

HA-2420/883

Fast Sample and Hold

The HA-2420/883 is a monolithic circuit consisting of a high performance operational amplifier with its output in series with an ultra-low leakage analog switch and MOSFET input unity gain amplifier

With an external hold capacitor connected to the switch output, a versatile, high performance sample-and-hold or track-and-hold circuit is formed. When the switch is closed, the device behaves as an operational amplifier, and any of the standard op amp feedback networks may be connected around the device to control gain, frequency response etc. When the switch is opened the output will remain at its last level.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer (OCM).

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

THARRIS HA-2420/883

January 1989

Fast Sample and Hold

Features

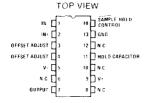
- This Circuit is Processed in Accordance to Mil-Std-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- Maximum Acquisition Time (10V Step to 0.1%)...... 4μ s (10V Step to 0.01%)..... 6μ s
- Maximum Drift Current (Max. Over Temp.)10nA
- TTL Compatible Control Input
- Power Supply Rejection ≥ 80dB

Applications

- . Data Acquisition Systems
- . D to A Deglitcher
- · Auto Zero Systems
- Peak Detector
- Gated Op Amp

Description

The HA-2420/883 is a monolithic circuit consisting of a high performance operational amplifier with its output in series with an ultra-low leakage analog switch and MOSFET input unity gain amplifier.


With an external hold capacitor connected to the switch output, a versatile, high performance sample-and-hold or track-and-hold circuit is formed. When the switch is closed, the device behaves as an operational amplifier, and any of the standard op amp feedback networks may be connected around the device to control gain, frequency response, etc. When the switch is opened the output will remain at its last level.

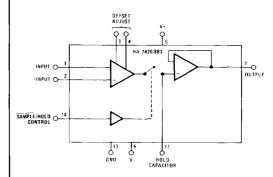
Performance as a sample-and-hold compares very tavorably with other monolithic, hybrid, modular, and discrete circuits. Accuracy to better than 0.01% is achievable over the temperature range. Fast acquisition is coupled with superior droop characteristics, even at high temperatures. High slew rate, wide bandwidth, and low acquisition time produce excellent dynamic characteristics. The ability to operate at gains greater than 1 frequently eliminates the need for external scaling amplifiers.

The device may also be used as a versatile operational amplifier with a gated output for applications such as analog switches, peak holding circuits, etc. For more information, please see Application Note 517.

Pinouts

HA1-2420/883 (CERAMIC DIP)

HA4-2420/883 (CERAMIC LCC) TOP VIEW


OFFSET ADJUST

N.C 5.3

UF SET ADJUST

N.C 7.7

Functional Diagram

NOTE. Pm Numbers Correspond to DIP Package Only

Specifications HA-2420/883

/oltage Between V+ and V- Terminals40V	Thermal Resistance, Junction-to-Am	bient (θ_{ia})
Differential Input Voltage±24V	Ceramic DIP Package	
Digital Input Voltage (S/H Pin)+8V, -15V	Ceramic LCC Package	
Output CurrentShort Circuit Protected	Power Dissipation	
Storage Temperature Range65°C < T _A < +150°C	Ceramic DIP Package	1.03W @ +75°C
ead Temperature (Soldering 10 Seconds)275°C	Ceramic LCC Package	
Junction Temperature+175°C	Power Dissipation Derating Factor (A	Above +75°C)
Thermal Resistance, Junction-to-Case (θ _{iC})	Ceramic DIP Package	10mW/ºC
Ceramic DIP Package24°C/W	Ceramic LCC Package	11.4mW/°C
Ceramic LCC Package20°C/W	ESD Classification	≤ 2000V

TABLE 1. D.C. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at V+ = +15V; V- = -15V; V_{IL} = 0.8V (Sample); V_{IH} = 2.0V (Hold); C_H = 1000pF, -Input Tied to Output, Unless Otherwise Specified

