FPF1320 / FPF1321
 IntelliMAX ${ }^{\text {TM }}$ Dual-Input Single-Output Advanced Power Switch with True Reverse-Current Blocking

Features

- DISO Load Switches
- Input Supply Operating Range: $1.5 \mathrm{~V} \sim 5.5 \mathrm{~V}$
- $R_{\text {ON }} 50 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{IN}}=3.3 \vee$ Per Channel (Typical)
- True Reverse-Current Blocking (TRCB)
- Fixed Slew Rate Controlled $130 \mu \mathrm{~s}$ for $<1 \mu \mathrm{~F}$ Cout
- Isw: 1.5 A Per Channel (Maximum)
- Quick Discharge Feature on FPF1321
- Logic CMOS IO Meets JESD76 Standard for GPIO Interface and Related Power Supply Requirements
- ESD Protected:
- Human Body Model: >6 kV
- Charged Device Model: >1.5 kV
- IEC 61000-4-2 Air Discharge: >15 kV
- IEC 61000-4-2 Contact Discharge: >8 kV

Applications

- Smart phones / Tablet PCs
- Portable Devices
- Near Field Communication (NFC) Capable SIM Card Power Supply

Description

The FPF1320/21 is a Dual-Input Single-Output (DISO) load switch consisting of two sets of slew-rate controlled, low on-resistance, P-channel MOSFET switches and integrated analog features. The slew-ratecontrolled turn-on characteristic prevents inrush current and the resulting excessive voltage droop on the power rails. The input voltage range operates from 1.5 V to 5.5 V to align with the requirements of low-voltage portable device power rails. FPF1320/21 performs seamless power-source transitions between two input power rails using the SEL pin with advanced break-before-make operation.

FPF1320/21 has a TRCB function to block unwanted reverse current from output to input during ON/OFF states. The switch is controlled by logic inputs of the SEL and EN pins, which are capable of interfacing directly with low-voltage control signals (GPIO).

FPF1321 has 65Ω on-chip load resistor for output quick discharge when EN is LOW.
FPF1320/21 is available in $1.0 \mathrm{~mm} \times 1.5 \mathrm{~mm}$ WLCSP, 6-bump, with 0.5 mm pitch. FPF1321B is available in $1.0 \mathrm{~mm} \times 1.5 \mathrm{~mm}$ WLCSP, 6-bump, 0.5 mm pitch with backside laminate.

Ordering Information

Part Number	Top Mark	Channel	Switch Per Channel (Typ.) at $3.3 \mathrm{~V}_{\text {IN }}$	Reverse Current Blocking	Output Discharge	Rise Time (t_{R})	Package
FPF1320UCX	QS	DISO	$50 \mathrm{~m} \Omega$	Yes	NA	$130 \mu \mathrm{~s}$	$1.0 \mathrm{~mm} \times 1.5 \mathrm{~mm}$
FPF1321UCX	QT	DISO	$50 \mathrm{~m} \Omega$	Yes	65Ω	130 s	Scale Package (WLCSP) 6-Bumps, 0.5 mm Pitch
FPF1321BUCX	QT	DISO	$50 \mathrm{~m} \Omega$	Yes	65Ω	130 s	$1.0 \mathrm{~mm} \times 1.5 \mathrm{~mm}$ Wafer-Level ChipScale Package (WLCSP) 6-Bumps, 0.5 mm Pitch with Backside Laminate

Application Diagram

Figure 1. Typical Application

Block Diagram

Figure 2. Functional Block Diagram (Output Discharge Path for FPF1321 Only)

Pin Configuration

Figure 3. Pin Configuration in Package View with Pin 1 Indicator

Figure 4. Pin Assignments

Pin Description

Pin \#	Name	Description
A1	EN	Enable input. Active HIGH. There is an internal pull-down resistor at the EN pin.
B1	SEL	Input power selection inputs. See Table 1. There are internal pull-down resistors at the SEL pins.
A2	$\mathrm{V}_{\text {INA }}$	Supply Input. Input to the power switch A.
B2	$\mathrm{V}_{\text {OUT }}$	Switch output
C1	GND	Ground
C2	$\mathrm{V}_{\text {IN }} \mathrm{B}$	Supply Input. Input to power switch B.

