

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and

MM74HCT245 Octal 3-STATE Transceive

SEMICONDUCTOR®

MM74HCT245 Octal 3-STATE Transceiver

General Description

The MM74HCT245 3-STATE bi-directional buffer utilizes advanced silicon-gate CMOS technology and is intended for two-way asynchronous communication between data buses. It has high drive current outputs which enable high speed operation even when driving large bus capacitances. This circuit possesses the low power consumption of CMOS circuitry, yet has speeds comparable to low power Schottky TTL circuits.

This device is TTL input compatible and can drive up to 15 LS-TTL loads, and all inputs are protected from damage due to static discharge by diodes to V_{CC} and ground.

The MM74HCT245 has one active low enable input (\overline{G}) , and a direction control (DIR). When the DIR input is HIGH, data flows from the A inputs to the B outputs. When DIR is LOW, data flows from B to A.

MM74HCT devices are intended to interface between TTL and NMOS components and standard CMOS devices. These parts are also plug-in replacements for LS-TTL devices and can be used to reduce power consumption in existing designs.

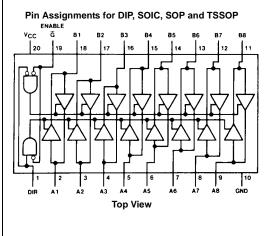
Ordering Code:

Order Number	Package Number	Package Description			
MM74HCT245WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide			
MM74HCT245SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide			
MM74HCT245MTC MTC20 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wi					
MM74HCT245N N20A 20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide					
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.					

Connection Diagram

Truth Table

Features

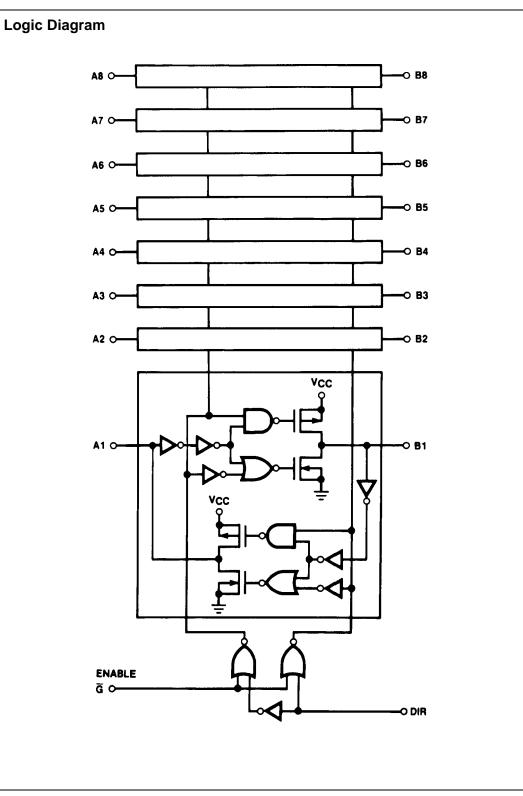

■ TTL input compatible

■ 3-STATE outputs for connection to system busses

■ High output drive current: 6 mA (min)

■ Low power: 80 µA (74HCT Series)

■ High speed: 16 ns typical propagation delay



Control Operation Inputs G DIR 245 L L B data to A bus L н A data to B bus Х н isolation H = HIGH Leve

L = LOW Level X = Irrelevant

© 2005 Fairchild Semiconductor Corporation DS005366

Absolute Maximum Ratings(Note 1)

	J = ()
(Note 2)	
Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage (V _{IN})	–1.5 to V _{CC} +1.5V
DC Output Voltage (V _{OUT})	–0.5 to V _{CC} +0.5V
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current,	±35 mA
DC V_{CC} or GND Current, per pin (I _{CC})	±70 mA
Storage Temperature Range (T _{STG})	–65°C to +150°C
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (TL)	
(Soldering 10 seconds)	260°C

Recommended Operating Conditions

	Min	Max	Units	
Supply Voltage (V _{CC})	4.5	5.5	V	
DC Input or Output Voltage				
(V _{IN} , V _{OUT})	0	V_{CC}	V	
Operating Temperature Range (T _A)	-40	+85	°C	
Input Rise or Fall Times				
(t _r , t _f)		500	ns	
Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.				