			GROUP A		LIM	ITS	
D.C. PARAMETERS	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Input Offset Voltage	V _{IO}		1	+25°C	-4	4	m۷
			2, 3	-55°C, +125°C	-6	6	mV
Input Bias Current	I _{B+}		1	+25 ⁰ C	-200	200	nA
			2, 3	-55°C, +125°C	-400	400	nA
	I _{B-}		11	+25°C	-200	200	пA
			2, 3	-55°C, +125°C	-400	400	nA
Input Offset Current	10		1	+25°C	-50	50	nA
		[2, 3	-55°C, +125°C	-100	100	nA
Open Loop Voltage	*Avs	R _L = 2kΩ, C _L 50pF,	1	+25°C	25k	_	V/V
Gain		V _{OUT} = +10V	2, 3	-55°C, +125°C	25k	_	V/V
	-Avs	R _L = 2kΩ, C _L = 50pF,	1	+25°C	25k	-	V/V
		V _{OUT} = -10V	2, 3	-55°C, +125°C	25k	_	V/V
Common Mode	-CMRR	V+ = 25V, V- = -5V,	1	+25°C	80	_	dB
Rejection Ratio		V _{OUT} = +10V, V _{S/H} = 10.8V	2, 3	-55°C, +125°C	80	_	dB
	+CMRR	V+ = 5V, V- = -25V,	1	+25°C	80		dB
		V _{OUT} = -10V, V _{S/H} = -9.2V	2, 3	-55°C, +125°C	80	_	dB
Output Current	+10	V _{OUT} = +10V	1	+25°C	+15.0	_	mA
	-10	V _{OUT} = -10V	1	+25°C	-15.0		mA
Output Voltage	+V _{OP}	R _L = 2kΩ, C _L = 50pF	1	+25°C	+10.0	-	V
Swing	"		2, 3	-55°C, +125°C	+10.0	-	V
-	-V _{OP}	$R_1 = 2k\Omega$, $C_1 = 50pF$	1	+25°C	_	-10.0	V
	"		2, 3	-55°C, +125°C	-	-10.0	V
Power Supply Current	+lcc		1	+25°C	_	5.5	mA
	-lcc		1	+25°C	-3.5	<u> </u>	mA
Power Supply	+PSRR	V+ = 10V, 20V	1	+25°C	80		dB
Rejection Ratio		V- = -15V, -15V	2. 3	-55°C, +125°C	80		dB
,	-PSRR	V+ = 15V, 15V	1	+25°C	80		d₿
		V- = -10V20V	2, 3	-55°C, +125°C	80		dB
Digital Input	INI	V _{IN1} = 0V	1	+25°C		800	μА
Current	1 1111	''''	2, 3	-55°C, +125°C		800	μΑ
	I _{IN2}	V _{1N2} = 5.0V	1	+25°C		20	μA
	1142	1146 =	2, 3	-55°C, +125°C		20	μΑ
Digital Input	VII		1	+25°C	_	0.8	V
Voltage	•		2, 3	-55°C, +125°C		0.8	l ·
y -	VIH		1	+25°C	2.0	_	T v
	- 115		2, 3	-55°C, +125°C	2.0	_	l v
Drift Current	¹D	$V_{ N} = 0V, R_L = 2k\Omega,$ $C_1 = 50pF, \overline{S}/H = 4.0V$	2	+125°C	-10	10	пA

TABLE 2. A.C. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Tested at V+ = +15V, V- = -15V, V_{1L} = 0.8V (Sample), V_{1H} = 2.0V (Hold), C_{H} = 1000pF, -Input Tied to Output, Unless Otherwise Specified

			GROUP A		LIM	IITS	
A.C. PARAMETERS	SYMBOL	CONDITIONS	SUBGROUP	TEMP	MIN	MAX	UNITS
Hold Step Error	VERROR	V _{IN} = 0V, 4V, t _{rise} (VS/H) = 30ns	4	+25°C	-20	20	mV
Transient Response Rise Time &	TR _(tr)	C_L = 50pF, R_L = 2k Ω , A_V = +1, V_{OUT} = 200mV peak-to-peak	4	+25°C	_	100	ns
Fall Time	TR _(tf)	C _L = 50pF, R _L = 2kΩ, A _V = +1, V _{OUT} = 200mV peak-to-peak	4	+25°C	_	100	ns
Transient Response Overshoot	TR _(+OS)	C _L = 50pF, R _L = 2kΩ, A _V = +1, V _{OUT} = 200mV peak-to-peak	4	+25°C		40	%
	TR _(-OS)	$C_L = 50 pF$, $R_L = 2 k\Omega$, $A_V = +1$, $V_{OUT} = 200 mV$ peak-to-peak	4	+25°C		40	%
Transient Response Slew Rate	TR _(+SR)	C _L = 50pF, R _L = 2kΩ, A _V = +1, V _{OUT} = 10V peak-to-peak	4	+25°C	3.5	_	V/μs
	TR _(-SR)	C_L = 50pF, R_L = 2k Ω , A_V = +1, V_{OUT} = 10V peak-to-peak	4	+25°C	3.5	_	V/μs

