

Resistor Product Discontinuation & Update

We would like to take this opportunity to thank you for your patronage and the many years of support you have given to our resistive products. As you know we are de-emphasizing the product line and would like to inform you of our decision to re-alignment our product offering.

AVX will expand our focus on our 0408 and smaller resistor array products and discontinue to offer our larger case size resistor chip series along with the 1206 resistor arrays. This will be accomplished in several stages over the next twelve months. Please refer to each product series below and the effective dates we will cease to supply the products.

- <u>Chip Resistor Series (CR63, CR32, CR21, CR10)</u> Final Ship Date: February 1st, 2004
- Chip Resistor Series (CR05) Final Ship Date: August 1st, 2004
- <u>1206 Resistor Array Series (CRA3A4E, CRB3A4E, CRC3A4E)</u> Final Ship Date: August 1st, 2004

We would like to work closely with you during the discontinuation period and minimize any inconveniences that may arise. Should you have any questions or comments, please contact KDP Marketing.

Thick Film Chip Resistors

CR, CJ Series ᆕ

					FEATU	RES				
	20	31		17	Low Noise					
	100		1		Nickel Barrier Terminations					
		ITUS	APPLIC	ATIC	N					
	(Em		~		• General F	Purpose	9			
	A INT	<u> </u>	204		HOW T					
	× ×	100	e	5	CR 05 - 4					
		-			ŤŤ-	ŤŤ	Т	aging		
							Т	= 7" Reel/Pur		
STRUC	CTURE AND I	MATE	R	IAL			Н	(5,000 pcs/ = 7" Reel/Pur	nched	Paper Tape
	A							(10,000 pcs) CR03 and (2mm pitch taping)
		B					D	= 10" Reel/Pu		l Paper Tape CR32, CR21, CR1(
		\nearrow	_			L	Resis	stance Tole		
								$D = \pm 0.5\%$ F = $\pm 1\%$	J	= ±5% = Chip Jumper
		×~/	/				Resis			digits or 4 digits)
			-					le: 2 significa	nt figur	res and 1 multiplier nal or values <10 Ω
		<u>e</u> /						Chip Jump		
Code	Structure		l	Material			Size		000	
Α	Coating	Glass RuO2			03 = 0201 21 = 0805 05 = 0402 32 = 1206 10 = 0603 Series					
в	Resistor	(The s	ame	e material of on for chip jumper)						
С	Substrate	96% /		1, 1, 7	CR = Resistor CJ = Jumper					
D E	Termination Plating	Silver		b) Plating			CJ	= Jumper		
	ISIONS	(111, 31	1-1-1) Flatility						
				CR03, CJ03	CR05, CJ05	CB1	0, CJ10	CR21, C.		imeters (inches CR32, CJ32
▲	<u> </u>	\mathbf{T}		(0201)	(0402)		0603)	(0805)		(1206)
		T	w	0.30±0.03 (0.012±0.001)	0.50±0.05 (0.020±0.002)	0.	80 +0.15 -0.10 31 +0.006 -0.004)	1.25 +0.1 -0.1 (0.050 +0.0	15 10 006)	$1.55 \substack{+0.15 \\ -0.10}$ (0.061 $\substack{+0.006 \\ -0.004}$)
	≥		L	0.60±0.03	1.00±0.05	1.6	0±0.10	2.00±0.1	10	3.10±0.10
┝┲ <mark>┍</mark> ┝		┻│┝	- c	(0.024±0.001) 0.15±0.10	(0.039±0.002) 0.20±0.15		3±0.004) 5±0.20	(0.080±0.0 0.35±0.2	,	(0.122±0.004) 0.45±0.20
' ° '	' c '	┰│┝		(0.006±0.004) 0.15±0.05	(0.008±0.006) 0.20±0.10	(0.010±0.008) (0.0		(0.014±0.0 0.40±0.2		(0.018±0.008) 0.45±0.20
		$\downarrow \mid \mid$	d	(0.006±0.002)	(0.008±0.004)	(0.0	08+0.008	(0.016±0.0	008)	(0.018±0.008)
		-	т	0.23±0.05 (0.009±0.002)	0.35±0.05 (0.014±0.002)		0±0.10 0±0.004)	0.55±0.1 (0.022±0.0		$\begin{array}{c} 0.55 \substack{+0.10 \\ -0.05 \\ (0.022 \substack{+0.004 \\ -0.002 \end{array})} \end{array}$
SPECIFICATIONS =										
Serie	es CR03 (0)201)		CR05 (0402)	CR10 (060	3)	CR2	(0805)	c	R32 (1206)
Rated Power 0.050 (1/20) W			0.0625 (1/16) W	0.10 (1/10)	W	0.125	5 (1/8) W	C).25 (1/4) W	
Max. Working Voltage			50V	50V		1	00V	200V		
Resistance Tolerance J = ±5%			$F = \pm 1\%$ J = $\pm 5\%$	$ \begin{array}{c} {\sf D} = \pm 0.5 \\ {\sf F} = \pm 1\% \\ {\sf J} = \pm 5\% \end{array} $		$D = \pm 0.5\% F = \pm 1\% J = \pm 5\%$		$D = \pm 0.5\% F = \pm 1\% J = \pm 5\%$		
Resistanc Value Ran		MΩ		10Ω to 1MΩ :F 1.0Ω to 10MΩ:J	10Ω to 1ΜΩ 10Ω to 1ΜΩ 1.0Ω to 10ΜΩ	: F	10Ω to	1MΩ : D 1MΩ : F 10MΩ: J	10Ω	2 to 1ΜΩ :D 2 to 1ΜΩ :F 2 to 10ΜΩ:J
Working						1.0Ω to 10MΩ : J 1.0Ω to 10MΩ: J 1.0Ω to $10M\Omega$: J 1.0Ω to				

