FAIRCHILD

SEMICONDUCTOR

74LCX245 Low Voltage Bidirectional Transceiver with 5V Tolerant Inputs and Outputs

General Description

Ordering Code:

The LCX245 contains eight non-inverting bidirectional buffers with 3-STATE outputs and is intended for bus oriented applications. The device is designed for low voltage (2.5V and 3.3V) V_{CC} applications with capability of interfacing to a 5V signal environment. The T/R input determines the direction of data flow through the device. The OE input disables both the A and B ports by placing them in a high impedance state.

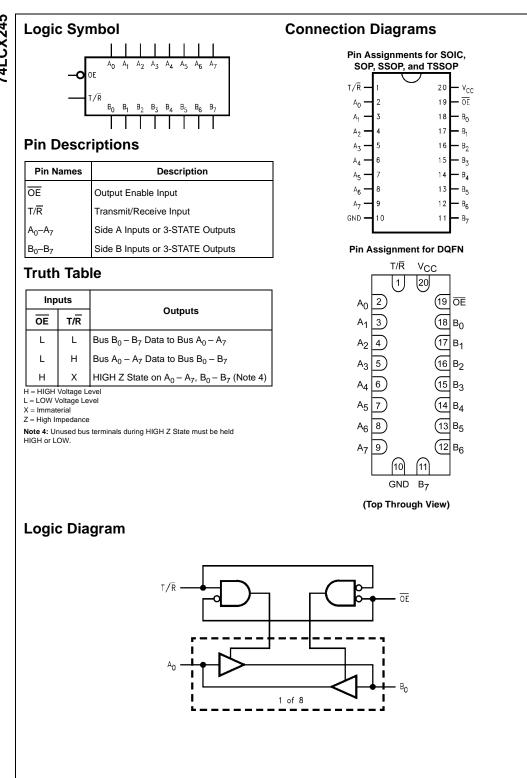
The LCX245 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

Features

- 5V tolerant inputs and outputs
- 2.3V to 3.6V V_{CC} specifications provided
- 7.0 ns t_{PD} max (V_{CC} = 3.3V), 10 μA I_{CC} max
- Power down high impedance inputs and outputs

February 1994

Revised October 2003


- Supports live insertion/withdrawal (Note 1)
- \blacksquare ±24 mA output drive (V_{CC} = 3.0V)
- Implements patented noise/EMI reduction circuitry
- Latch-up performance exceeds 500 mA
- ESD performance: Human body model > 2000V
- Machine model > 200V
- Leadless DQFN package

Note 1: To ensure the high-impedance state during power up or down, OE should be tied to $V_{\mbox{\scriptsize CC}}$ through a pull-up resistor: the minimum value or the resistor is determined by the current-sourcing capability of the driver.

Order Number Package Number		Package Description				
74LCX245WM (Note 2)	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide				
74LCX245SJ (Note 2)	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide				
74LCX245BQX (Note 3) (Preliminary)	MLP020B (Preliminary)	20-Terminal Depopulated Quad Very-Thin Flat Pack No Leads (DQFN), JEDEC MO-241 2.5 x 4.5mm				
74LCX245MSA (Note 2)	MSA20	20-Lead Shrink Small Outline Package (SSOP), JEDEC MO-150, 5.3mm Wide				
74LCX245MTC (Note 2)	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide				

Note 3: DQFN package available in Tape and Reel only.

© 2003 Fairchild Semiconductor Corporation DS012006 74LCX245

Symbol	Parameter	Value	Conditions	Units	
V _{CC}	Supply Voltage	-0.5 to +7.0		V	
VI	DC Input Voltage	-0.5 to +7.0		V	
Vo	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	V	
		-0.5 to V _{CC} + 0.5	Output in HIGH or LOW State (Note 6)		
I _{IK}	DC Input Diode Current	-50	V ₁ < GND	mA	
I _{ок}	DC Output Diode Current	-50	V _O < GND	mA	
		+50	$V_{O} > V_{CC}$	IIIA	
I _O	DC Output Source/Sink Current	±50		mA	
I _{CC}	DC Supply Current per Supply Pin	±100		mA	
I _{GND}	DC Ground Current per Ground Pin	±100		mA	
T _{STG}	Storage Temperature	-65 to +150		°C	

