# for single byte operation or simultaneously asserting R-UB# and R-LB# for double byte operation. A write ends at the earliest transition when P-CS# goes high and R-WE# goes high. The t_{WP} is measured from the beginning to the end of a write.
- 3. t_{WP} is measured from P-CS# going low to end of a write.
- t_{AS} is measured from the address valid to the beginning of a write.
- 5. t_{WR} is measured from the end of a write to the address change. t_{WR} applied in case a write ends as P-CS# or R-WE# going high.
- Not applicable to 38F2020W0ZTQ1, 38F2020W0ZBQ1, 38F2030W0YTQ1, 38F2030W0YBQ1, 38F2030W0ZTQ2, 38F2030W0ZBQ2.

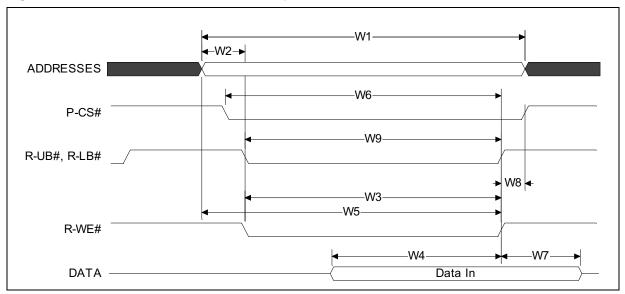
Table 16. PSRAM AC Characteristics—Write Operations

#	Symbol	Parameter ⁷		3.0	V	Unit	Notes	
#	Symbol	Farameter	Min	Max	Min	Max	Unit	Notes
W1	t _{WC}	Write Cycle Time	70	-	70	-	ns	1
W2	t _{AS}	Address Setup to R-WE# (P-CS#) and R-UB#, R-LB# going low	0	-	0	-	ns	1,4
W3	t _{WP}	R-WE#(P-CS#) Pulse Width	55	-	55	_	ns	1,2,3
W4	t _{DW}	Data to Write Time Overlap	35	_	35	-	ns	1
W5	t _{AW}	Address Setup to R-WE# (P-CS#) Going High	60	-	60	-	ns	1
W6	t _{CW}	P-CS# (R-WE#) Setup to R-WE# (P-CS#) Going High	60	_	60	_	ns	1
W7	t _{DH}	Data Hold from R-WE# (P-CS#) High	0	_	0	_	ns	1
W8	t _{WR}	Write Recovery	0	_	0	_	ns	1,5
W9	t _{BW}	R-UB#, R-LB# Setup to R-WE# (P-CS#) Going High	60	-	60	-	ns	1

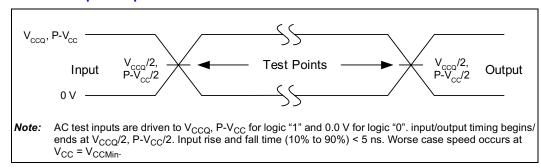
- 1. See Figure 9, "AC Waveform PSRAM Write Operation" .
- 2. A write occurs during the overlap (t_{WP}) of low P-CS# and low R-WE#. A write begins when P-CS# goes low and R-WE# goes low with asserting R-UB# or R-LB# for single byte operation or simultaneously asserting R-UB# and R-LB# for double byte operation. A write ends at the earliest transition when P-CS# goes high and R-WE# goes high. The t_{WP} is measured from the beginning to the end of a write.
- 3. t_{WP} is measured from P-CS# going low to end of a write.
- 4. t_{AS} is measured from the address valid to the beginning of a write.
- t_{WR} is measured from the end of a write to the address change. t_{WR} applied in case a write ends as P-CS# or R-WE# going high.
- 6. W3 is 70 ns for continuous write operations over 50 times.
- Applicable to 38F2020W0ZTQ1, 38F2020W0ZBQ1, 38F2030W0YTQ1, 38F2030W0YBQ1, 38F2030W0ZTQ2, 38F2030W0ZBQ2.