MM74HCT245

Note 2: Unless otherwise specified all voltages are referenced to ground. Note 3: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics

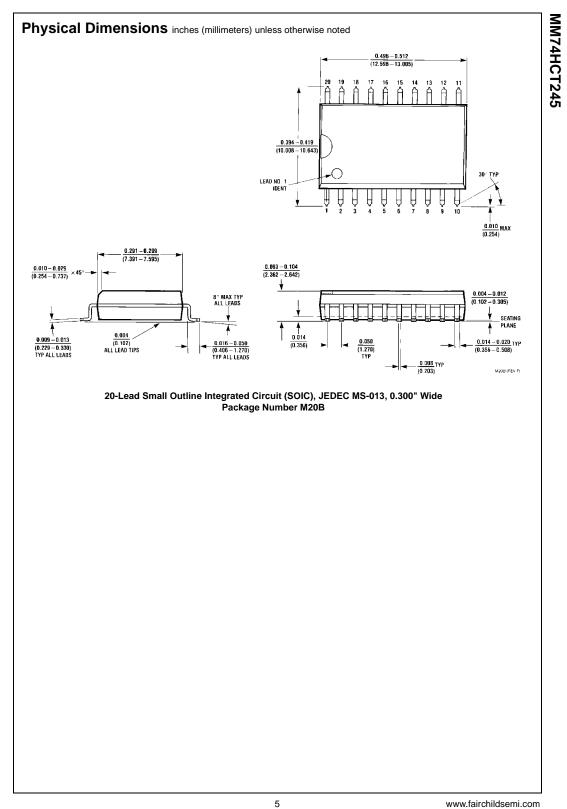
Symbol	Parameter	Conditions	T _A = 25°C		$T_A = -40$ to $85^{\circ}C$	$T_{A}=-55$ to $125^{\circ}C$	Units	
			Тур	p Guaranteed Limits			Units	
V _{IH}	Minimum HIGH Level Input Voltage			2.0	2.0	2.0	V	
V _{IL}	Maximum LOW Level Input Voltage			0.8	0.8	0.8	V	
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$	1					
	Output Voltage	$ I_{OUT} = 20 \ \mu A$	V _{CC}	V _{CC} - 0.1	V _{CC} - 0.1	V _{CC} - 0.1	V	
		$ I_{OUT} = 6.0 \text{ mA}, V_{CC} = 4.5 \text{V}$	4.2	3.98	3.84	3.7	V	
		$ I_{OUT} = 7.2 \text{ mA}, V_{CC} = 5.5 \text{V}$	5.2	4.98	4.84	4.7	V	
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$						
	Voltage	I _{OUT} = 20 μA	0	0.1	0.1	0.1	V	
		$ I_{OUT} = 6.0 \text{ mA}, V_{CC} = 4.5 \text{V}$	0.2	0.26	0.33	0.4	V	
		$ I_{OUT} = 7.2 \text{ mA}, V_{CC} = 5.5 \text{V}$	0.2	0.26	0.33	0.4	V	
I _{IN}	Maximum Input	$V_{IN} = V_{CC}$ or GND,		±0.1	±1.0	±1.0	μA	
	Current	V_{IH} or V_{IL} , Pin 1 or 19						
I _{OZ}	Maximum 3-STATE	V _{OUT} = V _{CC} or GND		±0.5	±5.0	±10	μA	
	Output Leakage	$\overline{G} = V_{IH}$						
	Current							
I _{CC}	Maximum Quiescent	V _{IN} = V _{CC} or GND		8	80	160	μA	
	Supply Current	$I_{OUT} = 0 \ \mu A$						
		V _{IN} = 2.4V or 0.5V (Note 4)	0.6	1.0	1.3	1.5	mA	