Recommended Operating Conditions (Note 7)

Symbol	Parameter	Min	Max	Units	
V _{CC}	Supply Voltage	Operating	2.0	3.6	V
		Data Retention	1.5	3.6	v
VI	Input Voltage		0	5.5	V
Vo	Output Voltage	HIGH or LOW State	0	V _{CC}	V
		3-STATE	0	5.5	v
I _{OH} /I _{OL}	Output Current	V _{CC} = 3.0V to 3.6V		±24	
		$V_{CC} = 2.7V$ to $3.0V$		±12	mA
		$V_{CC} = 2.3V$ to 2.7V		±8	
T _A	Free-Air Operating Temperature		-40	85	°C
$\Delta t / \Delta V$	Input Edge Rate, $V_{IN} = 0.8V$ to 2.0V, $V_{CC} = 3.0V$		0	10	ns/V

Note 5: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 6: I_O Absolute Maximum Rating must be observed.

Note 7: Unused inputs or I/O pins must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{cc}	$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units
			(V)	Min	Max	- Units
V _{IH}	HIGH Level Input Voltage		2.3 to 2.7	1.7		v
			2.7 to 3.6	2.0		
V _{IL}	LOW Level Input Voltage		2.3 to 2.7		0.7	v
			2.7 to 3.6		0.8	v
V _{он}	HIGH Level Output Voltage	I _{OH} = -100 μA	2.3 to 3.6	V _{CC} – 0.2		
		I _{OH} = -8 mA	2.3	1.8		
		I _{OH} = -12 mA	2.7	2.2		V
		I _{OH} = -18 mA	3.0	2.4		
		I _{OH} = -24 mA	3.0	2.2		
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	2.3 to 3.6		0.2	
		I _{OL} = 8mA	2.3		0.6	
		I _{OL} = 12 mA	2.7		0.4	V
		I _{OL} = 16 mA	3.0		0.4	
		I _{OL} = 24 mA	3.0		0.55	
1	Input Leakage Current	$0 \le V_I \le 5.5V$	2.3 to 3.6		±5.0	μΑ
I _{OZ}	3-STATE I/O Leakage	$0 \le V_O \le 5.5V$	2.3 to 3.6		±5.0	μA
		$V_I = V_{IH} \text{ or } V_{IL}$	2.3 10 3.0		±3.0	μΑ
OFF	Power-Off Leakage Current	$V_1 \text{ or } V_0 = 5.5 \text{ V}$	0		10	μΑ

74LCX245

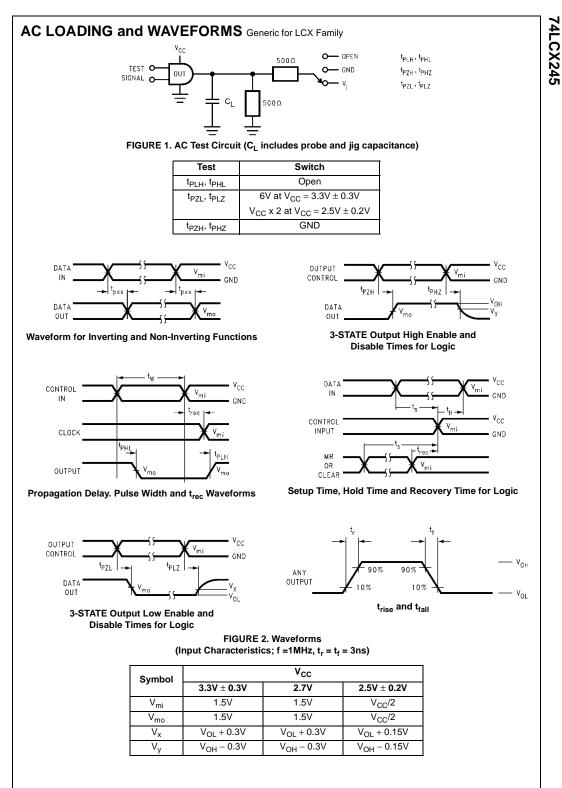
DC Electrical Characteristics (Continued)

