
1 http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999

Keeping Time with the Intersil CDP68HC68T1
Real Time Clock and the “Millennium Bug”

Introduction
The Intersil CDP68HC68T1 is a multifunctional CMOS real
time clock with 32 bytes of general purpose RAM and vari-
ous power sense and watchdog control circuitry. The main
function of the CDP68HC68T1 (henceforth referred to as the
“T1”) is to keep accurate time in the form of seconds,
minutes, hours, days, months and years. The interface to the
T1 is through the SPI interface, available on many Intersil
68HC05 microcontrollers and other popular MCUs.

This application note deals with various techniques for keep-
ing time with the T1, including keeping track of years into the
21st century and beyond.

This application note assumes that the reader has read and
has access to the CDP68HC68T1 technical data sheet (Intersil
file number 1547.3). A copy of this data sheet may be obtained
from your local Intersil Corporation sales representative, down-
loaded from the Internet at http://www.intersil.com, or obtained
from the Intersil AnswerFAX line at 1-407-724-7800.

The “Millennium Bug” or “Y2K” Problem
The “Millennium Bug” (also referred to as the Year 2K and the
Y2K problem) is one of the latest problems facing the software
development industry. The problem is very simple - a lot of
computer programs have been written to accept only two digits
to represent the year for any given input. Thus, the program
uses the two digits entered and assumes that the year is in the
20th century (i.e. the first two numbers are “19”). Thus, entry
“74” for the year refers to the year “1974”, and so on. Now that
the turn of the century is approaching, the last two digits of the
year are going to start over at “00”. The result? Lots of comput-
ers are going to think that it’s the year 1900. As you may image,
a lot of chaos will ensue if the problem is not fixed. Paychecks
will not be issued, air traffic control systems may shut down,
your bank account may be frozen, and the list goes on. As this
application note is being written, there are companies popping
up all over the world for the express purpose of fixing this prob-
lem (it is estimated that it will cost over $600 billion US to fix!).
However, keep in mind one important fact -- for the most part,
the millennium bug is a SOFTWARE problem. Most hardware
devices, the CDP68HC68T1 inclusive, will keep the correct
time through the year 2000 if programmed correctly.

Now, you may be thinking that if the millennium bug is a soft-
ware problem, there is nothing to worry about with using the
T1. For the most part, this is true - if programmed correctly,
the host MCU interfacing with the T1 will keep the correct
time into the 21st century. Unfortunately, with all of the hype
about the millennium bug problem in the software world,
people have begun to worry about the problem arising in the
hardware (i.e. real time clocks like the CDP6818 and the T1).
Some companies have even designed devices to be “Year
2000 compliant”. As stated before, the T1 and most other
real time clock devices will function just fine in the year 2000
provided the application software is written correctly.

This application note will discuss more about the implica-
tions of the year 2000 and using the T1 later in the section
Tracking the year and the “Millennium Bug” . First, we will
discuss general time keeping techniques for use with the T1.

Keeping Time with the T1
Keeping time using the T1 is a very simple and easy task. The
T1 keeps track of seconds, minutes, hours, days of the week,
dates, months and years in BCD (binary coded decimal) format
in a series of seven 8 bit internal registers. Once set, the T1 will
keep track of all of these values, incrementing them as needed
based on a 1Hz clock generated from an external oscillator.
Values in the registers will “roll over” when appropriate so as to
keep time according to the western Gregorian calendar. The T1
also accounts for leap years (i.e., Feb 28, 1996 will roll over to
Feb 29, 1996. Feb 28, 1997 will roll over to Mar 1, 1997).

Timing and the T1

Before we start talking too much about how time is tracked in
the T1, first we need to discuss the device’s external and
internal timing.

To keep track of time, the T1 needs an accurate clock source.
There are three types of clocks that the T1 can use - an exter-
nal square wave input on the XTALIN input pin, a standard
crystal oscillator circuit using XTALIN and XTALOUT, or 50/60
Hz AC line voltage on the LINE input pin (standard 120V AC
line current is regulated very accurately to 60Hz in North
America and can act as a good clock source).

For the square wave and crystal oscillator setups, there are
four frequencies that should be used with the T1. These are
32.768kHz, 1.048576MHz, 2.097152kHz and 4.194304MHz.
Using frequencies other than these will directly affect the
accuracy of the T1.

NOTE: Although the PC board layout of a crystal oscillator
circuit is an important consideration in all designs, it is even
more so when using a 32.768kHz crystal with a device like
the T1. The reason is that these slow oscillating crystals
(with respect to 2MHz and 4MHz crystals) have slower rise
and fall times and as a result spent a lot more time around
the midpoint of the CMOS inverter being used to oscillate
the crystal. This makes the oscillator circuitry especially sen-
sitive to external noise. When using a 32.768kHz crystal, be
careful to place the crystal as close to the device as possi-
ble. The PC board traces for the oscillator circuit should
never be more than an inch long and should not run parallel
to each other. Also, it is a good idea to shield the oscillator
traces by running a ground trace or ground plane around the
circuitry. This will help to insure that no unnecessary clocks
are generated internally to the T1 due to noise. Finally, as
with most CMOS integrated circuits, it is a good idea to place
a 0.1µF capacitor across the VDD and VSS supplies of the
device to decouple and filter out any unwanted noise.