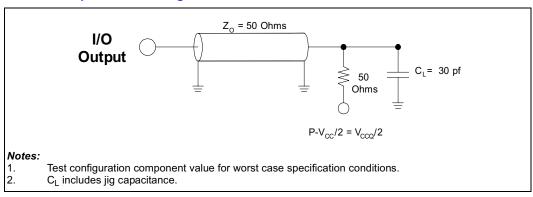
Figure 7. AC Waveform of PSRAM Read Operations


Figure 8. AC Waveform of PSRAM 4-Word Page Read Operation

Note: Available only for 32-Mbit PSRAM and line items with 16-Mbit PSRAM (70 ns) 38F2030W0YTQ1, 38F2030W0YBQ1, 38F2030W0ZTQ2, 38F2030W0ZBQ2. Not applicable to 8-Mbit PSRAM.


Figure 9. AC Waveform PSRAM Write Operation



7.4 Device AC Test Conditions

Figure 10. Transient Input/Output Reference Waveform

Figure 11. Transient Equivalent Testing Load Circuit

8.0 Flash Power Consumption

Refer to the *Intel*[®] *Wireless Flash Memory (W18) Datasheet* (order number 290701) and *Intel*[®] *Wireless Flash Memory (W30) Datasheet* (order number 290702) for information regarding flash read modes and operations.

9.0 Device Operation

9.1 Bus Operations

Bus operations for the W18/W30 SCSP family involve the following chip enable and output enable signals, respectively:

- F1-CE# for Flash Die#1 and F2-CE# for Flash Die#2
- F1-OE# for Flash Die#1 and F2-OE# for Flash Die#2

All other control signals are shared between the two flash die. Table 17 to Table 19 explain the bus operations of products across this SCSP family. Refer to the W18/W30 discrete datasheets (order numbers 290701 and 290702) for single flash die SCSP bus operations.

Table 17. **Flash-Only Bus Operations**

Device	Mode	F-RST#	F1-CE#	F1-0E#	F-WE#	ADV#	F-VPP	WAIT	F2-CE#	F2-0E#	D[15:0]	Notes
	Sync Array Read	Н	L	L	Н	L	Х	Active	Н	Х	Flash D _{OUT}	2,3,4
	All Async / Sync Non-Array Read	Н	L	L	Н	Х	Х	Asserted	Н	Х	Flash D _{OUT}	1,3,4,5
Flash Die#1	Write	Η	L	Η	L	Х	V _{PP1} or V _{PP2}	Asserted	Ι	Х	Flash D _{IN}	3,4,6
Flas	Output Disable	Н	L	Н	Н	Х	Х	Active	Х	Х	Flash High-Z	4
	Standby	Н	Н	Х	Х	Х	Х	High-Z	Х	Х	Flash High-Z	4
	Reset	L	Х	Х	Х	Х	Х	High-Z	Х	Х	Flash High-Z	4
	Sync Array Read	Н	Н	Х	Н	L	Х	Active	L	L	Flash D _{OUT}	2,3,4
	All Async / Sync Non-Array Read	Н	Н	Х	Н	Х	Х	Asserted	L	L	Flash D _{OUT}	1,3,4,5
Flash Die#2	Write	Н	Н	Х	L	Х	V _{PP1} or V _{PP2}	Asserted	L	Н	Flash D _{IN}	3,4,6
Flas	Output Disable	Н	Х	Х	Н	Х	Х	Active	L	Н	Flash High-Z	4
	Standby	Н	Х	Х	Х	Х	Х	High-Z	Н	Х	Flash High-Z	4
	Reset	L	Х	Х	Х	Х	Х	High-Z	Х	Х	Flash High-Z	4

- For asynchronous read operation, both die may be simultaneously selected, but may not simultaneously drive the memory bus. See Section 9.2, "Flash Command Definitions" on page 35 for details regarding flash selection
- 2. WAIT is only valid during synchronous flash reads. WAIT is driven if F-CE# is asserted. Refer to the W18 or W30 datasheet (order number 290701 and 29702) for further information regarding WAIT Signal.