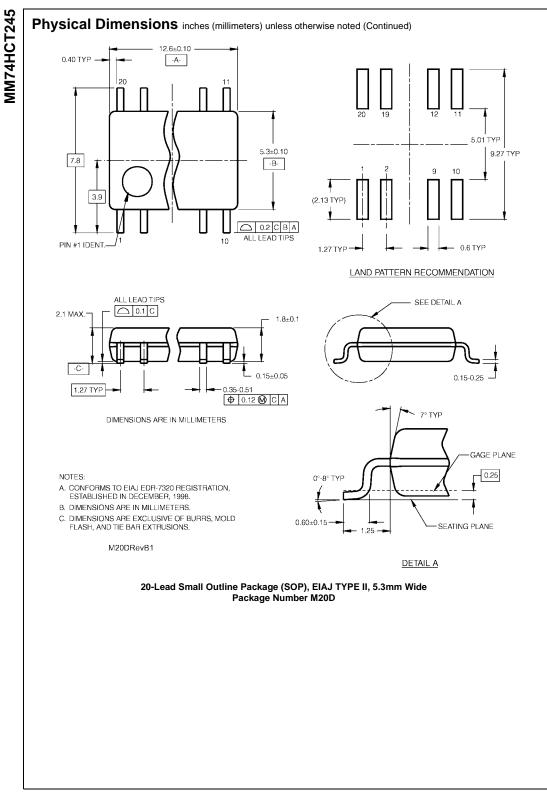
3

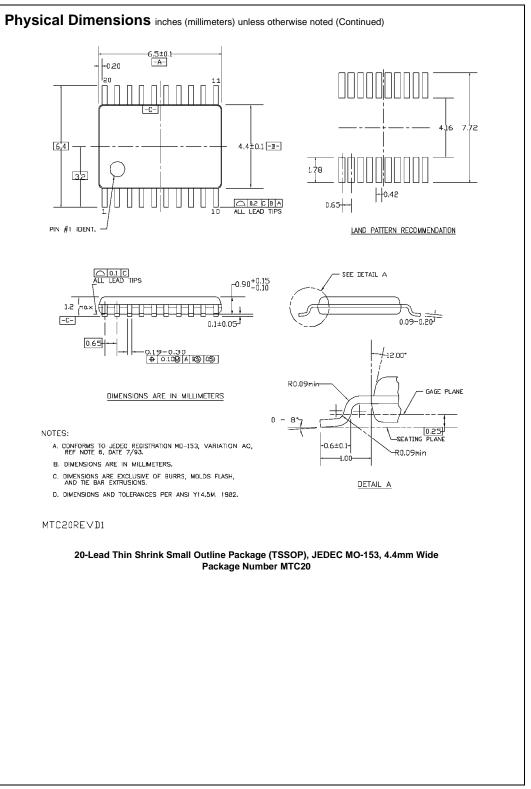
Note 4: Measured per input. All other inputs at V_{CC} or ground.

AC Electrical Characteristics

V_{CC} = 5.0V, t_{f} = t_{f} = 6 ns, T_{A} = 25°C (unless otherwise specified)	

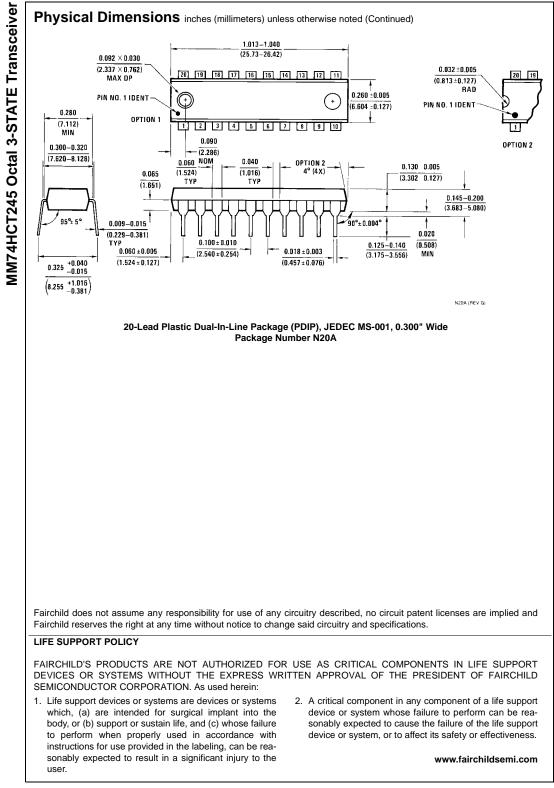

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PHL} , t _{PLH}	Maximum Output	C _L = 45 pF	16	20	ns
	Propagation Delay				
t _{PZL} , t _{PZH}	Maximum Output	C _L = 45 pF	29	40	ns
	Enable Time	$R_L = 1 k\Omega$			
t _{PLZ} , t _{PHZ}	Maximum Output	C _L = 5 pF	20	25	ns
	Disable Time	$R_L = 1 \ k\Omega$			


AC Electrical Characteristics


 V_{CC} = 5.0V \pm 10%, t_r = t_f = 6 ns (unless otherwise specified)

Symbol	Parameter	Conditions	T _A =	25°C	$T_A = -40$ to $85^{\circ}C$	$T_{A}{=}{-}55$ to $125^{\circ}C$	Units
Symbol			Тур		Guaranteed Limits		Units
t _{PHL} , t _{PLH}	Maximum Output	C _L = 50 pF	17	23	29	34	ns
	Propagation Delay	$C_{L} = 150 \text{ pF}$	24	30	38	45	ns
t _{PZL}	Maximum Output	$R_L = 1 k\Omega$	31	42	53	63	ns
	Enable Time	$C_L = 50 \text{ pF}$					
t _{PZH}	Maximum Output	$R_L = 1 k\Omega$	23	33	41	49	ns
	Enable Time	$C_L = 50 \text{ pF}$					
t _{PHZ} , t _{PLZ}	Maximum Output	$R_L = 1 k\Omega$	21	30	38	45	ns
	Disable Time	$C_L = 50 \text{ pF}$					
t _{THL} , t _{TLH}	Maximum Output	$C_L = 50 \text{ pF}$	8	12	15	18	ns
	Rise and Fall Time						
C _{IN}	Maximum Input		10	15	15	15	pF
	Capacitance						
C _{OUT}	Maximum Output/Input		20	25	25	25	pF
	Capacitance						
C _{PD}	Power Dissipation	$\overline{G} = V_{CC}$ (Note 5)	7				pF
	Capacitance	G = GND	100				pF

Note 5: C_{PD} determines the no load power consumption, $P_D = C_{PD} V_{CC} 2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC} f + I_{CC}$.



7

MM74HCT245

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Downloaded from Arrow.com.