-55 to +125°C

-55 to +125°C

-55 to +125°C

-55 to +125°C

Working

Temperature

-55 to +125°C

Thick Film Chip Resistors

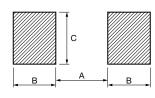
millimeters (inches)

SPECIFICATIONS

CJ Series				
Part Number	CJ03	CJ05, CJ10, CJ21 (0402, 0603, 0805 Type)	CJ32 (1206 Type)	
Rated Current	0.5A (70°C)	1A (70°C)	2A (70°C)	
Resistivity	$50 \mathrm{m}\Omega$ max.	$50 \mathrm{m}\Omega$ max.	$50 \mathrm{m}\Omega$ max.	
Working Temperature	-55 to +125°C	-55 to +125°C	-55 to +125°C	

HOW TO CALCULATE RATED VOLTAGE

 $E = \sqrt{P \bullet R}$


E = Rated Voltage (V)

P = Rated Power (W)

 $R = Standard Resistance Value (\Omega)$

Rated voltage should be lower than max. working voltage.

RECOMMENDED LAND PATTERN

7	EIA Size	0201	0402	0603	0805	1206
	Α	0.25 (0.010)	0.50 (0.020)	0.80 (0.031)	1.00 (0.039)	2.00 (0.079)
	В	0.225 (0.009)	0.40 (0.016)	0.70 (0.028)	0.80 (0.031)	0.80 (0.031)
•	С	0.30 (0.012)	0.50 (0.020)	0.80 (0.031)	1.20 (0.047)	1.50 (0.059)

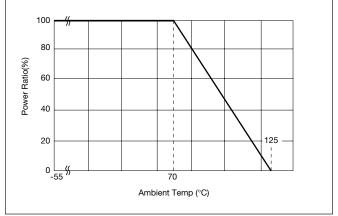
MARKING

Marking available as follows: Series: CR32, CJ32, CR21, CJ21, CR10, CJ10 3 digit indication Example: $473=47\times10^3 = 47000 \Omega = 47 \text{ k}\Omega$ $0 = 0 \Omega \text{ (Jumper)}$ $100 = 10 \Omega$ $102 = 1 \text{ k}\Omega$ $105 = 1 \text{ M}\Omega$

Series: CR03, CJ03, CR05 and CJ05 - No marking Note: On CR32 4 digit marking is standard for $\pm 1\%$ and $\pm 0.5\%$ tolerances.

STANDARD RESISTANCE VALUE

1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2 E24 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5 5.6 6.2 6.8 7.5 8.2 9.1 1
--


For ±1% and ±.5% Tolerance

	10.0	10.2	10.5	10.7	11.0	11.3	11.5	11.8	12.1	12.4
	12.7	13.0	13.3	13.7	14.0	14.3	14.7	15.0	15.4	15.8
	16.2	16.5	16.9	17.4	17.8	18.2	18.7	19.1	19.6	20.0
	20.5	21.0	21.5	22.1	22.6	23.2	23.7	24.3	24.9	25.5
E96	26.1	26.7	27.4	28.0	28.7	29.4	30.1	30.9	31.6	32.4
	33.2	34.0	34.8	35.7	36.5	37.4	38.3	39.2	40.2	41.2
	42.2	43.2	44.2	45.3	46.4	47.5	48.7	49.9	51.1	52.3
	53.6	54.9	56.2	57.6	59.0	60.4	61.9	63.4	64.9	66.5
	68.1	69.8	71.5	73.2	75.0	76.8	78.7	80.6	82.5	84.5
	86.6	88.7	90.9	93.1	95.3	97.6				

DERATING CURVE

Rated power should be reduced as below when temperature become higher.