 For either flash die, F[2:1]-OE# and F-WE# should never be asserted simultaneously. If done so on a particular
- 3. flash die, F[2:1]-OE# will override F-WE#.
- Tash die, Fiz. 1]-OE# Will overlide F-VVE#. L means V_{IL} while H means V_{IH} . X can be V_{IL} or V_{IH} for inputs, V_{PP1} , V_{PP2} or V_{PPLK} for F-VPP. Flash CFI query and status register accesses use D[7:0] only, all other reads use D[15:0]. Refer to W18/W30 datasheet for valid D_{IN} during flash writes. 4.
- 5.
- 6.

Table 18. Flash + SRAM Bus Operations

Device	Mode	F-RST#	F[2:1]-CE#	F[2:1]-0E#	F-WE#	ADV#	F-VPP	WAIT	S-CS1#	S-CS2	R-0E#	R-WE#	R-UB#, R-LB#	D[15:0]	Notes
	Sync Array Read	Н	L	L	Н	L	Х	Active	SRAM must be in High-Z					Flash D _{OUT}	1,2,3, 5
r #2)	All Async/ Sync Non-array Read	Н	L	L	Н	х	х	Asserted						Flash D _{OUT}	1,2,3, 5,6
Flash Die(#1 or #2)	Write	Н	L	Н	L	L	V _{PP1} or V _{PP2}	Asserted						Flash D _{IN}	3,7
Flash	Output Disable	Н	L	Н	Н	Х	Х	Active	Any SRAM mode allowed					Flash High-Z	5
	Standby	Н	Н	Х	Х	Х	Х	High-Z						Flash High-Z	5
	Reset	L	Х	Х	Х	Х	Х	High-Z						Flash High-Z	5
	Read		Floor	h must	ho in L	liah 7		Note 2	L	Н	L	Н	L	SRAM D _{OUT}	1,4,8
	Write		rias	iii iiiusi	be iii r	iigii-Z		Note 2	L	Н	Х	L	L	SRAM D _{IN}	4,5,8
SRAM	Output Disable							Note 2	L	Н	Н	Н	Х	SRAM High-Z	5
0	Standby			flash n	node al	lowed		Note 2	H X X X X			х	SRAM High-Z	5,8	
	Data Retention							Note 2	Same as SRAM standby				by	SRAM High-Z	9

- For asynchronous read operation, all die may be simultaneously selected, but may not simultaneously drive the 1.
- 2.
- WAIT is only valid during synchronous flash reads. WAIT is driven if F-CE# is asserted. For flash die, F[2:1]-OE# and F-WE# should never be asserted simultaneously. If done so, F[2:1]-OE# will 3.
- For SRAM, R-OE# and R-WE# should never be asserted simultaneously.
- X can be V_{IL} or V_{IH} for inputs, V_{PP1} , V_{PP2} or V_{PPLK} for F-VPP. Flash CFI query and status register accesses use D[7:0] only, all other reads use D[15:0]. 6.
- Refer to W18 and W30 datasheet for valid D_{IN} during flash writes. 7.
- The SRAM is enabled and/or disabled with the logical function: S-CS1# OR S-CS2. 8.
- The SRAM can be placed into data retention mode by lowering S-VCC to the V_{DR} limit when in standby mode.