Application Note November 1997 AN9766

https://www.datasheetcrawler.com/
https://www.stockedmro.com/

2

Address Space and Register Addressing

Internally, the T1 can be viewed as a 64 byte address space,
as shown in Figure 1. In this space are contained 13 timer
control and status registers, 32 bytes of general purpose
RAM and 19 unused bytes. The host MCU controls which
byte is being written to or read from by sending an address
byte at the beginning of every SPI data transfer. Since the
highest addressable location in the T1 is location $32, only 6
address bits are needed to access the entire T1 address
space. Thus, the address byte consists of the write/read bit,
one unused bit, and six address bits. After the address byte
is sent, the MCU either sends the data to be written or starts
a transmission to read from the T1. For example, to write a
$24 to the seconds register (location $20), the MCU would
send $A0, $24. The $A0 byte is the address ($20) with the
MSB set, indicating a write operation. To read the seconds
register, the MCU would send $20, $xx, where $xx is a “don’t
care byte” sent by the MCU to start the SPI transmission.
The data sent to the T1 during a read operation is ignored.
The data being read from the T1 is shifted out to the MCU
through the MISO pins.

When writing to and reading multiple data bytes from the T1,
it is advantageous to use the auto-increment feature of the
address pointer. Each time a byte is written to or read form

the T1, the internal address pointer increments to the next
available address. By starting a subsequent transmission to
the T1 without lowering the CE pin of the T1, the MCU can
write or read multiple data bytes in one session. For exam-
ple, the seconds, minutes and hours registers in the T1 are
at locations $20, $21, and $22, respectively. To read all three
in one transmission, the MCU would send the address byte
$20 (note that the MSB of the address byte is low signifying
a read operation), $xx, $xx, and $xx. After the address byte
is sent, the MCU sends a dummy byte to start a SPI trans-
mission to read the contents of the seconds register ($20).
Once the T1 sends the seconds, its internal address pointer
increments to $21. When the next transfer is started, the
contents of this location are sent, and so on. The example
code in Appendix A shows how this technique is used to set
and read the complete date and time in one SPI transfer.

Note that the auto-increment feature confines the address
pointer to either the RAM locations or the timer register loca-
tions, exclusively. When addressing locations in RAM space
($00-$1F), the address pointer will wrap to $00 after location
$1F. Similarly, when accessing the timer registers, the address
pointer will wrap from location $3F to $20. Thus, you cannot
read RAM data and timer data in the same SPI transfer.

Data Format

One of the most important things to remember about the way

the T1 keeps time is that the values in the clock registers are
in a binary coded decimal (BCD) format. Each byte wide reg-
ister is divided into two four bit nibbles; each nibble can repre-

SECONDS

MINUTES

HOURS

DAY OF WEEK

DATE

MONTH

YEARS

NOT USED

SEC ALARM

MIN ALARM

HRS ALARM

NOT USED

NOT USED

NOT USED

NOT USED

NOT USED

STATUS REGISTER

CONTROL REGISTER

INTERRUPT CONTROL REGISTER

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

$20

$21

$22

$23

$24

$25

$26

$27

$28

$29

$2A

$2B

$2C

$2D

$2E

$2F

$30

$31

$32

CLOCK/CALENDAR

13 BYTES UNUSED

TEST MODE

32 RAM LOCATIONS

$00

$1F

$20

$32

$33

$3F

$5585

63

51

50

32

31

0

R = READABLE W = WRITABLE

R, W

R, W

R, W

R, W

R, W

R, W

R, W

W

W

W

R

R, W

R, W

FIGURE 1. MEMORY MAP OF THE CDP68HC68T1

Application Note 9766

https://www.datasheetcrawler.com/
https://www.stockedmro.com/

3

sent decimal numbers 0 through 9 with the binary numbers
%0000 through %1001. Thus, to represent 54 minutes the T1
would contain the number %01010100 ($54) in the minutes
register. As a result, hexadecimal numbers $A-$F are not
valid (except in the case of the hours register -- see explana-
tion below). This is important to remember for those of you
who are used to keeping track of numbers in hexadecimal for-
mat -- e.g., to represent December in the months register, you
need to write a BCD “12” ($12) into the register, not $0C, the
hexadecimal equivalent to a decimal 12.

If you do write a value that is out of range for a particular reg-
ister (say, for example, you want to set the T1 day of the
month register to the 15th, so you write a $0F instead of a
$15), the T1 will not generate an error or let you know in any
way that there is invalid data in the register. Instead, it will con-
tinue to increment the data as necessary (for our example,
once every 24 hours) and will roll the data over when the last
appropriate value is reached. In the day register, the T1 will
increment from a $19 to a $20 (not a $1A) and from a $30 to a
$31 (if in a 31 day month) or to a $01 (if in a 30 day month).

While keeping the values in the time registers in BCD format
can be a burden when it comes to doing binary arithmetic,
having information in BCD format facilitates displaying the

time and date on an ASCII display device. In the example in
Appendix A, the time read from the T1 is written to a stan-
dard Optrex interface LCD. Converting the minutes value to
ASCII, for example, is trivial since all that is required is to
simply add $30 to the BCD values read from the T1. The
example code also shows how to easily display text for the
day or the week (Sun, Mon, etc.) and the month using the
values read from the T1. A table of the timer registers, their
valid BCD ranges and examples is shown in Table 1.