Under high temperature, power derated as follows:

TEMPERATURE CHARACTERISTICS

Resistance (Ω)	TCR (ppm/°C)
D, F	
10≤ R ≤1M	-100 to +100
J	
R <10	-100 to +600
10≤ R ≤1M	-200 to +200
1M< R	-500 to +300

Chip Resistor Arrays **≡**

CR, CJ, CRA, CRB, CRC Series - Test Conditions

ELECTRICAL CHARACTERISTICS

Item		Sta	andard		Test Conditions		
		Resistor		Jumper	Resistor Jumper		
DC Resistance		Within Initial Tolerand	ce	50mΩ max.	Power Condition A (20°C, 65% RH)		
Temperature Characteristics		Resistance (Ω) TCR (ppm/°C) *D, F -100 to +100 J, CR05 = F -100 to +600 R <10 -100 to +250 10≤ R ≤1M -250 to +250 1M< R -500 to +300			Test Temperature: 25, 125(°C) $\Delta R/R=R_2-R_1/R_1x1/T_2-T_1x10^6$ $\Delta R/R =$ Temp. Coefficient (ppm/°C) $T_1 = 25(°C)$ $T_2 = 125(°C)$ $R_1 = T_1$ Resistance at (Ω) $R_2 = T_2$ Resistance at (Ω)		
Short-time Overload	ΔR/R	±(2.0%+0.10Ω) ma of the initial value		50mΩ max.	 Apply 2.0 x rated voltage for 5 sec. (2.5 x rated voltage for Arrays) Wait 30 minutes Measure resistance CR03 = 30V max. CR05 = 50V max CR10 = 100V max. CR21 = 200V max. CR32 = 400V max. 	 (1) 2A for 5 sec. (CJ03 = 1A) (2) Wait 30 minutes (3) Measure resistance 	
	Visual	No evidence of intermitte	mechanical dan ent overload	nage	CRA3A, CRB3A, CRC3A = 100V max.		
Intermittent Overload	Δ R/R	±(5%+0.1Ω) max. of the initial value		50mΩ max.	 Perform 10,000 voltage cycles as follows: ON (2.0 x rated voltage, 2.5 x for Arrays) 1 sec. OFF 25 sec. (2) Stabilization time 30 min. without loading (3) Measure resistance CR03 = 30V max. CR05 = 50V max. 	 Perform 10,000 current cycles as follows: ON (2A) 1 sec. OFF 25 sec. Wait 30 minutes Measure resistance CJ03 = 1A max. 	
	Visual	No evidence of	mechanical dan	hage	CR10 = 150V max. CR21 = 200V max. CR32 = 400V max. CRA, CRB, CRC = 100V max.		
Dielectric Withstanding Voltage		No evidence of	mechanical dan	nage	Apply 500 VAC for 1 min. (CR10 300 VAC) (CR05, CRA3A, CRB3A, CRC3A 300 VAC/1 sec CR03 50 VAC/min.) Apply 500V DC (CR05, CRA3A, CRB3A, CRC3A 100V DC CR03 50 VDC)		
Insulation Resistance		 CR03, CJ03 = - CR05, CJ05 = - CR10, CJ10 = - CR21, CJ21 = - CR32, CJ32 = - CRA3A, CRB3A 	10 ⁸ Ω min. 10 ⁹ Ω min. 10 ¹⁰ Ω min. 10 ¹² Ω min.	Ω min.			

Chip Resistor Arrays =

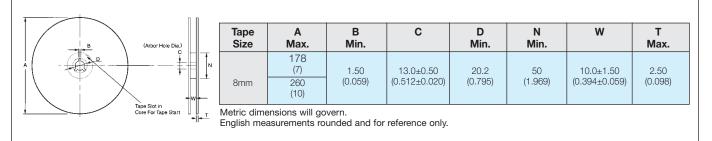
CR, CJ, CRA, CRB, CRC Series - Test Conditions