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Characterized at V+ = +15V, V- = -15V, V_{IL} = 0.8V (Sample), V_{IH} = 2.0V (Hold), C_{H} = 1000pF, -Input Tied to Output, Unless Otherwise Specified

				ĺ	LIN	IITS	1
PARAMETER	SYMBOL	CONDITIONS	NOTE	TEMP	MIN	MAX	UNITS
Hold Mode Feedthru Attentuation	V _{atten}	R _L = 2kΩ, C _L = 50pF, A _V = +1, V _{IN} = 20V _{p-p} , f _{IN} = 50kHz	1	+25°C, -55°C, +125°C	70		dB
Gain Bandwidth Product	GBWP	$R_L = 2k\Omega$, $C_L = 50pF$, $A_V = +1$, $V_{IN} = 100mV_{p-p}$	1	+25°C,	2.5	_	MHz
Acquisition Time (0.1%)	^{+t} acq (0.1%)	R _L = 2kΩ, C _L = 50pF, A _V = +1, V _{OUT} = 0V, +10V	1	+25°C,	-	4	μs
	^{-t} acq (0.1%)	R _L = 2kΩ, C _L = 50pF, A _V = +1, V _{OUT} = 0V, -10V	1	+25°C.	_	4	μs
Acquisition Time (0.01%)	*tacq (0.01%)	R _L = 2kΩ, C _L = 50pF, A _V = +1, V _{OUT} = 0V, +10V	1	+25 ^o C,	_	6	μs
	^{-t} acq (0.01%)	R _L = 2kΩ, C _L = 50pF, A _V = +1, V _{OUT} = 0V, -10V	1	+25°C,	_	6	μs

NOTE: 1. The parameters listed in this table are controlled via design or process parameters and are not directly tested. These parameters are characterized upon initial design release and upon design changes which would affect these characteristics.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLES 1, 2 & 3)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	1*, 2, 3, 4
Group A Test Requirements	1, 2, 3, 4
Groups C & D Endpoints	1

^{*} PDA applies to Subgroup 1 only. No other subgroups are included in PDA.

Test Circuits

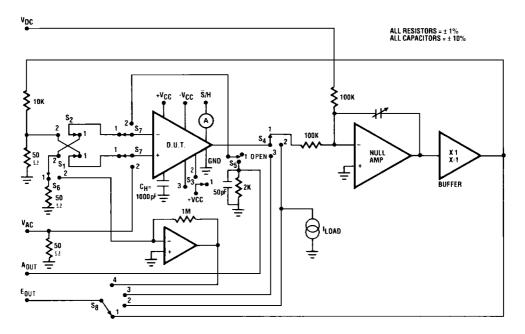
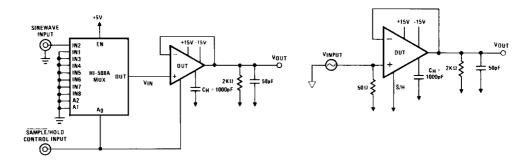



FIGURE 1.

Test Fixture Schematic (Switch Positions S₁ - S₈ Determine Configuration. See Chart A)

HOLD MODE FEEDTHROUGH ATTENUATION

GAIN BANDWIDTH PRODUCT

NOTE:

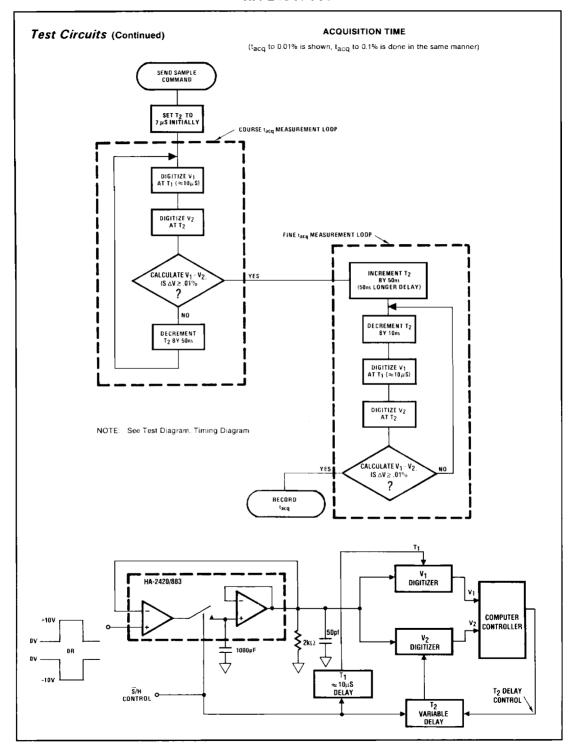
Compute Hold Mode Feedthrough Attenuation from the Formula:

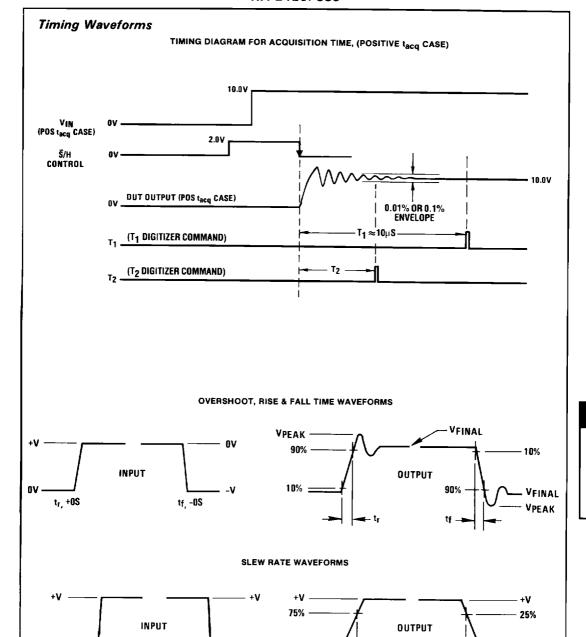
Feedthrough Attenuation = 20 log $\left(\frac{V_{OUT} \text{ HOLD}}{V_{IN} \text{ HOLD}}\right)$

Where VOUT HOLD = Peak-Peak Value of Output Sinewave During the Hold Mode

GBWP is the Frequency of VINPUT at which:

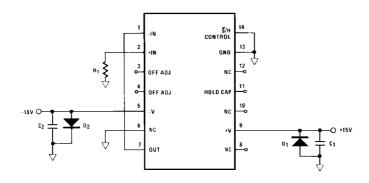
$$20 \log \left(\frac{V_{OUT}}{V_{INPLIT}} \right) \approx -3dB$$

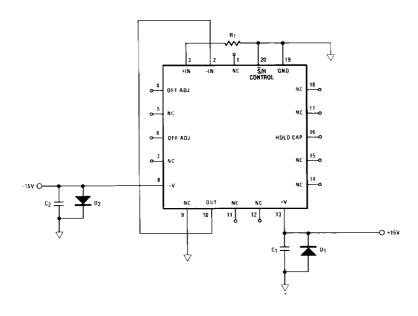

CHART A. TEST CIRCUIT CONDITIONS (SEE TEST CIRCUIT - FIGURE 1)