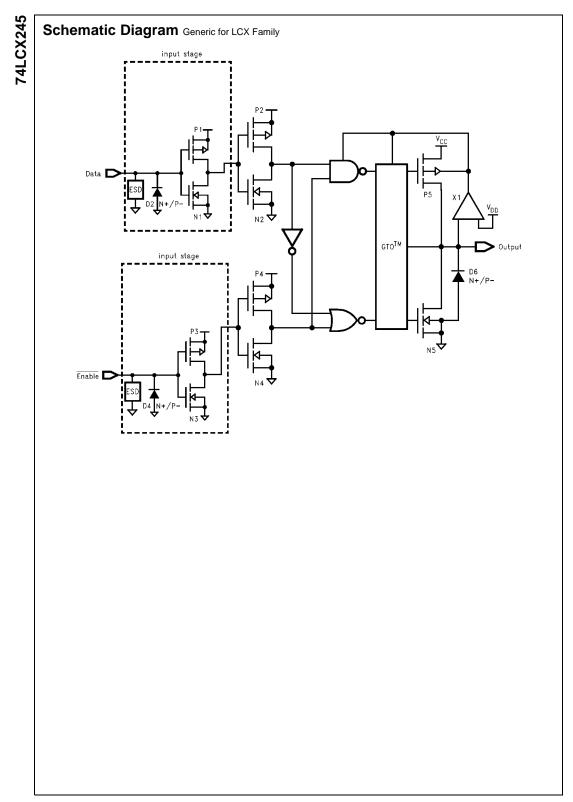
v_{cc} $T_A=-40^\circ C$ to $+85^\circ C$ Symbol Parameter Conditions Units (V) Min Max Quiescent Supply Current $V_I = V_{CC}$ or GND 2.3 to 3.6 10 I_{CC} μA $3.6\text{V} \leq \text{V}_{\text{I}}, \ \text{V}_{\text{O}} \leq 5.5\text{V}$ (Note 8) 2.3 to 3.6 ±10 $V_{IH} = V_{CC} - 0.6V$ Increase in I_{CC} per Input 2.3 to 3.6 500 μΑ ΔI_{CC}

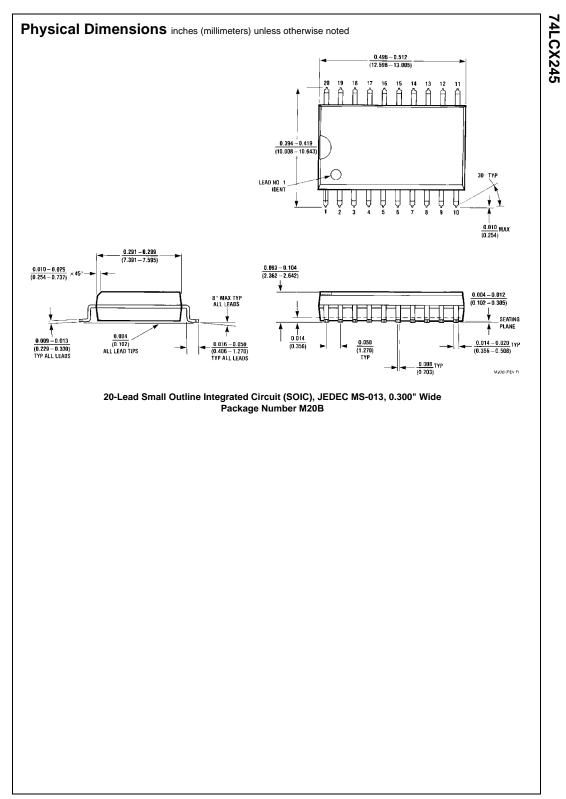
Note 8: Outputs disabled or 3-STATE only.