Table 19. Flash + PSRAM Bus Operations

Device	Mode	F-RST#	F[2:1]-CE#	F[2:1]-0E#	F-WE#	ADV#	F-VPP	WAIT	P-CS#	P-Mode	R-0E#	R-WE#	R-UB#, R-LB#	D[15:0]	Notes
	Sync Array Read	Н	L	L	Н	L	Х	Active					Flash D _{OUT}	1,2,3, 4,6	
or #2)	All Async/ Sync Non-array Read	Н	L	L	Н	х	х	Asserted	PS	SRAM r	nust be	n-Z	Flash D _{OUT}	1,2,3, 4,6,7	
Flash Die(#1 or #2)	Write	Н	L	Н	L	х	V _{PP1} or V _{PP2}	Asserted						Flash D _{IN}	3,4,6, 8
Flash	Output Disable	Н	L	Н	Н	х	Х	Active						Flash High-Z	6
	Standby	Н	Н	Х	Х	х	Х	High-Z	An	y PSR/	AM mod	ved	Flash High-Z	6	
	Reset	L	Х	Х	Х	Х	Х	High-Z						Flash High-Z	6
	Read							Note 2	L	Н	L	Н	L	PSRAM D _{OUT}	1,5
	Write	FI	ash#1 a	and #2	must b	e in Hig	jh-Z	Note 2	L	Н	Н	L	L	PSRAM D _{IN}	5
PSRAM	Output Disable							Note 2	L	Н	Н	Н	х	PSRAM High-Z	6
ISd	Standby	Any flash mode allowed						Note 2	Н	Н	Х	Х	x	PSRAM High-Z	6
	Deep Power- Down							Note 2	Н	L	Х	Х	Х	PSRAM High-Z	6, 9

- 1. For asynchronous read operation, all die may be simultaneously selected, but may not simultaneously drive the memory bus. For synchronous burst-mode reads, only two die (one flash and the PSRAM) may be simultaneously selected.
- 2. WAIT is only valid during synchronous flash reads. WAIT is driven if F-CE# is asserted.
- 3. F1-CE# for Flash Die#1, F2-CE# for Flash Die#2. F1-OE# is for Flash Die#1, F2-OE# for Flash Die#2.
- 4. For either flash die, F[2:1]-OE# and F-WE# should never be asserted simultaneously. If done so on a particular flash die, F[2:1]-OE# will override F-WE#.
- 5. For PSRAM, R-OE# and R-WE# should never be asserted simultaneously.
- 6. X can be V_{IL} or V_{IH} for inputs, V_{PP1} , V_{PP2} or V_{PPLK} for F-VPP.
- 7. Flash CFI query and status register accesses use D[7:0] only, all other reads use D[15:0].
- 8. Refer to W30/W18 datasheet for Valid D_{IN} during flash writes.
- 9. Deep power-down is not applicable to 38F2020W0ZTQ1, 38F2020W0ZBQ1, 38F2030W0YTQ1, 38F2030W0YTQ1, 38F2030W0ZBQ1, 38F2030W0ZTQ2, 38F2030W0ZBQ2.

9.2 Flash Command Definitions

Refer to the discrete datasheets, *Intel*[®] *Wireless Flash Memory (W18) Datasheet* (order number 290701) and *Intel*[®] *Wireless Flash Memory (W30) Datasheet* (order number 290702) for information regarding flash command definitions.

10.0 Flash Read Operations

Refer to the *Intel*® *Wireless Flash Memory (W18) Datasheet* (order number 290701) and *Intel*® *Wireless Flash Memory (W30) Datasheet* (order number 290702) for information regarding flash read modes and operations.

11.0 Flash Program Operations

Refer to the *Intel*[®] *Wireless Flash Memory (W18) Datasheet* (order number 290701) and *Intel*[®] *Wireless Flash Memory (W30) Datasheet* (order number 290702) for information regarding flash read modes and operations.

12.0 Flash Erase Operations

Refer to the *Intel*[®] *Wireless Flash Memory (W18) Datasheet* (order number 290701) and *Intel*[®] *Wireless Flash Memory (W30) Datasheet* (order number 290702) for information regarding flash read modes and operations.

13.0 Flash Security Modes

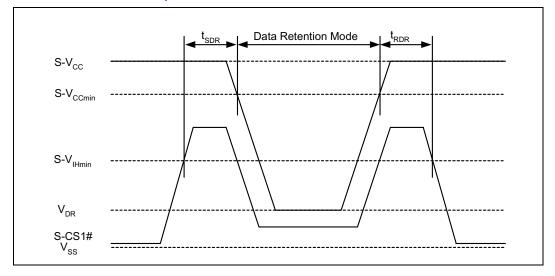
Refer to the *Intel*[®] *Wireless Flash Memory (W18) Datasheet* (order number 290701) and *Intel*[®] *Wireless Flash Memory (W30) Datasheet* (order number 290702) for information regarding flash read modes and operations.