Table 1. Truth Table

SEL	EN	Switch A	Switch B	$\mathbf{V}_{\text {OUT }}$	Status
LOW	HIGH	ON	OFF	$\mathrm{V}_{\text {IN }}$	$\mathrm{V}_{\text {IN }} A$ Selected
HIGH	HIGH	OFF	ON	$\mathrm{V}_{\text {IN }} \mathrm{B}$	$\mathrm{V}_{\text {IN }}$ S Selected
X	LOW	OFF	OFF	Floating for FPF1320 GND for FPF1321	Both Switches are OFF

Absolute Maximum Ratings

Stresses exceeding the Absolute Maximum Ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameters		Min.	Max.	Unit
$\mathrm{V}_{\text {IN }}$	$\mathrm{V}_{\text {IN }} \mathrm{A}, \mathrm{V}_{\text {IN }} \mathrm{B}, \mathrm{V}_{\text {SEL }}, \mathrm{V}_{\text {EN }}, \mathrm{V}_{\text {OUt }}$ to GND		-0.3	6	V
Isw	Maximum Continuous Switch Current per Channel			1.5	A
P_{D}	Total Power Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			1.2	W
TSTG	Operating and Storage Junction Temperature		-65	150	${ }^{\circ} \mathrm{C}$
$\Theta_{J A}$	Thermal Resistance, Junction-to-Ambient (1 in. ${ }^{2}$ Pad of 2-oz. Copper)			$85^{(1)}$ $110^{(2)}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
ESD	Electrostatic Discharge Capability	Human Body Model, JESD22-A114	6.0		kV
		Charged Device Model, JESD22-C101	1.5		
		Air Discharge ($\mathrm{V}_{\mathrm{IN}} \mathrm{A}, \mathrm{V}_{\mathrm{IN}} \mathrm{B}$ to GND), IEC61000-4-2 System Level	15.0		
		Contact Discharge ($\mathrm{V}_{\text {IN }} \mathrm{A}, \mathrm{V}_{\mathrm{IN}} B$ to GND), IEC61000-4-2 System Level	8.0		

Notes:

1. Measured using 2S2P JEDEC std. PCB.
2. Measured using 2S2P JEDEC PCB cold-plate method.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameters	Min.	Max.	Unit
$V_{\text {IN }}$	Input Voltage on $\mathrm{V}_{\text {IN }} \mathrm{A}, \mathrm{V}_{\text {IN }} \mathrm{B}$	1.5	5.5	V
$\mathrm{T}_{\text {A }}$	Ambient Operating Temperature	-40	85	${ }^{\circ} \mathrm{C}$

