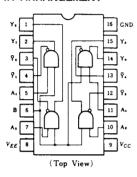
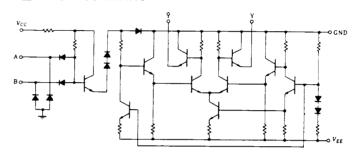
HD10124


Quadruple TTL to ECL Translators

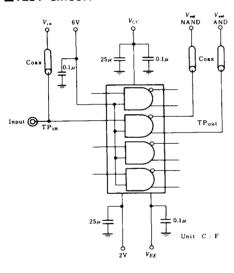
The HD10124 is a quad translator for interfacing data and control signals between a saturated logic section and the ECL section of digital systems. The device has TTL compatible inputs, and ECL complementary open-emitter outputs that allow use as an inverting/noninverting translator or as a differential line driver. When the common strobe input is at the low logic level, it forces all true outputs to a ECL high logic state.

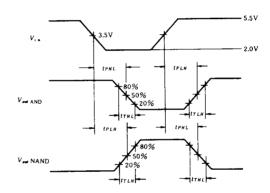

Power supply requirements are ground, +5.0V, and -5.2V. The DC levels are standard or Schottky TTL in, ECL 10K out.

An advantage of this device is that TTL level information can be transmitted differentially, via balanced twisted pair lines, to the ECL equipment, where the signal can be received by any of the ECL receivers or the HD10125 ECL to TTL translator.

PIN ARRANGEMENT

■CIRCUIT SCHEMATIC


EDC CHARACTERISTICS ($V_{EE} = -5.2\text{V}$, $V_{CC} = +5.0\text{V}$, $Ta = -30 \sim +85^{\circ}\text{C}$)


Item	Symbol	Test Condition			min	typ	max	Unit
Supply Current	IEE				_	-	66	mA
	Іссн	All inputs-4V			_	_	16	mA
	IccL	All inputs = 0V	25°C	_	_	25	mA	
Input Current	I_{IH}	V _{IN} -2.4V, Other inputs-0.4V A input		25°C		_	50	
		V/N-2.4V, Other inputs-0.4V	B input	230	_	-	200	μΑ
	IIL	V _{iN} =0.4V, Other inputs=4V	A input	25 °C	-3.2	_	_	mA.
		V/N-0.4V, Other inputs-4V	B input		-12.8	_	_	
	I_{l}	V _{IN} =5.5V, Other inputs=0V	25°C	_		1	mA	
Input Clamp Voltage	V_{IK}	$I_{IN} = -10 \mathrm{mA}$, Other inputs open			-1.5	_	_	v
Output Voltage	V _{OH}	V _{IH} -4V or V _{IL} -0.4V		-30°C	-1.060		-0.890	v
				25 °C	-0.960		-0.810	
				85° C	-0.890	_	-0.700	
	Vol	$V_{IN}=4$ V or $V_{IL}=0.4$ V		30°C	-1.890	_	-1.675	v
				25°C	-1.850	_ ·	-1.650	
				85° C	-1.825	_	-1.615	
Output Threshold Voltage		$V_{IHA} = 2.0 \text{V} \text{ or } V_{ILA} = 1.10 \text{V}$		-30°C	-1.080	_	_	v
	Voha	$V_{IHA} = 1.80 \text{V}$ or $V_{ILA} = 1.10 \text{V}$		25°C	-0.980	_	_	
		$V_{IHA} = 1.80 \text{V}$ or $V_{ILA} = 0.90 \text{V}$		85 °C	-0.910	_	_	
	VOLA	$V_{ILA} = 1.10 \text{V or } V_{IRA} = 2.0 \text{V}$ $V_{ILA} = 1.10 \text{V or } \vec{V}_{IRA} = 1.80 \text{V}$ $V_{ILA} = 0.90 \text{V or } V_{IRA} = 1.80 \text{V}$		−30° C	_	_	-1.655	v
				25 *C	_	_	-1.630	
				85° C	_ `	_	-1.595	

EAC CHARACTERISTICS ($V_{EE} = -3.2\text{V}$, $V_{CC} = +7.0\text{V}$, $GND = +2.0\text{V}$, $Ta = -3.2\text{V}$	AC CHARACTERISTICS	$(V_{FF} = -3.2 \text{V}.$	$V_{cc} = +7.0 \text{V}.$	GND = +2.0V.	$Ta = -30 \sim +85^{\circ}C$
---	--------------------	----------------------------	---------------------------	--------------	------------------------------

Item		Symbol	ol Test Condition		min	typ	max	Unit
Propagation Delay Time			$R_L - 50 \Omega$	-30°C	1.0	_	6.8	ns
		t _{PLH}		25° ℃	1.5	3.5	6.0	
	1			85°C	1.0	_	6.8	
	In-phase			− 30° C	1.0	_	6.8	ns
		t _{PHL}		25°C	1.5	3.5	6.0	
				85 °C	1.0	-	6.8	
	Out-of-phase			− 30° C	1.0	_	6.0	ns
		t _{PLH}		25°C	1.5	3.5	6.0	
				85°C	1.5	_	6.8	
		t _{PHL}		−30° C	1.5		6.8	ns
				25 ℃	1.5	3.5	6.0	
	,			85°C	1.0	_	6.0	
-				−30°C	1.0	_	4.2	ns
		t _{TLH}		25 *℃	1.1	2.5	3.9	
				85°C	1.1	-	4.3	
Rise/Fall Time				-30°C	1.0		4.2	ns
		t THL		25°C	1.1	2.5	3.9	
				85°C	1.1	_	4.3	

TEST CIRCUIT

Notes)

- 1. 50Ω termination to ground located in each scope channel input. All input and output cables to the scope are equal lengths of 50Ω coaxial cable.
- 2. Wire length should be <6.35mm (1/4 inch) from TPin to input pin and TPout to output pin.
- pin.
 3. Input Pulse; t_{TLH}=t_{THL}=5.5±0.5ns (10 to
- 4. Unused outputs connected to a 50Ω resistor to ground.

Find price and stock options from leading distributors for HD10124 on Findchips.com:

https://findchips.com/search/HD10124

Find CAD models and details for this part:

https://findchips.com/detail/hd10124/Hitachi-Ltd