14.0 Flash Read Configuration Register

Refer to the *Intel*[®] *Wireless Flash Memory (W18) Datasheet* (order number 290701) and *Intel*[®] *Wireless Flash Memory (W30) Datasheet* (order number 290702) for information regarding flash read modes and operations.

15.0 **SRAM Operations**

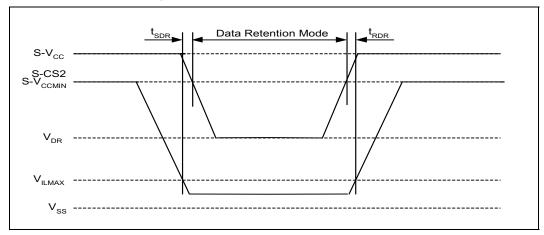
15.1 Power-up Sequence and Initialization


The SRAM functionality and reliability are independent of the power-up sequence and power-up slew rate of the core $S-V_{CC}$. Any power-up sequence and power-up slew rate is possible under use conditions. SRAM reliability is also independent of the power-down sequence and power-down slew rate of the core $S-V_{CC}$.

15.2 Data Retention Mode

Table 20. SRAM Data Retention Operation

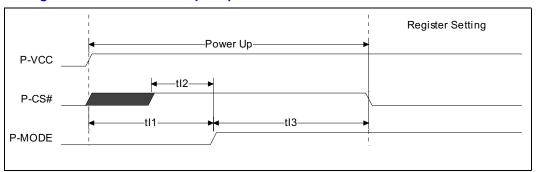
Symbol	Parameter	Min	Max	Unit	Notes
t _{SDR}	Data Retention Set-up Time	0	_	ns	
t _{RDR}	Data Retention Recovery Time	t _{RC}	_	ns	1


Figure 12. SRAM Data Retention Operation Waveform—S-CS1# Controlled

^{1.} t_{RC} is defined in Table 11, "SRAM AC Characteristics — Read Operations" on page 24.

Figure 13. SRAM Data Retention Operation Waveform—S-CS2 Controlled

16.0 PSRAM Operations

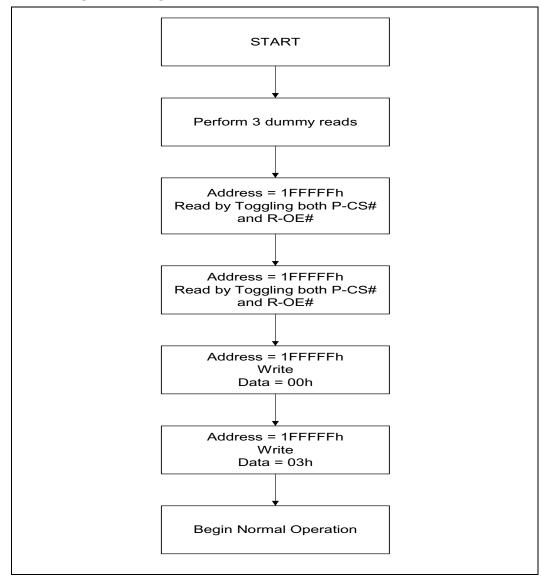

16.1 Power-Up Sequence and Initialization

The PSRAM functionality and reliability are independent of the power-up sequence and slew rate of the core $P-V_{CC}$. Any power-up sequence and slew rate is possible under use conditions. PSRAM reliability are also independent of the power-down sequence and slew rate of the core $P-V_{CC}$.

The following power-up sequence and register setting should be used before starting normal operation. The PSRAM power-up sequence is represented in Figure 14. Following power application, make P-Mode high after fixing P-Mode to a low level for a period of t_{I1}. Make P-CS# high before making P-Mode high. P-CS# and P-Mode are fixed to a high level for period of t_{I3}.

Once the power-up sequence is complete, be sure to set the register, before starting any normal operation. The register is set by a five-cycle operation. The process involves first performing a dummy read immediately followed by two continuous reads of the address 0x1FFFFF then successively writing two specific data. See the flowchart in Figure 15, which illustrates the process of setting the register. Note that P-CS# must be toggling to high for a minimum of 10 ns between each read or write.