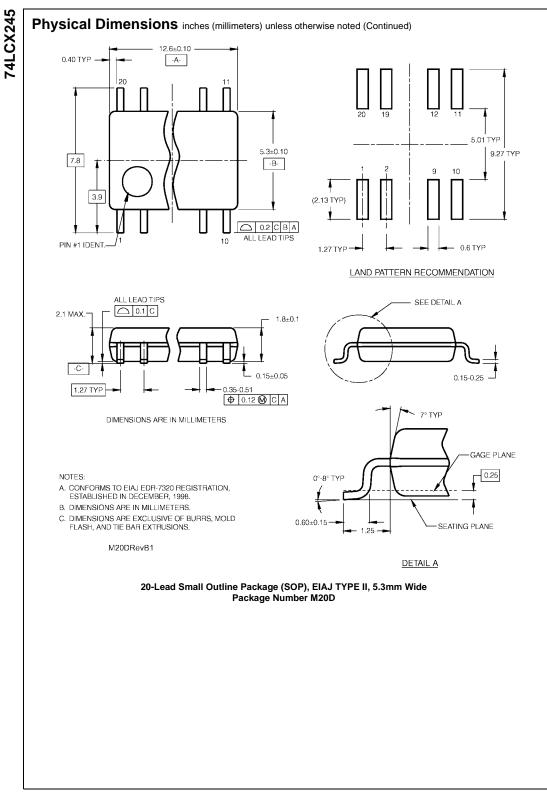
AC Electrical Characteristics

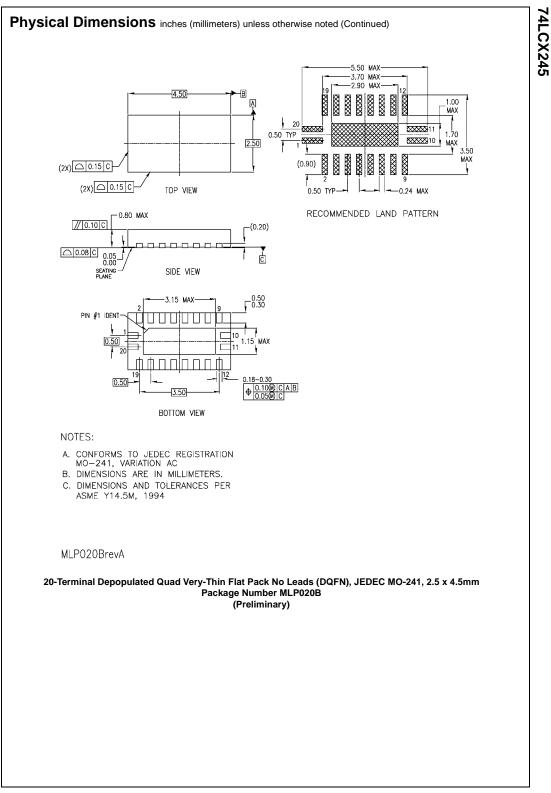
Ormehal		$T_A = -40^{\circ}C$ to $+85^{\circ}C$, $R_L = 500\Omega$						
	Barrantan	V _{CC} = 3.	$3V \pm 0.3V$	V _{CC}	= 2.7V	V _{CC} = 2.	$5V \pm 0.2V$	Units
Symbol	Parameter	C _L = 50 pF		C _L = 50 pF		C _L = 30 pF		
		Min	Max	Min	Max	Min	Max	1
t _{PHL}	Propagation Delay	1.5	7.0	1.5	8.0	1.5	8.4	ns
t _{PLH}	A _n to B _n or B _n to A _n	1.5	7.0	1.5	8.0	1.5	8.4	
t _{PZL}	Output Enable Time	1.5	8.5	1.5	9.5	1.5	10.5	
t _{PZH}		1.5	8.5	1.5	9.5	1.5	10.5	ns
t _{PLZ}	Output Disable Time	1.5	7.5	1.5	8.5	1.5	9.0	
t _{PHZ}		1.5	7.5	1.5	8.5	1.5	9.0	ns
t _{OSHL}	Output to Output Skew		1.0					
t _{OSLH}	(Note 9)		1.0					ns


Note 9: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).


Dynamic Switching Characteristics


Symbol	Parameter	Conditions	V _{CC}	$T_A = 25^{\circ}C$	Units
	i arameter	Conditions	(V)	Typical	Units
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	0.8	V
		$C_L = 30 \text{ pF}, \text{ V}_{IH} = 2.5 \text{V}, \text{ V}_{IL} = 0 \text{V}$	2.5	0.6	v
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	-0.8	V
		$C_L = 30 \text{ pF}, \text{ V}_{IH} = 2.5 \text{V}, \text{ V}_{IL} = 0 \text{V}$	2.5	-0.6	v


Capacitance


Symbol	Parameter	Conditions	Typical	Units
C _{IN}	Input Capacitance	$V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$	7.0	pF
C _{I/O}	Input/Output Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC}	8.0	pF
C _{PD}	Power Dissipation Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC} , f = 10 MHz	25.0	pF