				اڅ	· . I	<u>g</u>			ś	SWITCH POSITION	OSITIC	z	ŀ		MEA	MEASURE	MEASURED PARAMETER	
PARAMETER	NOTES	→	ڄ	ΛDC	S/H	4 EOUT	S1	\$2	S	22	જ	g S	S7	88	VALUE	UNITS	EQUATION	ONITS
oı,		15	-15	0	0.8	 	-	-	-	-	-	-	-	-	E1	>	V _{IO} = E1/200	۸
OI		15	-15	۰	8.0	1	ī	ı	1	1	1	i	1	ı		^	¹ (O = (E7-E10)/10 ⁶	Ψu
ţ _B		15	-15	0	9:0	1	2	2		-	-	2	-	4	E7	^	lB+ = E7/10 ⁶	٩u
<u>-</u> 6		15	-15	0	0.8	1	-		-	-	-	2	-	4	E10	>	łB- = E10/10 ⁶	Ψu
*Avs	-	15	-15	٥	9.0	1	-	-	-	-	2	-	-	-	E25	>	+Avs = 20log ₁₀ [(E25-E26)/200]	8
	-	15	-15	-10	9.0	1	-	-	-	-	2	-	-	-	E26	>		
-Avs	-	15	-15	٥	0.8	-	-	-	-	-	2	-	-	-	E27	^	-Avs = 20log ₁₀ [(E27-E28)/200]	g
	-	15	-15	+10	9.0	-	٠	ı	1	-	7	-	-	-	E28	۸		
CMRR	4	25	ċ	-10	10.8	80	-	-	-	-	-	-	-	-	E17	۸	-CMRR = 2010910 [10/((E1-E17)/200)]	ав
+CMRR	5	5	-25	10	-9.2		-	-		-	-	-	,- -	-	E18	>	+CMRR = 20log ₁₀ [10/((E1-E18)/200)]	Вb
0,		15	-15	-13	0.8	5	,	-	-	က	-	-	-	6	121	μA	+l _O = 121	ΨW
٥-		15	-15	+13	8.0	3 -10	-	-	-	е	-	-	-	е	122	ΨW	-l _O = 122	Ψ
40V+	-	15	-15	-14	9.0	1	-	-	-	ო	2	-	-	က	E23	^	+V _{OP} = E23	>
dO∧-	-	15	-15	+14	8.0	 m	-	-	-	e	2	-	-	9	E24	>	-V _{OP} = E24	>
Ω1 .		15	-15	٥	8.0	-	-	-	-	-	-	-	-	-		ΨW		μM
သု		15	-15	0	9.0	1	-	1	-	-	-	-	-	-		mA		ΨΨ
+PSRR		10	-15	0	0.8	1	-	,-	-	-	-	-	1	*	E13	۸	+PSRR = 20log ₁₀ [10/(E13-E14)]	ВÞ
		20	-15	٥	0.8	1	-	-	-	-	-	-	-	1	E14	۸		
-PSRR		15	-10	0	9.0	1	-	1	-	1	-	-	1	1	E15	۸	-PSRR = 2010910 [10/(E15-E16)]	ЯВ
		15	-20	0	8.0	1		1	-	-	-	-	-		E16	۸		
Z.		15	-15	0	0	i	-	-	-	-	-	-	-	-	H/S _I	Ψή		ΨM
I _{N2}		15	-15	٥	ιΩ	i	-	-	-	-	-	+		-	H/S _I	γn		Αm
٥	1, 6	15	-15	٥	4.0	1	-	-	-	ო	7	-	2	1	Aour	Λm	$I_D = C_H \times \Delta V / \Delta T$	νΨ
Hold Step	9	15	-15	0	0	1	-	-	-	3	2	-	2	1	AOUT1	νm	Verror = AOUT1-AOUT2	ΛE
Error	D .	15	-15	٥	4.0		-	1	-	က	2	+	7	-	Аоитг	Λm		
TR(tr)	2	15	-15	1	8.0	-	-	-	-	က	2	-	2	-	Aout	See Notes	TR(tr) = 10% to 90%	SU
TR(tf)	2	15	-15	1	9.0	-	-	-	-	6	2	-	2	٦	Aout	See Notes	TR(tf) = 90% to 10%	\$u
TR(+0S)	2	15	-15	1	0.8	-	1	-	1	က	2	-	2	-	Aout	See Notes	TR(+OS) = (Vpeak-Vfinal)/Vfinal × 100	%
TR(-0S)	2	15	-15	1	0.8		-	-	-	3	. 2	-	2	-	Aour	See Notes	TR(-OS) = (Vpeak-Vfinal)/Vfinal × 100	%
TR(+SR)	3	15	-15	Ľ	9.0	1	-	-	-	၈	7	-	2	-	Aout	See Notes	TR(+SR) = JV/JT	St//V
TR _(-SR)	8	15	÷.		0.8	-	-	-	-	က	2	-	2	+	Aour	See Notes	TR(-SR) = JV/JT	St//V