Once a time and a date has been written into the T1, all of
the values in the timer register will increment appropriately
from the 1Hz clock divided down from the external oscillator.
Thus, the minutes register will increment every time the sec-
onds rolls from $59 to $00, the hours register will increment
very time the minutes roll from $59 to $00, and so on. The
T1 is designed to know that 1 day is 24 hours (rolling over at
11:59 p.m., or 23:59), there are 7 days in a week, there are
30 days in April, June, September, and November, there are
31 days in January, March, May, July, August, October and
December, and there are 28 days in February except during
leap years. It also knows to increment the year on December
31 at 11:59 p.m.

TABLE 1. CLOCK/CALENDAR AND ALARM DATA MODES

ADDRESS LOCATION
(H) FUNCTION DECIMAL RANGE BCD DATA RANGE

(NOTE 1)
BCD DATE EXAMPLE

20 Seconds 0-59 00-59 18

21 Minutes 0-59 00-59 49

22 Hours
12 Hour Mode

(Note 2)

1-12 81-92 (AM)
A1-B2 (PM)

A3

Hours
24 Hour Mode

0-23 00-23 15

23 Day of the Week
(Sunday = 1)

1-7 01-07 03

24 Day of the Month
(Date)

1-31 01-31 29

25 Month
Jan = 1, Dec = 12

1-12 01-12 10

26 Years 0-99 00-99 85

28 Alarm Seconds 0-59 00-59 18

29 Alarm Minutes 0-59 00-59 49

2A Alarm Hours (Note 3)
12 Hour Mode

1-12 01-12 (AM)
21-32 (PM)

23

Alarm Hours
24 Hour Mode

0-23 00-23 15

NOTES:

1. Example: 3:49:18, Tuesday. Oct. 29,1985.

2. Most significant Bit, D7, is “0” for 24 hours, and “1” for 12 hour mode. Data Bit D5 is “1” for P.M. and ‘0” for A.M. in 12 hour mode.

3. Alarm hours. Data Bit D5 is “1” for P.M. and “0” for A.M. in 12 hour mode. Data Bits D7 and D6 are DON’T CARE.

Application Note 9766

https://www.datasheetcrawler.com/
https://www.stockedmro.com/

4

The T1 also has the capability to track hours in a 12 hour or
24 hour format. A flag bit in hours register (bit 7) controls this
option. If set, the T1 counts hours from 1 to 12. If B7 is clear,
the T1 will count hours from 0 to 23. Note that in 12 hour
mode, bit 5 of the hours register becomes a flag bit to indi-
cate a.m. or p.m. The example code in Appendix A displays
the hours in 12 hour format and uses this flag bit to display
a.m. or p.m.

Tracking the Year and the “Millennium Bug”

Keeping track of all aspects of the current time with the
exception of the year is very straight forward with the T1. For
Example, to set the current time to 5:33:34 p.m., Wednes-
day, August 20, write the following to the T1:

• $34 to the seconds register ($20)

• $33 to the minutes register ($21)

• $A5 (bits 7 and 5 are set to indicate 12 hour mode and
p.m.) to the hours register ($22)

• $04 (Wednesday is the 4th day of the week) to the day of
the week register ($23)

• $20 to the day of the month register ($24)

• $08 (August is the 8th month of the year) to the month reg-
ister ($25)

The year register, however, only has room for a two digit
BCD number. So how do we represent a four digit year?
Does $97 in the year register mean 1997 or 2097? One
might think that because there is no century counter in the
T1 that this part will obviously not work in the 21st century.
The only solution is to get a more expensive real time clock
with a four digit year counter. This is, however, not the case.
The solution is very simple but is one that must be known to
the application designer -- the year must be kept track of in
software.

Unlike complex PC and mainframe based applications that
must be able to trace dates in the past (birth dates into the
1800’s) and well as into the future (driver’s license expiration
dates into the 21st century), the T1, like most real time
clocks, is only concerned with the time and date right now.
With that in mind it is quite easy to track the year in software.

For example, let’s say we are designing a VCR and we are
using the T1 as the clock. Our microcontroller must be able
to read the T1 and know the exact time and date. This infor-
mation will be displayed in the on-screen display and used to
start or stop the VCR depending on how the user has pro-
grammed it. The time and date for the VCR is set in the T1
by inputs from the user and it can be assumed that the T1
will always be tracking the current time. Since it would be
useless for most customers to set the VCR clock to a day in
the past (8:37 p.m. on May 6, 1974 for example), the MCU
program does not need to be concerned with dates in the
past. With that in mind, we can pick a year, 1997 perhaps,
that to VCR clock cannot be set before. By doing this the
software can be written such that any year read from the T1
that is before $97 must refer to a date from 2000 to 2096.
Otherwise, it must be a date from 1997 to 1999. This gives
our VCR a 100 year usable date range from January 1, 1997

to December 31, 2096. This is acceptable since the odds
that the VCR will still be around in 2095 are pretty slim.