MECHANICAL CHARACTERISTICS

Item		Standard	Test Conditions			
		Resistor Jumper		Resistor	Jumper	
∆ R/R		\pm (1%+0.05Ω) max. of the initial value	50m Ω max.	Apply the load as shown: Measure resistance during load application		
Terminal Strength	Visual	No evidence of mechanical damage afte	Bending in 10 seconds PC Board = Glass epoxy t = 1.60 (0.063) millimeters (inches) 10 = 10 = 100			
Soldering Heat		\pm (1%+0.05Ω) max. 50mΩ max. of the initial value		Immerse into molten solder at 260±5°C for 10±1 sec. Stabilize component at room temperature for 1 hr.		
Resistance	Visual	No evidence of leaching		Measure resistance.		
Solderability		Coverage ≥95% each termination	end	Immerse in Rogin Flux for 2±0.5 sec. and in SN62 solder at 235±5°C for 2±0.5 sec.		
Anti-Vibration		\pm (1%+0.1Ω) max. 50mΩ max. 50mΩ max.		2 hrs. each in X, Y and Z axis. (TTL 6 hrs.) 10 to 55 Hz sweep in 1 min. at 1.5mm amplitude.		
Test	Visual	No evidence of mechanical damag	je			
Solvent Resistance	$\Delta \mathbf{R}/\mathbf{R}$	\pm (0.5%+0.05Ω) max. of the initial value	50m Ω max.	Immerse in static state butyl acetate at 20°C to 25°C for 30±5 sec. Stabilize component at room temperature for 30 min		
nesistance	Visual	No evidence of mechanical damag	je	then measure value.		

ENVIRONMENTAL CHARACTERISTICS

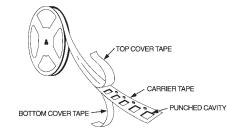
Item		Standard		Test Conditions			
		Resistor	Jumper	Resistor	Jumper		
Temperature	$\Delta \mathbf{R}/\mathbf{R}$	\pm (1%+0.05Ω) max. of the initial value	50m Ω max.	(1) Run 5 cycles as follows: -55± 125±3°C for 30 min. Room to	emp. for 10-15 min.		
Cycle	Visual	No evidence of mechanical damag	e	(2) Stabilize component at room then measure value.	temperature for 1 hr.		
Low Temperature	$\Delta \mathbf{R}/\mathbf{R}$	\pm (2%+0.1 Ω) max. of the initial value	50m Ω max.	(1) Dwell in -55°C chamber witho hrs.	0 0		
Storage	Visual	No evidence of mechanical dama	 (2) Stabilize component at room temperature for then measure value. 				
High Temperature	$\Delta \mathbf{R}/\mathbf{R}$	$\pm(3\%+0.1\Omega)$ max. of the initial value	50m Ω max.	(1) Dwell in 125°C chamber without hrs.	-		
Storage	Visual	No evidence of mechanical damage	ge	(2) Stabilize component at room temperature for 1 I then measure value.			
Moisture	$\Delta \mathbf{R}/\mathbf{R}$	$\pm(3\%+0.1\Omega)$ max. of the initial value	50m Ω max.	(1) Dwell in temp.: 65°C RH90 to without loading for 1000 ⁺⁴⁸ h	rs.		
Resistance	Visual	No evidence of mechanical dama	ge	(2) Stabilize component at room temperature for then measure value.			
Life Test	$\Delta \mathbf{R}/\mathbf{R}$	$\pm(3\%+0.1\Omega)$ max. of the initial value	50m Ω max.	(1) Temp.: 70±3°C Voltage: (rate off 30 min. Duration: 1000 ⁺⁴⁶	³ hrs.		
	Visual	No evidence of mechanical dama	ge	 (2) Stabilize component at room temperature for then measure value. 			
Loading Life	$\Delta \mathbf{R}/\mathbf{R}$	\pm (3%+0.1 Ω) max. of the initial value	50m Ω max.	(1) Temp.: 40±2°C RH: 90-95% min. (rated voltage) off 30 min.	Duration: 1000 ⁺⁴⁸ ₋₀ hrs.		
in Moisture	Visual	No evidence of mechanical dama	ge	 (2) Stabilize component at room temperature fo then measure value. 			