Electrical Characteristics
$\mathrm{V}_{\mathbb{I N}} \mathrm{A}=\mathrm{V}_{\operatorname{IN}} \mathrm{B}=1.5$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$ unless otherwise noted. Typical values are at $\mathrm{V}_{\operatorname{IN}} \mathrm{A}=\mathrm{V}_{\mathbb{I N}} \mathrm{B}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameters	Condition	Min.	Typ.	Max.	Unit
Basic Operation						
$\mathrm{V}_{\text {IN }} \mathrm{A}, \mathrm{V}_{\text {IN }} \mathrm{B}$	Input Voltage		1.5		5.5	V
ISD	Shutdown Current	$\begin{aligned} & \text { SEL=HIGH or LOW, EN=GND, } \\ & \mathrm{V}_{\text {OUT }}=\mathrm{GND}, \mathrm{~V}_{\text {IN }} \mathrm{A}=\mathrm{V}_{\text {IN }} \mathrm{B}=5.5 \mathrm{~V} \end{aligned}$			5	$\mu \mathrm{A}$
I_{Q}	Quiescent Current	$\begin{aligned} & \text { lout }=0 \mathrm{~mA}, \mathrm{SEL}=\mathrm{HIGH} \text { or } \mathrm{LOW} \text {, } \\ & \mathrm{EN}=\mathrm{HIGH}, \mathrm{~V}_{\text {IN }} \mathrm{A}=\mathrm{V}_{\text {IN }} \mathrm{B}=5.5 \mathrm{~V} \end{aligned}$		12	22	$\mu \mathrm{A}$
Ron	On-Resistance	$\begin{aligned} & \mathrm{V}_{\text {IN }} \mathrm{A}=\mathrm{V}_{\text {IN }} B=5.5 \mathrm{~V}, \mathrm{l}_{\text {OUT }}=200 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		42	60	$\mathrm{m} \Omega$
		$\begin{aligned} & \mathrm{V}_{\text {IN }} \mathrm{A}=\mathrm{V}_{\text {IN }} B=3.3 \mathrm{~V}, \text { lout }=200 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		50		
		$\begin{aligned} & \mathrm{V}_{\text {IN }} \mathrm{A}=\mathrm{V}_{\text {IN }} \mathrm{B}=1.8 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=200 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{aligned}$		80		
		$\begin{aligned} & \mathrm{V}_{\text {IN }} \mathrm{A}=\mathrm{V}_{\text {IN }} B=1.5 \mathrm{~V}, \text { lout }=200 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			170	
$\mathrm{V}_{\text {IH }}$	SEL, EN Input Logic High Voltage	$\mathrm{V}_{\text {IN }} \mathrm{A}, \mathrm{V}_{\text {IN }} \mathrm{B}=1.5 \mathrm{~V}-5.5 \mathrm{~V}$	1.15			V
VIL	SEL, EN Input Logic Low Voltage	$\mathrm{V}_{\text {IN }} \mathrm{A}, \mathrm{V}_{\text {IN }} \mathrm{B}=1.8 \mathrm{~V}-5.5 \mathrm{~V}$			0.65	V
	SEL, EN Input Logic Low Voltage	$\mathrm{V}_{\text {IN }} \mathrm{A}, \mathrm{V}_{\text {IN }} \mathrm{B}=1.5 \mathrm{~V}-1.8 \mathrm{~V}$			0.60	
$V_{\text {DROOP_OUT }}$	Output Voltage Droop while Channel Switching from Higher Input Voltage Lower Input Voltage ${ }^{(3)}$	$\mathrm{V}_{\text {IN }} A=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IN }} B=5 \mathrm{~V}$, Switching from $\mathrm{V}_{\text {IN }} \mathrm{A} \rightarrow \mathrm{V}_{\text {IN }} \mathrm{B}, \mathrm{R}_{\mathrm{L}}=150 \Omega$, Cout $=1 \mu \mathrm{~F}$			100	mV
$\mathrm{I}_{\text {SEL }} / \mathrm{I}_{\text {EN }}$	Input Leakage at SEL and EN Pin				1.2	$\mu \mathrm{A}$
$\mathrm{R}_{\text {SEL_PD }} / \mathrm{R}_{\text {EN_PD }}$	Pull-Down Resistance at SEL or EN Pin			7		M ת
$\mathrm{R}_{\text {PD }}$	Output Pull-Down Resistance	$\begin{aligned} & \text { SEL=HIGH or LOW, EN=GND, } \\ & \mathrm{I}_{\text {FORCE }}=20 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \text { FPF1321 } \end{aligned}$		65		Ω
True Reverse Current Blocking						
$\mathrm{V}_{\text {T_RCB }}$	RCB Protection Trip Point	$\mathrm{V}_{\text {OUt }}-\mathrm{V}_{\text {IN }} A$ or $\mathrm{V}_{\text {IN }} B$		45		mV
$\mathrm{V}_{\text {R_RCB }}$	RCB Protection Release Trip Point	$\mathrm{V}_{\text {IN }} \mathrm{A}$ or $\mathrm{V}_{\text {IN }} \mathrm{B}-\mathrm{V}_{\text {out }}$		25		mV
$\mathrm{I}_{\mathrm{RCB}}$	$\mathrm{V}_{\text {IN }} \mathrm{A}$ or $\mathrm{V}_{\text {IN }} B$ Current During RCB	$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }} \mathrm{A}$ or $\mathrm{V}_{\text {IN }} \mathrm{B}=$ Short to GND		9	15	$\mu \mathrm{A}$
$\mathrm{t}_{\text {RCB_ON }}$	RCB Response Time when Device is $\mathrm{ON}^{(3)}$	$\mathrm{V}_{\text {IN }} A$ or $\mathrm{V}_{\text {IN }} \mathrm{B}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }} \mathrm{V}_{\text {INA }, \mathrm{B}}=100 \mathrm{mV}$		5		$\mu \mathrm{s}$