The code example in Appendix A demonstrates this tech-
nique. When the year is read from the T1, it is compared to
the number $97. If the current year is lower ($00 - $96), the
MCU adds the century on as “20”. Otherwise the century “19”
is added. For example, if the MCU reads the year as $05, it
will display the year as 2005. If the year is read as $98, the
MCU will display 1998. Thus, 11:59:59 p.m. on December 31,
1999 will be followed immediately by 12:00:00 on January 1,
2000 (this is, incidentally, not the beginning of the new millen-
nium -- January 1, 2001 is). None of the values in the T1 timer
registers need to be altered in this transition.

An alternative approach to the “century assumption” method
detailed above is to have the host MCU keep track of the
century in a RAM byte. In this situation, the MCU would sim-
ply increment this century counter in RAM every time it
detects a transition from December 31 to January 1. The
simplest way of handling this would be to store the month in
a RAM byte every time the MCU reads the date from the T1.
On the next date read, the MCU would check the current
month (read from the T1 month register at location $25)
against the month value read last time the T1 was accessed
(stored in RAM). If the current month is less than the old
month, MCU would increment the century counter. Keep in
mind, this method assumes the T1 is accessed by the MCU
at least once every 11 months. Ideally, the century byte and
old month value could be stored in the RAM of the T1 itself,
thus allowing the MCU to power down without losing track of
the year. Utilizing this method allows the T1 to keep track of
the correct time indefinitely.

Now, since it is easy to use the T1 right through the year
2000, there should be no other concerns, right? Well, not
exactly. There is one more thing to be considered when deal-
ing with the turn of the century. This concern is the fact that
the year 2000 is a leap year and there will be a February 29,
2000.

Big deal, right? There is a leap year every four years, right?
Well, not exactly. One of the features of the Gregorian calen-
dar used by most of western civilization is that there is an
extra day (February 29) in every year evenly divisible by 4,
except for century years (1700, 1800, 1900, etc.) NOT divisi-
ble by 400. This was done to compensate for the fact that the
earth revolves around the sun in 365.244 days, not 365.25.
Thus, the year 1800, 1900, 2100 and 2200 are NOT leap
years, even though they are evenly divisible by four.

So what does this mean in terms of the T1? Well, the T1
keeps track of leap year by incrementing the date to Febru-
ary 29 at midnight on February 28 when the value in the year
counter is evenly divisible by 4. If the application software
uses the year counter as described previously (where $00 in
the year counter represents the year 2000), there is no prob-
lem. Since the year 2000 is a leap year, the T1 will keep per-
fect time and there will be no trace of the millennium bug.

If you use the year $00 to represent 1900, 2100, or any year not
divisible by 400, the T1 will increment to February 29, errone-
ously considering the year to be a leap year. Since it is not likely
that any applications using the T1 will need to track the year

Application Note 9766

https://www.datasheetcrawler.com/
https://www.stockedmro.com/

5

1900 or 2100 (unless you are building a time machine), this is
not a problem. Thus, there is no “Millennium Bug” in the T1. If
an application using the T1 needs the value $00 in the year reg-
ister to represent the year 1900, for example, it is simple
enough to have the software check the date and, if it is equal to
Feb 29, 00, increment the date to March 1.

Example Program
On the following pages is an example program written to dem-
onstrate some of the time keeping techniques discussed in this
application note. This program is written in 68HC05 assembly
language and targets an 8-bit Intersil CDP68HC05C8B micro-
controller. This code has been written so that even those with
little to no experience with 68HC05 assembly language can
hopefully follow along. For more information on CDP68HC05
microcontrollers, visit the Intersil 68HC05 web site on the Inter-
net at http://www.intersil.com/68hc05.

The function of the example program is quite simple. The
68HC05 MCU reads the time data from the seven clock reg-
isters in the T1 (locations $20 to $26) and uses this data to
display the current date and time on an Optrex LCD module.
The display format for the data is:

Day HH:MM:SS a.m./p.m.
Month Date, 4 digit year

Thus, the current date and time as this application note is
being written would be displayed as:

Thu 10:14:34 p.m.
Aug 21, 1997

NOTE: The LCD interface subroutines used by the 68HC05
in this program have not been listed in the listing file for brev-
ity. For a listing and explanation of these subroutines, please
refer to the Intersil application note AN9702, “Keypad scan
and LCD interface for the CDP68HC05”.

When reading data from the T1, the 68HC05 does a “burst”
read of all seven clock registers. As described before, this can
be done because the T1 automatically increments its internal
address pointer every time a register is read from or written to.
In the example program, the 68HC05 sends the command to
read from address $20 (the seconds register and the lowest
addressed clock register). The 68HC05 then starts another
SPI transmission to read the data from the seconds register.
Once the data transfer is complete, the T1 increments its
address pointer and is now pointing at location $21. When the
68HC05 starts the next SPI transmission (without lowering the
CS pin of the T1), the T1 will shift out the contents of the min-
utes register ($21). The 68HC05 keeps initiating SPI transfers
in this way until all seven T1 clock registers are read.

Now, the MCU could have lowered the CS of the T1 after it
received the first byte of data. If the 68HC05 then wanted to
read the minutes register, it would then raise the CS line,
send the command to read from address $21, and then start
another SPI transmission to read the data. Any of the regis-
ters in the T1 may be read in this fashion. However, since the
clock registers are arranged sequentially in the T1 memory
space, it is convenient and much faster to read them in the
burst mode described above.