Packaging of Chip Component

Automatic Insertion Packaging

TAPE AND REEL


REEL DIMENSIONS

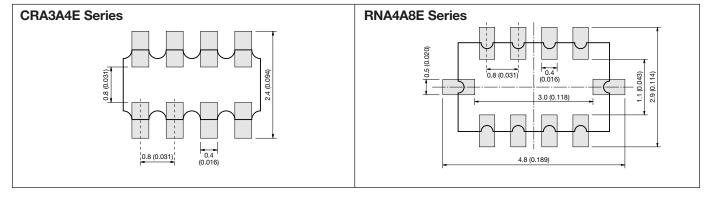
Ţ

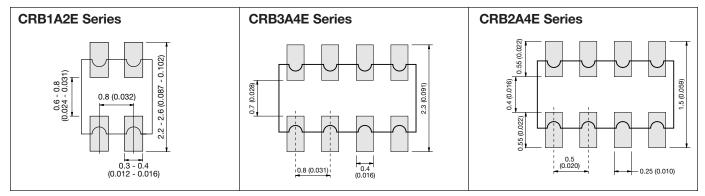
							neters (inches	
	PUNCHE	D TAPE		IGURATI	ON 8MM	I TAPE C	NLY	
	Tape Size	D ₀	E	Po	P ₂	w	F	
Po Po	8mm	1.50 +0.10 -0.00 (0.059 +0.004) -0.000)	1.75±0.10 (0.069±0.004)	4.0±0.10 (0.157±0.004)	2.00±0.05 (0.079±0.002)	8.00±0.20 (0.135±0.008)	3.50±0.05 (0.138±0.002)	
	VARIABI		NSION	S				
	Style	P1		A ₀		Bo	T max.	
BOTTOM COVER TAPE	CR/CJ03 CR/CJ05	2.00±0.10 (0.079±0.004)		0.65±0.10 (0.026±0.004)		1.15±0.10 045±0.004)	0.60 (0.024)	
User Direction of Feed	CR/CJ/FR10 4.00±0.10 (0.157±0.00 or 2.00±0.10 (0.079±0.00		í I	1.10±0.20 (0.043±0.008)		1.90±0.20 075±0.008)		
	CR/CJ/FR21			1.65±0.20 (0.065±0.008)		2.40±0.20 094±0.008)		
	CR/CJ/FR32	R/CJ/FR32 4.00±0.10 (0.157±0.004) CRB3A CRB3A CRC3A CRC3A		2.00±0.20 (0.079±0.008)		3.60±0.20 142±0.008)	1.10 (0.043)	
	CRB1A			1.90±0.20 (0.075±0.008)		1.90±0.20 075±0.008)		
	CRB3A			2.00±0.20 (0.079±0.008)		3.60±0.20 142±0.008)		
	CRB2A	2.00±0 (0.079±0		1.25±0.20 (0.049±0.008)		2.50±0.20 098±0.008)		

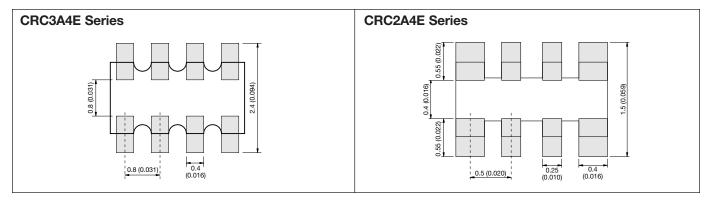
PUNCHED CARRIER

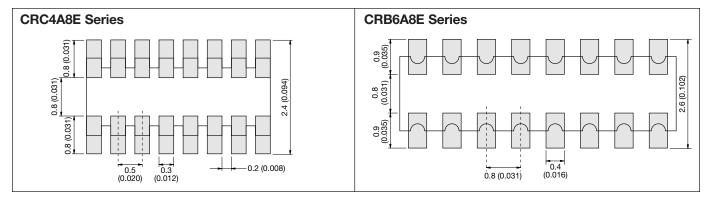
millimeters (inches)

. .


....


Recommended Land Patterns




RECOMMENDED LAND PATTERNS IS REFERRED THE FOLLOWING FOR EXAMPLE

SAMPLE KIT PART NUMBERS

Part Number	Description
CRJ-E6-Kit	Combination 0603, 0805, 1206, 5% parts 21 values per case size 100 pcs. per value (approx.)
CR05-E12-Kit	0402, 5% parts 63 values 100 pcs. per value
CR10J-E12-Kit	0603, 5% parts 63 values 100 pcs. per value (approx.)
CR21J-E12-Kit	0805, 5% parts 63 values 100 pcs. per value (approx.)
CR32J-E12-Kit	1206, 5% parts 63 values 100 pcs. per value (approx.)
CR05F-E24-Kit	0402, 1% parts 63 values 100 pcs. per value
CR10F-E24-Kit	0603, 1% parts 63 values 100 pcs. per value
CR-ARRAY-E6-Kit	Arrays, Various styles, CRA, CRB, CRC, RNA, 5% 13 values per style (approx.) 20 pcs. per value