Continued on the following page...

Electrical Characteristics (Continued)
$\mathrm{V}_{\text {IN }} \mathrm{A}=\mathrm{V}_{\text {IN }} \mathrm{B}=1.5$ to 5.5 V , $\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$ unless otherwise noted. Typical values are at $\mathrm{V}_{\text {IN }} A=\mathrm{V}_{\text {IN }} B=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameters	Condition	Min.	Typ.	Max.	Unit
Dynamic Characteristics						
$\mathrm{t}_{\text {DON }}$	Turn-On Delay ${ }^{(4)}$	$\begin{aligned} & V_{\text {IN }} A \text { or } V_{\text {IN }} B=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega \text {, } \\ & \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{SEL} \text {, } \mathrm{HIGH}, \\ & \text { EN: LOW } \rightarrow \text { HIGH } \end{aligned}$		120		$\mu \mathrm{s}$
$t_{\text {R }}$	$V_{\text {Out }}$ Rise Time ${ }^{(4)}$			130		$\mu \mathrm{s}$
ton	Turn-On Time ${ }^{(6)}$			250		$\mu \mathrm{s}$
$\mathrm{t}_{\text {DOFF }}$	Turn-Off Delay ${ }^{(4)}$	$\begin{aligned} & \mathrm{V}_{\text {IN }} A \text { or } \mathrm{V}_{\text {IN }} B=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega \text {, } \\ & \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{SEL}: \mathrm{HIGH}, \\ & \text { EN: HIGH } \rightarrow \text { LOW } \end{aligned}$		15		$\mu \mathrm{s}$
t_{F}	Vout Fall Time ${ }^{(4)}$			320		$\mu \mathrm{s}$
toff	Turn-Off Time ${ }^{(7)}$			335		$\mu \mathrm{s}$
$t_{\text {DOFF }}$	Turn-Off Delay ${ }^{(4,5)}$	$\mathrm{V}_{\text {IN }} \mathrm{A}$ or $\mathrm{V}_{\text {IN }} B=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$, $\mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, SEL: HIGH , EN: HIGH \rightarrow LOW, Output Discharge Mode, FPF1321		6		$\mu \mathrm{s}$
t_{F}	$V_{\text {Out }}$ Fall Time ${ }^{(4,5)}$			110		$\mu \mathrm{s}$
toff	Turn-Off Time ${ }^{(5,7)}$			116		$\mu \mathrm{s}$
$t_{\text {trank }}$	Transition Time LOW $\rightarrow \mathrm{HIGH}^{(4)}$	$\mathrm{V}_{\mathrm{IN}} \mathrm{~A}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IN }} \mathrm{B}=5 \mathrm{~V} \text {, }$ Switching from $\mathrm{V}_{\text {IN }} \mathrm{A} \rightarrow \mathrm{V}_{\mathrm{IN}} \mathrm{B}$, SEL: LOW \rightarrow HIGH, EN: HIGH, $R_{L}=150 \Omega, C_{L}=1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3		$\mu \mathrm{s}$
$\mathrm{t}_{\text {SLH }}$	Switch-Over Rising Delay ${ }^{(4)}$			1		$\mu \mathrm{s}$
$t_{\text {tranf }}$	Transition Time HIGH \rightarrow LOW $^{(4)}$	$\mathrm{V}_{\mathbb{I N}} \mathrm{A}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathbb{I N}} \mathrm{B}=5 \mathrm{~V} \text {, }$ Switching from VINB $\rightarrow \mathrm{V}_{\mathrm{IN}} \mathrm{A}$, SEL: HIGH \rightarrow LOW, EN: HIGH, $\mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{C}=1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		45		$\mu \mathrm{s}$
$\mathrm{t}_{\text {SHL }}$	Switch-Over Falling Delay ${ }^{(4)}$			5		$\mu \mathrm{s}$