Once all of the data is read from the T1 and stored into the
internal RAM of the 68HC05, the MCU uses this data to display
the current time and date on the LCD. Since all of the data read
from the T1 is in BCD format, displaying numerical data (sec-
onds, minutes, day of the month, etc.) is as simple as taking
each nibble of the BCD byte, adding $30 (ASCII ‘0’) to convert it
to ASCII, and sending it to the LCD. Displaying the day, month,
and year are a little different but still very simple.

For the day and the month, we would like to display their abbre-
viation, not just their number. To do this, we set up a table of
“pointers” to the ASCII text messages set up in the 68HC05
memory. Using the day or month number, the 68HC05 can pick
an address out of the pointer table that corresponds to the
address of the text message. For example, let’s say the
68HC05 reads the day as “$05” from the T1. This represents
Thursday, or “Thu”. The 68HC05 then loads this value into the
index register and loads the accumulator with the value at day-
Table, x. What this does is form an address by adding the con-
tents of the index register ($05) and the address of dayTable
($27F). The accumulator is loaded with a byte from the result-
ant address ($284). This byte (decimal 24, hex $18) is the value
of the lower byte of the address of the “Thu” message in mem-
ory (located at $318). The “txlcd1” subroutine, used to send text
messages to the LCD, knows that the high byte of the address
is $03. This is similar to loading a value from a C pointer array
called dayTable by saying &message = dayTable[day]. In this
way both the month and the day are displayed.

The full four digit year is displayed as apart of this program
using the method talked about in the Tracking the year and
the “Millennium Bug” section. The two digit year is read
from the T1 and stored in the RAM of the 68HC05. When it
comes to displaying the full date, this program has been writ-
ten such that years “00” through “96” will have a “20” added as
the century counter. Years “97” to “99” will have a “19” added
as the century. Thus, this clock will roll over from 11:59:59
p.m, December 31, 1999 to 12:00:00 a.m., January 1, 2000.

Setting the time in this program is done by issuing a software
interrupt (SWI). When this is done, the SWI interrupt service
routine (ISR), located at address $262, will take the values in
the 68HC05 RAM locations $50 to $56 and write them to the
T1 clock register locations $20 to $26, respectively. This pro-
gram was tested on a Intersil 68HC05ICEC1-EV in-circuit
emulator system so that all that was necessary to change the
time was to alter the 68HC05 RAM locations and reset the
program. In a real application, the user program could possi-
bly receive input from a keypad as a part of an IRQ interrupt,
write this data into the proper RAM locations, call the SWI to
set the time and date, and then return. Upon returning from
the interrupt routine the new date and time would be set and
the clock would continue on from the new time.

Conclusion
The CDP68HC68T1 is a powerful and lost cost method to
keep track of real time in any MCU system. Despite the fact
that the T1 does not have a four digit century counter, with
the proper programming it can be impervious to the
“Millennium Bug” and all of its consequences. Any MCU sys-
tem will be able to keep time perfectly into the next century
with the T1 if a few simple software precautions are taken.

Application Note 9766

https://www.datasheetcrawler.com/
https://www.stockedmro.com/

6

Appendix A - CDP68HC05 to CDP68HC68T1 Interface Example Code Listing
INTERSIL Corporation (c)1990 - 1997
68HC05 Assembler Version 3.0.2
Filename: T1YEAR2K.LST
Source Created:08/21/97, 10:30 am
Assembled: 08/21/97, 10:30 am
00001 ;**
00002 ; aaaaaaaaaaaaa
00003 ; aH""""HHHH""""Ha
00004 ; aHH HHHH HHa COPYRIGHT 1995,1996,1997
00005 ; ,-. ,-. ,-. INTERSIL CORPORATION
00006 ; __/ |_/ |_/ |__
00007 ; HHH HHHH HHH
00008 ; HH HHHH HH
00009 ; "HHHHHHHHHHHH"
00010 ;
00011 ; File: t1year2k.s
00012 ;
00013 ; Version: 1.0
00014 ;
00015 ; Description:
00016 ; This is a simple program to demonstrate using the Intersil
00017 ; CDP68HC68T1 RTC in a simple time/date display circuit.
00018 ; This program interfaces a Intersil CDP68HC05C8B microcontroller
00019 ; to both the T1 and an Optrex LCD module. The clock data
00020 ; read from the T1 is displayed in the proper format on the LCD
00021 ; display.
00022 ;
00023 ; Note: The LCD interface subroutines have not been included
00024 ; in this listing file to conserve space. A full listing and
00025 ; explanation of these routines can be found in the Intersil
00026 ; application note AN9702, "Keypad scan and LCD interface for
00027 ; the CDP68HC05".
00028 ;
00029 **
00030
00031 ;***
00032 ; -- Constant definitions --
00033 ;***
00034
00035 #include <c8b.s>
------------------ START OF INCLUDE F:\6805\C8B.S ----------------
00001 #nolist
00123 #list
------------------ END OF INCLUDE F:\6805\C8B.S ------------------
00036
00037 $0002 = 2 lcd equ portc
00038 $0001 = 1 lcdctl equ portb
00039 $0006 = 6 rs equ 6
00040 $0005 = 5 rw equ 5
00041 $0004 = 4 e equ 4
00042 $0001 = 1 t1csp equ portb
00043 $0007 = 7 t1cs equ 7
00044
00045 ;***
00046 ; -- Variable definitions --
00047 ;***
00048
00049 0050 section ramVars, $50
00050
00051 0050 seconds ds 1
00052 0051 minutes ds 1
00053 0052 hours ds 1
00054 0053 day ds 1
00055 0054 date ds 1
00056 0055 month ds 1