Figure 14. Timing Waveform for Power-Up Sequence

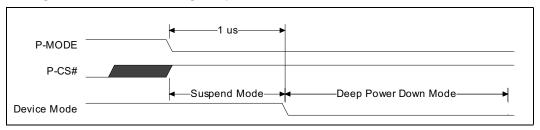

Table 21. Power-Up Sequence Specifications

Parameter	Description	Min	Max	Unit	Notes
t _{l1}	Power application with P-Mode held low	50	_	μs	1,2,3
t _{l2}	P-CS# high to P-Mode high	10	_	ns	
t _{l3}	P-Mode high to P-CS# low	500		μs	

- Toggle P-Mode to low when starting the power-up sequence.
- t_{I1} is specified from when the power supply voltage reaches V_{CCMIN}.
- 3. Does not apply to 38F2020W0ZTQ1, 38F2020W0ZBQ1, 38F2030W0YTQ1, 38F2030W0YBQ1, 38F2030W0ZTQ2, and 38F2030W0ZBQ2 line items. Valid PSRAM operations for these line items can begin 200 μs after P-Vcc has reached P-Vcc min.

Figure 15. PSRAM Register Setting Flowchart at Initialization

16.2 Standby Mode/ Deep Power-Down Mode


Caution:

38F2020W0ZTQ1, 38F2020W0ZBQ1, 38F2030W0YTQ1, 38F2030W0YBQ1, 38F2030W0ZTQ2, 38F2030W0ZBQ2 line items do not have the deep power-down feature.

Data is lost during deep power-down mode as shown in the Table below. Wake-up from deep power-down mode involves the same initialization sequence as discussed in Section 16.1, "Power-Up Sequence and Initialization" on page 38.

Mode	Memory Cell Data	Delay time to go Active			
Standby	Valid	0 ns			
Deep Power-Down	Invalid	Start-Up Sequence			

Figure 16. Timing Waveform for Entering Deep Power-Down Mode

16.3 PSRAM Special Read and Write Constraints

Caution: This section does not apply to 38F2020W0ZTQ1, 38F2020W0ZBQ1, 38F2030W0YTQ1, 38F2030W0ZBQ2, 38F2030W0ZBQ2 line items.

Table 22. PSRAM Special Read Constraints

Description	Min	Max	Unit	Notes
Cannot have sub t_{RC} address toggle for more than 4 μs in active mode. Need either a read operation or P-CS# high for t_{RC} in that time frame		N/A	-	
P-CS# high level pulse width	10	_	ns	1
R-UB#/R-LB# high level pulse width	10	_	ns	1
R-OE# high level pulse width in active mode (P-CS# low)	10	10,000	ns	
P-CS# low to R-OE# low	_	10,000	ns	
Address Skew time (unstable address with P-CS# low)	_	10	ns	2

Notes:

- 1. Toggling of these control signals is not necessary during address controlled read operations.
- 2. Address skew time (t_{SKFW}) indicates the following three types of time depending on the condition.
 - a. When switching P-CS# from high to low, t_{SKEW} is the time from the P-CS# low input point until the next address is determined.
 - b. When switching P-CS# from low to high, t_{SKEW} is the time from the address change start point to the P-CS# high input point.
 - When P-CS# is fixed to low, t_{SKEW} is the time from the address start point until the next address is determined.

Since specs are defined for t_{SKEW} only when P-CS# is active, t_{SKEW} is not subject to limitations when P-CS# is switched from high to low following address determination, or when the address is changed after P-CS# is switched from low to high.