Notes:

3. This parameter is guaranteed by design and characterization; not production tested.
4. $\quad t_{\text {DON }} / t_{\text {DOFF }} / t_{R} / t_{F} / t_{\text {TRANR }} / t_{\text {TRANF }} / t_{\text {SLH }} / t_{\text {SHL }}$ are defined in Figure 5.
5. FPF1321 output discharge is enabled during off.
6. $\mathrm{t}_{\mathrm{ON}}=\mathrm{t}_{\mathrm{R}}+\mathrm{t}_{\mathrm{DON}}$.
7. $t_{\text {OFF }}=t_{F}+t_{\text {DOFF }}$.

Timing Diagram

Figure 5. Dynamic Behavior Timing Diagram

Typical Characteristics

Figure 6. Supply Current vs. Temperature

Figure 8. Shutdown Current vs. Temperature

Figure 10. Ron vs. Temperature

Figure 7. Supply Current vs. Supply Voltage

Figure 9. Shutdown Current vs. Supply Voltage

Figure 11. Ron vs. Supply Voltage

Typical Characteristics

Figure 12. V_{IL} vs. Temperature

Figure 14. V_{IH} vs. Temperature

Figure 16. $\mathrm{V}_{\mathrm{IH}} / \mathrm{V}_{\mathrm{IL}}$ vs. Supply Voltage

Figure 13. V_{IL} vs. Supply Voltage

Figure 15. $V_{I H}$ vs. Supply Voltage

Figure 17. $R_{\text {SEL_PD }}$ and $R_{E N _p D} v s$. Temperature

Continued on the following page...

Typical Characteristics

Figure 18. $R_{\text {SEL_PD }}$ and $R_{\text {EN_pD }}$ vs. Supply Voltage

Figure 20. t_{R} and t_{F} with FPF1320 vs. Temperature

Figure 22. Transition Time vs. Temperature

Figure 19. $t_{\text {DON }}$ and $t_{\text {DOFF }}$ vs. Temperature

Figure 21. t_{R} and t_{F} with FPF1321 vs. Temperature

Figure 23. Switch Over Time vs. Temperature

Continued on the following page...

Typical Characteristics

Figure 24. TRCB Trip and Release vs. Temperature

Figure 26. RPD with FPF1321 vs. Temperature

Figure 28. Turn-Off Response with FPF1320
$\left(V_{I N} A=3.3 \mathrm{~V}, \mathrm{C}_{\text {IN }}=1 \mu \mathrm{~F}, \mathrm{C}_{\text {OUT }}=1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=150 \Omega\right.$, SEL=LOW)

Figure 25. $\mathrm{I}_{\mathrm{RCB}}$ vs. Temperature

Figure 27. Turn-On Response
$\left(V_{I N} A=3.3 \mathrm{~V}, \mathrm{C}_{\text {IN }}=1 \mu \mathrm{~F}, \mathrm{C}_{\text {OUT }}=1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=150 \Omega\right.$, SEL=LOW)

Figure 29. Turn-Off Response with FPF1321 $\left(V_{I N} A=3.3 \mathrm{~V}, C_{I N}=1 \mu F, C_{\text {OUT }}=1 \mu F, R_{L}=150 \Omega\right.$, SEL=LOW)

Continued on the following page...