Application Note 9766

https://www.datasheetcrawler.com/
https://www.stockedmro.com/

7

00057 0056 year ds 1
00058 0057 lcdTemp1 ds 1
00059 0058 lcdTemp2 ds 1
00060 0059 lcdTemp3 ds 1
00061 005A lcdTemp4 ds 1
00062 005B lcdTemp5 ds 1
00063 005C lcdTemp6 ds 1
00064 005D mytemp ds 1
00065
00066 ;***
00067 ; -- Macro definitions --
00068 ;***
00069
00070 #macro sendspi
00071 sta spdr
00072 brclr spif,spsr,*
00073 lda spdr
00074 #endmacro
00075
00076 ;***
00077 ; -- Program code --
00078 ;***
00079
00080 0100 section code, $100
00081
00082 [2] 0100 9C rsp ;reset stack pointer
00083 [2] 0101 9B sei ;mask interrupts
00084 [6] 0102 CD0241 jsr lcdIni ;initialize LCD
00085 [5] 0105 1E05 bset t1cs,t1csp+4 ;make t1 CS output
00086 [5] 0107 1F01 bclr t1cs,t1csp ;disable T1
00087 [2] 0109 A654 lda #(2!spe+2!mstr+2!cpha) ;SPI on, master, phase=pol=0, 1MHz
00088 [4] 010B B70A sta spcr
00089
00090 ;***
00091 ; -- Configure the CDP68HC68T1 --
00092 ;
00093 ; The T1 is set up with the control register ($31) = $81. This
00094 ; sets the START bit to enable the counter, sets the T1 up to use
00095 ; a 4.194304MHz oscillator, and to generate a 2MHz output on the
00096 ; clock out pin. All interrupts for the T1 are disabled by writing
00097 ; a $00 to the interrupt control register ($32).
00098 ;***
00099
00100 [2] 010D A681 lda #$81 ;Write an $81 to the control
00101 [2] 010F AE31 ldx #$31 ;register in the T1 at $31
00102* [6] 0111 AD7D jsr writet1
00103
00104 [2] 0113 A600 lda #$00 ;Write a $00 to the interrupt
00105 [2] 0115 AE32 ldx #$32 ;register in the T1 at $32
00106* [6] 0117 AD77 jsr writet1
00107
00108 ;***
00109 ; -- Set the time --
00110 ;
00111 ; In this code, the time is read from the T1 from the clock registers
00112 ; at $20 to $26 and placed in 6805 ram locations $50 to $56. From the
00113 ; data in these RAM locations the time display on the LCD is created.
00114 ; If an SWI is issued, the values in these RAM locations will be written
00115 ; to the T1 such as to set the current time.
00116 ;***
00117
00118 [10] 0119 83 swi ;this causes the data in RAM to be
00119 ;be written to the T1
00120
00121 ;***
00122 ; -- Displaying the Time --
00123 ;

Application Note 9766

https://www.datasheetcrawler.com/
https://www.stockedmro.com/

8

00124 ; In this program, all the 6805 MCU does is read the time and date
00125 ; values from the T1 and display them on a standard Optrex LCD. To do
00126 ; this, the 6805 does a burst read of the T1 clock locations $20 to $26
00127 ; and stores them in RAM at locations $50 to $56. The display section of
00128 ; this loop then takes this data, converts it to the appropriate display
00129 ; data and writes it to the LCD.
00130 ;***
00131
00132 displayLoop
00133
00134 [5] 011A 1E01 bset t1cs,t1csp ;enable t1
00135 [2] 011C A620 lda #$20 ;read all clock registers
00136 [M] 011E sendspi ;starting at address $20
00137 [2] 0125 AE50 ldx #seconds ;point X at 6805 RAM locations
00138
00139 getLoop
00140 [M] 0127 sendspi ;get all 7 clock registers in
00141 [4] 012E F7 sta x ;burst xfer mode
00142 [3] 012F 5C incx ;and store them to 6805 RAM
00143 [2] 0130 A356 cpx #$56
00144 [3] 0132 26F3 bne getLoop
00145 [5] 0134 1F01 bclr t1cs,t1csp ;when done, disable T1 CS
00146
00147 ;***
00148 ; -- Display Time and Date --
00149 ;
00150 ; This section of code takes the data read from the T1 and stored in
00151 ; the RAM of the 6805 and displays it as the time and date in the
00152 ; following format:
00153 ; Day HH:MM:SS a.m.
00154 ; Month Day, Year
00155 ; Thus, the current time as this code is being written is:
00156 ; Thu 10:42:03 a.m.
00157 ; Aug 21, 1997
00158 ;***
00159
00160 display
00161 [3] 0136 BE53 ldx day ;display day
00162 [5] 0138 DE027F ldx dayTable,x ;use pointer table to send address
00163 [6] 013B CD01D7 jsr txlcd1 ;of day message to txlcd1 routine
00164 [3] 013E B652 lda hours ;display hours (set up as am/pm)
00165 [2] 0140 A41F and #$1F ;mask upper 3 bits (am/pm and mode)
00166 [6] 0142 CD01C4 jsr txbcd ;send to LCD
00167 [2] 0145 A63A lda #’:’ ;send colon
00168 [6] 0147 CD01EF jsr wdlcd
00169 [3] 014A B651 lda minutes ;send the minutes to the LCD
00170* [6] 014C AD76 jsr txbcd
00171 [2] 014E A63A lda #’:’ ;and then another colon
00172 [6] 0150 CD01EF jsr wdlcd
00173 [3] 0153 B650 lda seconds ;and then the seconds
00174* [6] 0155 AD6D jsr txbcd
00175 [2] 0157 A620 lda #$20 ;and then a space
00176 [6] 0159 CD01EF jsr wdlcd
00177 [2] 015C A670 lda #’p’ ;test B5 of the hours data. If set,
00178 [5] 015E 0A5202 brset 5,hours,pm ;send "p.m." to the LCD. If clear,
00179 [2] 0161 A661 lda #’a’ ;send "a.m."
00180 pm
00181 [6] 0163 CD01EF jsr wdlcd
00182 [2] 0166 A66D lda #’m’
00183 [6] 0168 CD01EF jsr wdlcd
00184 [3] 016B BE55 ldx month ;use month data as pointer into
00185 [5] 016D DE0287 ldx monthTable,x ;string table. Send address of
00186* [6] 0170 AD65 jsr txlcd1 ;month text to txlcd1 routine
00187 [3] 0172 B654 lda date ;send the day of the month
00188* [6] 0174 AD4E jsr txbcd
00189 [2] 0176 A62C lda #$2c ;send a comma
00190* [6] 0178 AD75 jsr wdlcd