Table 23. PSRAM Special Write Constraints

Description	Min	Max	Unit	Notes
Need either R-WE# high or P-CS# high for at least t _{WC} time, for every 4us window during write operations.	N/A	N/A	-	
R-OE# high to R-WE# low in active mode (P-CS# low)	0	10,000	ns	
R-WE# high to R-OE# low in active mode (P-CS# low)	10	10,000	ns	
Address Skew time (unstable address with P-CS# low)	_	10	ns	1

Note:

- Address skew time (t_{SKEW}) indicates the following three types of time depending on the condition.
 - a. When switching P-CS# from high to low, t_{SKEW} is the time from the P-CS# low input point until the next address is determined.
 - b. When switching P-CS# from low to high, t_{SKEW} is the time from the address change start point to the P-CS# high input point.
 - When P-CS# is fixed to low, t_{SKEW} is the time from the address start point until the next address is determined.

Since specs are defined for t_{SKEW} only when P-CS# is active, t_{SKEW} is not subject to limitations when P-CS# is switched from high to low following address determination, or when the address is changed after P-CS# is switched from low to high.

Appendix A Write State Machine

Refer to the Intel® Wireless Flash Memory (W18) Datasheet (order number 290701) and Intel® Wireless Flash Memory (W30) Datasheet (order number 290702) for the WSM details.

Appendix B Common Flash Interface

Refer to the *Intel*® *Wireless Flash Memory (W18) Datasheet* (order number 290701) and *Intel*® *Wireless Flash Memory (W30) Datasheet* (order number 290702) for the CFI details.

Appendix C Flash Flowcharts

Refer to the Intel® Wireless Flash Memory (W18) Datasheet (order number 290701) and Intel® Wireless Flash Memory (W30) Datasheet (order number 290702) for the flash flowchart details.

Appendix D Additional Information

Order Number	Document
290701	1.8 Volt Intel® Wireless Flash Memory (W18) Datasheet
290702	1.8 Volt Intel® Wireless Flash Memory with 3 Volt I/O (W30) Datasheet
251216	64-Mbit 1.8 Volt Intel® Wireless Flash Memory SCSP Family Application Note

- Please call the Intel Literature Center at (800) 548-4725 to request Intel documentation. International
 customers should contact their local Intel or distribution sales office.
- For the most current information on Intel[®] Flash memory products, software and tools, visit our website at http://developer.intel.com/design/flash.

Appendix E Ordering Information

Figure 17 shows the decoder for products in this SCSP family with both flash and RAM. Figure 18 shows the decoder for products in this SCSP family with flash die only (no RAM). Table 24, "64WQ W18/W30 SCSP Ordering Information" on page 45 lists available product combinations.

Figure 17. Decoder for Flash + RAM SCSP Family Devices

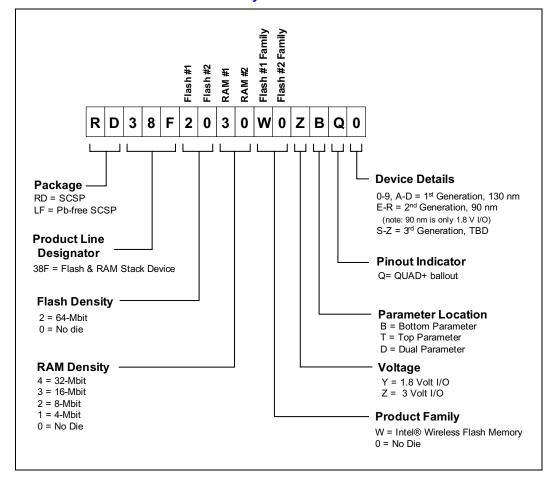


Figure 18. Decoder for Flash-Only SCSP Family Devices

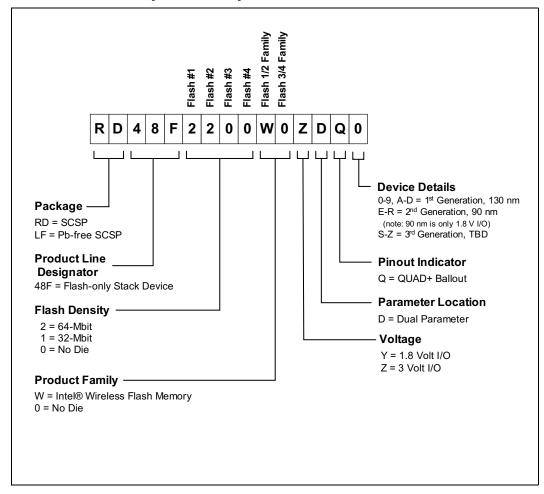


Table 24. 64WQ W18/W30 SCSP Ordering Information (Sheet 1 of 2)