Typical Characteristics

Figure 30. Power Source Transition from 3.3 V to 5 V Figure 31. Power Source Transition from 5 V to 3.3 V ($\mathrm{V}_{\text {IN }} \mathrm{A}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IN }} B=5 \mathrm{~V}, \mathrm{C}_{\text {IN }}=1 \mu \mathrm{~F}$, $\mathrm{C}_{\text {out }}=1 \mu \mathrm{~F}$, $\mathrm{R}_{\mathrm{L}}=150 \Omega$)
($\mathrm{V}_{\text {IN }} \mathrm{A}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IN }} B=5 \mathrm{~V}, \mathrm{C}_{\text {IN }}=1 \mu \mathrm{~F}, \mathrm{C}_{\text {out }}=1 \mu \mathrm{~F}$, $R_{\mathrm{L}}=150 \Omega$)

Figure 32. TRCB During Off ($\mathrm{V}_{\mathrm{IN}^{\prime}} \mathrm{A}=\mathrm{V}_{I N} \mathrm{~B}=$ Floating, $V_{\text {OUT }}=5 \mathrm{~V}, \mathrm{C}_{\text {IN }}=1 \mu \mathrm{~F}, \mathrm{C}_{\text {OUT }}=1 \mu \mathrm{~F}, \mathrm{EN}=\mathrm{LOW}$, No R_{L})

Figure 33. TRCB During On ($\mathrm{V}_{\mathrm{IN}} \mathrm{A}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=6 \mathrm{~V}$, $\mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \mathrm{C}_{\text {out }}=1 \mu \mathrm{~F}, \mathrm{EN}=\mathrm{HIGH}$, No $\left.\mathrm{R}_{\mathrm{L}}\right)$

Operation and Application Description

The FPF1320 and FPF1321 are dual-input single-output power multiplexer switches with controlled turn-on and seamless power source transition. The core is a $50 \mathrm{~m} \Omega$ P-channel MOSFET and controller capable of functioning over a wide input operating range of 1.5 V to 5.5 V per channel. The EN and SEL pins are activeHIGH, GPIO/CMOS-compatible input. They control the state of the switch and input power source selection, respectively. TRCB functionality blocks unwanted reverse current during both ON and OFF states when higher $\mathrm{V}_{\text {Out }}$ than $\mathrm{V}_{\text {IN }} \mathrm{A}$ or $\mathrm{V}_{\text {IN }} B$ is applied. FPF1321 has a 65Ω output discharge path during off.

Input Capacitor

To limit the voltage drop on the input supply caused by transient inrush current when the switch turns on into a discharged load capacitor; a capacitor must be placed between the $\mathrm{V}_{\text {IN }} A$ or $\mathrm{V}_{\text {IN }} B$ pins to the GND pin. At least $1 \mu \mathrm{~F}$ ceramic capacitor, C_{IN}, placed close to the pins, is usually sufficient. Higher-value $\mathrm{C}_{\mathbb{I N}}$ can be used to reduce more the voltage drop.

Inrush Current

Inrush current occurs when the device is turned on. Inrush current is dependent on output capacitance and slew rate control capability, as expressed by:

$$
\begin{equation*}
I_{\text {INRUSH }}=C_{\text {OUT }} \times \frac{V_{I N}-V_{\text {INITIAL }}}{t_{R}}+I_{\text {LOAD }} \tag{1}
\end{equation*}
$$

where:
Cout: Output capacitance;
t_{R} : \quad Slew rate or rise time at $\mathrm{V}_{\text {out }}$;
V_{IN} : Input voltage, $\mathrm{V}_{\text {IN }} \mathrm{A}$ or $\mathrm{V}_{\text {IN }} \mathrm{B}$;
Vinitial: Initial voltage at Cout, usually GND; and
load: Load current.
Higher inrush current causes higher input voltage drop, depending on the distributed input resistance and input capacitance. High inrush current can cause problems.