Application Note 9766

https://www.datasheetcrawler.com/
https://www.stockedmro.com/

9

00191 [2] 017A A620 lda #$20 ;send a space
00192* [6] 017C AD71 jsr wdlcd
00193 [2] 017E A619 lda #$19 ;send the 1st two digits of the year
00194 [3] 0180 BE56 ldx year ;if the year data is >$96, send
00195 [2] 0182 A396 cpx #$96 ;a $19. If less, send $20. This will
00196 [3] 0184 2202 bhi 20th ;give this program a date range from
00197 [2] 0186 A620 lda #$20 ;1-1-1997 to 12-31-2096
00198 20th
00199* [6] 0188 AD3A jsr txbcd ;send upper digits of the year
00200 [3] 018A B656 lda year ;then the lower digits
00201* [6] 018C AD36 jsr txbcd
00202
00203* [3] 018E 208A jmp displayLoop ;and loop
00204
00205 ;***
00206 ; -- Subroutines --
00207 ;***
00208
00209 ;***
00210 ; -- writet1 --
00211 ;
00212 ; This subroutine writes a byte of data, contained in A, to the
00213 ; address contained in X.
00214 ;***
00215
00216 writet1
00217 [5] 0190 1E01 bset t1cs,t1csp ;enable T1
00218 [4] 0192 B757 sta lcdtemp1 ;preserve A in temp location
00219 [3] 0194 B60B lda spsr ;read SPSR and SPDR to clear
00220 [3] 0196 B60C lda spdr ;the SPIF flag
00221 [2] 0198 9F txa ;X contains the T1 reg. address
00222 [2] 0199 AA80 ora #$80 ;Set write bit (B7)
00223 [4] 019B B70C sta spdr ;and send to T1
00224 [5] 019D 0F0BFD brclr spif,spsr,* ;wait for tx
00225 [3] 01A0 B657 lda lcdtemp1 ;get data byte to send
00226 [4] 01A2 B70C sta spdr ;and send it
00227 [5] 01A4 0F0BFD brclr spif,spsr,* ;wait for tx
00228 [3] 01A7 B60C lda spdr ;read SPDR to clear SPIF
00229 [5] 01A9 1F01 bclr t1cs,t1csp ;disable T1
00230 [6] 01AB 81 rts ;and return
00231
00232 ;***
00233 ; -- readt1 --
00234 ;
00235 ; This subroutine reads a byte of data, from the address contained
00236 ; in X and returns it in A.
00237 ;***
00238
00239 readt1
00240 [5] 01AC 1E01 bset t1cs,t1csp ;enable T1
00241 [3] 01AE B60B lda spsr ;clear the SPIF flag
00242 [3] 01B0 B60C lda spdr
00243 [2] 01B2 9F txa ;move the address to A
00244 [2] 01B3 A47F and #$7F ;clear W/R bit (B7)
00245 [4] 01B5 B70C sta spdr ;and send
00246 [5] 01B7 0F0BFD brclr spif,spsr,* ;wait for tx
00247 [4] 01BA B70C sta spdr ;write anything to SPDR to start tx
00248 [5] 01BC 0F0BFD brclr spif,spsr,* ;wait for tx
00249 [3] 01BF B60C lda spdr ;get received data
00250 [5] 01C1 1F01 bclr t1cs,t1csp ;disable T1
00251 [6] 01C3 81 rts ;and return
00252
00253 ;***
00254 ; -- txbcd --
00255 ;
00256 ; This subroutine takes a two BCD digits, contained in A, and writes
00257 ; them to the LCD. The data in A MUST BE BCD DIGITS!