Flash Component	Flash Component RAM		Package			
Size in Mbit and Family	Size in Mbit and Type	Size (mm)	Туре	Ballout	Product Number	Notes
64W30	_				RD48F2000W0ZTQ0 RD48F2000W0ZBQ0	1,2,3
64W18	4 SRAM				RD38F2010W0YTQ0 RD38F2010W0YBQ0	1,2,3
64W18	8 SRAM		Leaded		RD38F2020W0YTQ0 RD38F2020W0YBQ0	1,2,3
64W30	o SRAW				RD38F2020W0ZTQ0 RD38F2020W0ZBQ0	1,2,3
64W30	8 PSRAM				RD38F2020W0ZTQ1 RD38F2020W0ZBQ1	1,2,3
044430			Lead-free		PF38F2020W0ZTQ1 PF38F2020W0ZBQ1	1,2,3
64W18		8x10x1.2		QUAD+	RD38F2030W0YTQ0 RD38F2030W0YBQ0	1,2,3
64W30	- 16 SRAM	OX TOX 1.2	Leaded		RD38F2030W0ZTQ0 RD38F2030W0ZBQ0	1,2,3
			Leaded		RD38F2030W0YTQ1 RD38F2030W0YBQ1	1,2,3
64W18					RD38F2030W0YTQE RD38F2030W0YBQE	1,2,3,6
044410	16 PSRAM		Lead-free		PF38F2030W0YTQ1 PF38F2030W0YBQ1	1,2,3
	TO FORWARD		Leau-iree		PF38F2030W0YTQE PF38F2030W0YBQE	1,2,3,6
64W30			Leaded		RD38F2030W0ZTQ1 RD38F2030W0ZBQ1 RD38F2030W0ZTQ2 RD38F2030W0ZBQ2	1,2,3

Table 24. 64WQ W18/W30 SCSP Ordering Information (Sheet 2 of 2)

Flash Component	RAM	Package				
Size in Mbit and Family	Size in Mbit and Type	Size (mm)	Туре	Ballout	Product Number	Notes
64W18	32 PSRAM		Leaded		RD38F2040W0YTQ0 RD38F2040W0YBQ0	1,2,3
64W30	32 F SINAIVI	8x10x1.2		QUAD+	RD38F2040W0ZTQ0 RD38F2040W0ZBQ0	1,2,3
64W18 + 32W18	_				RD48F2100W0YDQE	1,4,6
64W18 + 64W18	_				RD48F2200W0YDQ0	1,4
64W18 + 64W18	16 SRAM				RD38F2230WWYDQ0	1,4
64W30 + 64W30	10 SKAW				RD38F2230WWZDQ0	1,4
64W18 + 64W18	32 PSRAM	8x10x1.4			RD38F2240WWYDQ0 RD38F2240WWYDQ1	1,4,5
					RD38F2240WWYDQE	1,4,6
64W30 + 64W30	32 PSRAM				RD38F2240WWZDQ0	1,4

- W18 = Intel[®] Wireless Flash Memory (W18) with 1.8 V I/O; W30 = Intel[®] Wireless Flash Memory (W30) with 3.0 V I/O. B = Bottom Parameter, where Flash Die #1, F1-CE# = Bottom Parameter and Flash Die #2, F2-CE# = Top Parameter. T = Top Parameter where Flash Die #1, F1-CE# = Top Parameter and Flash Die #2, F2-CE# = Bottom Parameter. 1.
- 2. 3.
- D = Dual Parameter where Flash Die #1, F1-CE# = Bottom Parameter and Flash Die #2, F2-CE# = Top Parameter.
- 4. 5. RD38F2240WWYDQ0 - engineering samples; RD38F2240WWDQ1 - production version.
- 90 nm stacked devices.