FPF1320/1 has a 130μ s of slew rate capability under $3.3 \mathrm{~V}_{\mathrm{IN}}$ at $1 \mu \mathrm{~F}$ of Cout and 150Ω of R_{L} so inrush current and input voltage drop can be minimized.

Power Source Selection

Input power source selection can be controlled by the SEL pin. When SEL is LOW, output is powered from $\mathrm{V}_{\text {IN }} A$ while SEL is HIGH, $\mathrm{V}_{\mathrm{IN}} B$ is powering output. The SEL signal is ignored during device OFF.

Output Voltage Drop during Transition

Output voltage drop usually occurs during input power source transition period from low voltage to high voltage. The drop is highly dependent on output capacitance and load current.

FPF1320/1 adopts an advanced break-before-make control, which can result in minimized output voltage drop during the transition time.

Output Capacitor

Capacitor Cout of at least $1 \mu \mathrm{~F}$ is highly recommended between the Vout and GND pins to achieve minimized output voltage drop during input power source transition. This capacitor also prevents parasitic board inductance.

True Reverse-Current Blocking

The true reverse-current blocking feature protects the input source against current flow from output to input regardless of whether the load switch is on or off.

Board Layout

For best performance, all traces should be as short as possible. To be most effective, the input and output capacitors should be placed close to the device to minimize the effect that parasitic trace inductance on normal and short-circuit operation. Wide traces or large copper planes for power pins ($\mathrm{V}_{\text {IN }} \mathrm{A}$, $\mathrm{V}_{\text {IN }} B$, $\mathrm{V}_{\text {out }}$ and GND) minimize the parasitic electrical effects and the thermal impedance.

Physical Dimensions

Figure 34. 6-Ball, $1.0 \times 1.5 \mathrm{~mm}$, Wafer-Level Chip-Scale Package (WLCSP)

Product-Specific Dimensions

Product	D	E	X	Y
FPF1320UCX	$1460 \mu \mathrm{~m} \pm 30 \mu \mathrm{~m}$	$960 \mu \mathrm{~m} \pm 30 \mu \mathrm{~m}$	$230 \mu \mathrm{~m}$	$230 \mu \mathrm{~m}$
FPF1321UCX	$1460 \mu \mathrm{~m} \pm 30 \mu \mathrm{~m}$	$960 \mu \mathrm{~m} \pm 30 \mu \mathrm{~m}$	$230 \mu \mathrm{~m}$	$230 \mu \mathrm{~m}$
FPF1321BUCX	$1460 \mu \mathrm{~m} \pm 30 \mu \mathrm{~m}$	$960 \mu \mathrm{~m} \pm 30 \mu \mathrm{~m}$	$230 \mu \mathrm{~m}$	$230 \mu \mathrm{~m}$

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packagingl.
http://www.fairchildsemi.com/dwg/UC/UC006AF.pdf