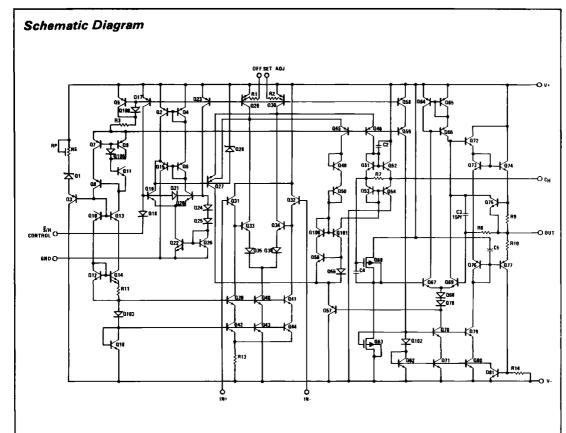
NOTES: 1. RLDC = 2kt) $2. \ V_{QUT} = 200mV_{P-P}. \ R_{L} = 2kt), \ C_{L} = 50pF \\ 3. \ V_{QUT} = 10V \ Siep. \ R_{L} = 2kt), \ C_{L} = 50pF$

7-7


^{4.} Package GND held at +10V for this test.
5. Package GND held at -10V for this test.
6. VAC = 0V


Burn-In Circuits

HA-2420/883 (CERAMIC DIP)



 $\begin{array}{l} R_1=100k\Omega,\ \pm 5\%\ (per\ socket)\\ C_1=C_2=0.1\mu F\ (one\ per\ row)\ or\\ 0.01\mu F\ (one\ per\ socket)\\ D_1=D_2=1N4002\ or\ equivalent\ (per\ board) \end{array}$

HA-2420/883 (CERAMIC LCC)

 $\begin{array}{l} R_1 \simeq 100k\Omega, \ \pm 5\% \ (per socket) \\ C_1 = C_2 \simeq 0.1 \mu F \ (one per row) \ or \\ 0.01 \mu F \ (one per socket) \\ D_1 = D_2 = 1N4002 \ or \ equivalent \ (per board) \end{array}$

Die Characteristics

DIE DIMENSIONS: 97 x 61 x 19 mils METALLIZATION

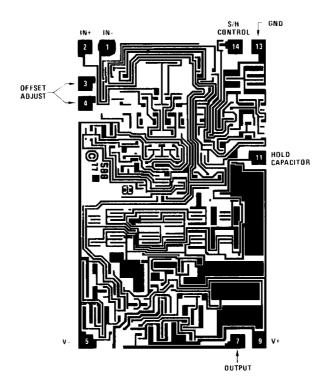
Type: Al Thickness: 16kÅ ± 2kÅ

GLASSIVATION Type Silox Thickness: 14kÅ ± 2kÅ

WORST CASE CURRENT DENSITY: 1.7 x 105 A/cm²

TRANSISTOR COUNT:

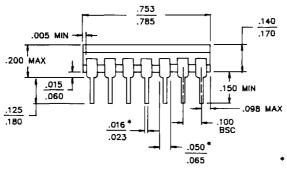
HA-2420/883 78

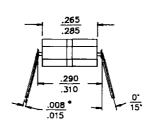

PROCESS: Bipolar-DI

DIE ATTACH

Material: Gold/Silicon Eutectic Alloy Temperature: Ceramic DIP — 460°C (Max)
Ceramic LCC — 420°C (Max)

Metallization Mask Layout


HA-2420/883



NOTE Pad Numbers Correspond to DIP Package Only

Packaging †

14 PIN CERAMIC DIP

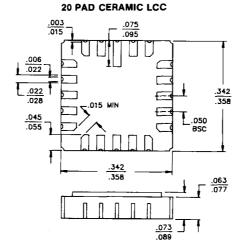
 INCREASE MAX LIMIT BY .003 INCHES MEASURED AT CENTER OF FLAT FOR SOLDER FINISH

LEAD MATERIAL: Type B LEAD FINISH: Type A

PACKAGE MATERIAL: Ceramic, 90% Alumina

PACKAGE SEAL:

Material: Glass Frit


Temperature: $450^{\circ}\text{C} \pm 10^{\circ}\text{C}$ Method: Furnace Seal

INTERNAL LEAD WIRE:

Material: Aluminum Diameter: 1.25 Mil

Bonding Method: Ultrasonic

COMPLIANT OUTLINE: 38510 D-1

PAD MATERIAL: Type C

PAD FINISH: Type A FINISH DIMENSION: Type A

PACKAGE MATERIAL: Multilayer Ceramic, 90% Alumina

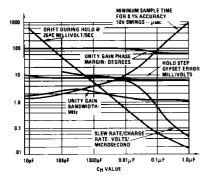
PACKAGE SEAL:

Material: Gold/Tin (80/20) Temperature: 320°C ± 10°C Method: Furnace Braze **INTERNAL LEAD WIRE:**

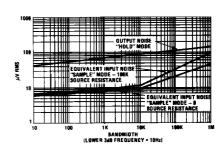
Material: Aluminum Diameter: 1.25 Mil

Bonding Method: Ultrasonic COMPLIANT OUTLINE: 38510 C-2

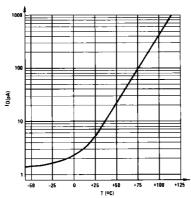
HA-2420

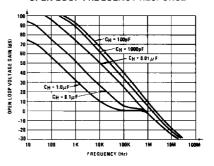

DESIGN INFORMATION

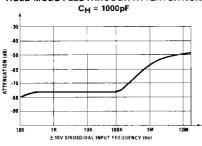
Fast Sample and Hold

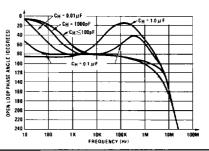

The information contained in this section has been developed through characterization by Harris Semiconductor and is for use as application and design data only. No guarantee is implied.

Typical Performance Curves Unless Otherwise Specified: VSUPPLY = ±15VDC, TA = +25°C, CH = 1000pF


TYPICAL SAMPLE AND HOLD PERFORMANCE AS A FUNCTION OF HOLDING CAPACITOR

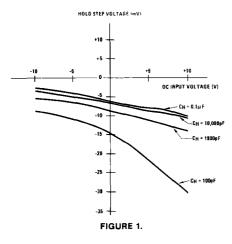

BROADBAND NOISE CHARACTERISTICS


DRIFT CURRENT vs. TEMPERATURE

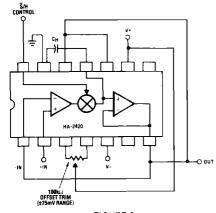

OPEN LOOP FREQUENCY RESPONSE

HOLD MODE FEEDTHROUGH ATTENTUATION

OPEN LOOP PHASE RESPONSE


7

DESIGN INFORMATION (Continued)


The information contained in this section has been developed through characterization by Harris Semiconductor and is for use as application and design data only. No guarantee is implied.

Offset and Gain Adjustment

HOLD STEP vs. INPUT VOLTAGE

BASIC SAMPLE-AND-HOLD (TOP VIEW)

FIGURE 2.

OFFSET ADJUSTMENT

The offset voltage of the HA-2420 may be adjusted using a $100 k\Omega$ trim pot, as shown in Figure 2. The recommended adjustment procedure is:

- Apply zero volts to the sample-and-hold input, and a square wave to the S/H control.
- Adjust the trim pot for zero volts output in the hold mode.

GAIN ADJUSTMENT

The linear variation in pedestal voltage with sample-and-hold input voltage causes a -0.06% gain error ($C_{H} = 1000 \mathrm{pF}$). In some applications (D/A deglitcher, A/D converter) the gain error can be adjusted elsewhere in the system, while in other applications it must be adjusted at the sample-and-hold. The two circuits shown below demonstrate how to adjust gain error at the sample-and-hold.

The recommended procedure for adjusting gain error is:

- 1. Perform offset adjustment.
- Apply the nominal input voltage that should produce a +10V output.
- 3. Adjust the trim pot for +10V output in the hold mode.
- Apply the nominal input voltage that should produce a -10V output.
- 5. Measure the output hold voltage (V-10 NOMINAL). Adjust the trim pot for an output hold voltage of

INVERTING CONFIGURATION

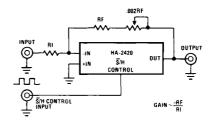


FIGURE 3.

NONINVERTING CONFIGURATION

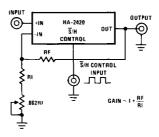


FIGURE 4.