Application Note 9766

https://www.datasheetcrawler.com/
https://www.stockedmro.com/

10

00258 ;***
00259
00260 txbcd
00261 [4] 01C4 B75D sta mytemp ;preserve A
00262 [3] 01C6 44 lsra ;shift high nibble to low nibble
00263 [3] 01C7 44 lsra ;to send the upper BCD digit to
00264 [3] 01C8 44 lsra ;the LCD
00265 [3] 01C9 44 lsra
00266 [2] 01CA AB30 add #$30 ;add $30 to convert to ASCII
00267* [6] 01CC AD21 jsr wdlcd ;and write the data to the LCD
00268 [3] 01CE B65D lda mytemp ;get the original value
00269 [2] 01D0 A40F and #$0F ;and mask to the lower nibble
00270 [2] 01D2 AB30 add #$30 ;add $30 to convert to ASCII
00271* [6] 01D4 AD19 jsr wdlcd ;and send to the LCD
00272 [6] 01D6 81 rts
00460
00461 ;***
00462 ; -- SWI Interrupt Routine --
00463 ;
00464 ; When called, this ISR will take the values in the 6805 RAM locations
00465 ; $50 to $56 and write them into the T1 clock data registers so as
00466 ; to set the time.
00467 ;***
00468 swiVec
00469 [5] 0262 1E01 bset t1cs,t1csp ;enable t1
00470 [2] 0264 A6A0 lda #$A0 ;write to all clock registers
00471 [M] 0266 sendspi ;starting at address $20
00472 [2] 026D AE50 ldx #seconds ;point X at 6805 RAM locations
00474 setLoop
00475 [3] 026F F6 lda x ;get data to send
00476 [M] 0270 sendspi ;and write to all 7 clock registers
00477 [3] 0277 5C incx ;($20-$26) in the T1
00478 [2] 0278 A356 cpx #$56
00479 [3] 027A 26F3 bne setLoop
00480 [5] 027C 1F01 bclr t1cs,t1csp ;when done, disable T1 CS
00481 [9] 027E 80 rti
00482
00483 ;***
00484 ; -- Pointer Tables --
00485 ;
00486 ; These two tables are used by to get the address of the weekday and
00487 ; month display strings. This address is used by txlcd1 to display
00488 ; the text on the LCD.
00489 ;***
00490
00491 dayTable
00492 027F 0000060C db 0,0,6,12,18,24,30,36
 0283 12181E24
00494 monthTable
00495 0287 2A2A3036 db 42,42,48,54,60,66,72,78,84,90,42,42,42,42,42,42,96,102,108
 028B 3C42484E
 028F 545A2A2A
 0293 2A2A2A2A
 0297 60666C
00497 ;***
00498 ; -- Display Text --
00499 ;
00500 ; This text is used to show the weekday and the month on the LCD.
00501 ; The BCD data from the T1 is used as a pointer into the dayTable and
00502 ; monthTable tables (above). The data loaded from the table is the
00503 ; offset of the text message from mesPage label. This offset is used
00504 ; by txlcd1 to find and display the text. Note that the first byte of
00505 ; each message is an LCD control character used to position the display
00506 ;***
00507
00508 0300 section mesPage,(*&$FF00+$100) ;start at even page boundary
00509

Application Note 9766

https://www.datasheetcrawler.com/
https://www.stockedmro.com/

11

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

Sales Office Headquarters
NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (407) 724-7000
FAX: (407) 724-7240

EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05

ASIA
Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029

00510 0300 8053756E db $80,"Sun ",$00
 0304 2000
00511 0306 804D6F6E db $80,"Mon ",$00
 030A 2000
00512 030C 80547565 db $80,"Tue ",$00
 0310 2000
00513 0312 80576564 db $80,"Wed ",$00
 0316 2000
00514 0318 80546875 db $80,"Thu ",$00
 031C 2000
00515 031E 80467269 db $80,"Fri ",$00
 0322 2000
00516 0324 80536174 db $80,"Sat ",$00
 0328 2000
00518 032A C04A616E db $C0,"Jan ",$00
 032E 2000
00519 0330 C0466562 db $C0,"Feb ",$00
 0334 2000
00520 0336 C04D6172 db $C0,"Mar ",$00
 033A 2000
00521 033C C0417072 db $C0,"Apr ",$00
 0340 2000
00522 0342 C04D6179 db $C0,"May ",$00
 0346 2000
00523 0348 C04A756E db $C0,"Jun ",$00
 034C 2000
00524 034E C04A756C db $C0,"Jul ",$00
 0352 2000
00525 0354 C0417567 db $C0,"Aug ",$00
 0358 2000
00526 035A C0536570 db $C0,"Sep ",$00
 035E 2000
00527 0360 C04F6374 db $C0,"Oct ",$00
 0364 2000
00528 0366 C04E6F76 db $C0,"Nov ",$00
 036A 2000
00529 036C C0446563 db $C0,"Dec ",$00
 0370 2000
00531 1FF4 section vectors, $1ff4
00532 1FF4 0100 dw code
00533 1FF6 0100 dw code
00534 1FF8 0100 dw code
00535 1FFA 0100 dw code
00536 1FFC 0262 dw swiVec
00537 1FFE 0100 dw code

Application Note 9766

https://www.datasheetcrawler.com/
https://www.stockedmro.com/