FAIROHILD
SEMICONDUCTOR
TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPowertm	F-PFS ${ }^{\text {TM }}$		Sync-Lock ${ }^{\text {Tm }}$
AX-CAP ${ }^{\text {® }}$	FRFET ${ }^{\text {® }}$	®	SYSTEM
BitSic'm	Global Power Resource ${ }^{\text {sm }}$	PowerTrench ${ }^{\text {® }}$	GGENERAL ${ }^{\text {® }}$
Build it Now ${ }^{\text {Tm }}$	GreenBridge ${ }^{\text {™ }}$	Power S $^{\text {TM }}$	TinyBoost ${ }^{\text {® }}$
CorePLUS ${ }^{\text {TM }}$	Green FPS ${ }^{\text {™ }}$	Programmable Active Droop ${ }^{\text {TM }}$	TinyBuck ${ }^{\text {® }}$
CorePOMER ${ }^{\text {tM }}$	Green $\mathrm{FPS}^{\text {m }} \mathrm{e}$-Series ${ }^{\text {™ }}$	QFET ${ }^{\text {® }}$	TinyCalc ${ }^{\text {Tm }}$
CROSSVOLTM	Gmax ${ }^{\text {m }}$	QS ${ }^{\text {™ }}$	TinyLogic ${ }^{\text {® }}$
CTL'M	GTOTM	Quiet Series ${ }^{\text {™ }}$	TINYOPTOTM
Current Transfer Logic ${ }^{\text {TM }}$	IntelliMAX ${ }^{\text {tm }}$	RapidConfigure ${ }^{\text {™ }}$	TinyPowertm
DEUXPEED ${ }^{\text {® }}$	ISOPLANAR ${ }^{\text {TM }}$	$\mathrm{O}^{\text {TM }}$	TinyPMM ${ }^{\text {tm }}$
Dual Coolt ${ }^{\text {m }}$	Making Small Speakers Sound Louder		Tiny Mire ${ }^{\text {™ }}$
Ecospark ${ }^{\text {® }}$	and Better ${ }^{\text {TM }}$	Saving our world, $1 \mathrm{mWW} / \mathrm{kW}$ at a time ${ }^{\text {TM }}$	TranSictm
EfficientMax ${ }^{\text {TM }}$	MegaBuck ${ }^{\text {TM }}$	SignalMise ${ }^{\text {TM }}$	TriFault Detect ${ }^{\text {TM }}$
ESBC'm	MICROCOUPLER ${ }^{\text {Tm }}$	SmartMax ${ }^{\text {TM }}$	TRUECURRENT ${ }^{\text {®***}}$
5	MicroFet ${ }^{\text {tM }}$	SMART STARTTM	μ SerDes ${ }^{\text {TM }}$
	MicroPak™	Solutions for Your Success ${ }^{\text {TM }}$	
Fairchild ${ }^{\text {® }}$	$\text { MicroPak2 }{ }^{\text {Tm }}$	$\mathrm{SPM}^{\mathbb{\top}}$	Serdes:
Fairchild Semiconductor ${ }^{\text {® }}$	MillerDrive ${ }^{\text {m }}$	STEALTH ${ }^{\text {TM }}$	UHC ${ }^{\text {esem }}$
FACT Quiet Series ${ }^{\text {TM }}$ FACT ${ }^{\circ}$	MotionMax ${ }^{\text {™ }}$	SuperFET ${ }^{\text {Supersotim }}$	Ultra FRFET ${ }^{\text {m }}$
FAST ${ }^{\text {® }}$	miNSaver ${ }_{\text {® }}$	SuperSOT ${ }^{\text {Tm-6 }}$	UniFETTM
FastvCore ${ }^{\text {TM }}$	OPTOLOGIC®	SuperSOTTM-8	VCX'm
FETBench ${ }^{\text {m }}$	OPTOPLANAR ${ }^{\text {® }}$	SupreMOS ${ }^{\text {a }}$	VisualMax ${ }^{\text {TM }}$ VoltageFlustm
FPS ${ }^{\text {m }}$		SyncFET ${ }^{\text {m }}$	$X S^{\top M}$

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHID SEMICONDUCTORRESERVES THE RIGHT TO MAKE CHANGES WTHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TOIMPROVE RELIABIUTY, FUNCTION, OR DESIGN. FAIRCHILDDOESNOTASSUME ANY LIABIUTY ARISING OUT OF THE APFLICATION OR USE OF ANY PRODUCT ORCIRCUITDESCRIBED HEREIN: NEITHERDOES IT CONVEY ANY LICENSE UNDER ITS PATENTRIGHTS, NOR THERIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHID'S WORLDMDE TERMS AND CONDITONS, SPECIFICALLY THE WARRANTY THEREIN, MHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHID'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WTHOUT THE EXPRESS WRITIEN APPROVAL OF FAIRCHID SEMICONDUCTOR CORPORATION

As used herein

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our extemal website, waw.fairchildsemi.com, under Sales Support
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of produdion and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address ary warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to conbat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datas heet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

