ATC 100 E Series Porcelain High RF Power Multilayer Capacitors

- Case E Size (.380" x .380")
- Capacitance Range 1 pF to 5100 pF
- High Q
- Low ESR/ESL
- Ultra-Stable Performance
- High RF Current/Voltage
- High RF Power
- High Reliability
- Extended WVDC Available with up to 7200 VDC **Encapsulation Option***

ATC, the industry leader, offers new improved ESR/ESL performance for the 100 E Series RF Capacitors. This high Q multilayer capacitor is ultra-stable under high RF current and voltage applications. High density porcelain construction provides a rugged, hermetic package.

ATC offers an encapsulation option for applications requiring extended protection agains arc-over and corona.

Typical functional applications: Bypass, Coupling, Tuning, Impedance Matching and DC Blocking.

Typical circuit applications: HF/RF Power Amplifiers, Transmitters, Antenna Tuning, Plasma Chambers and Medical (MRI coils).

*For leaded styles only

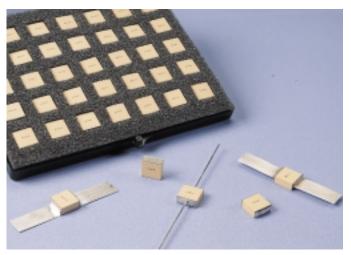
ENVIRONMENTAL TESTS

ATC 100 E Series Capacitors are designed and manufactured to meet and exceed the requirements of EIA-198, MIL-PRF-55681 and MIL-PRF-123.

THERMAL SHOCK:

MIL-STD-202, Method 107, Condition A.

MOISTURE RESISTANCE:


MIL-STD-202, Method 106.

LOW VOLTAGE HUMIDITY:

MIL-STD-202, Method 103, Condition A, with 1.5 Volts DC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours min.

LIFE TEST:

MIL-STD-202, Method 108, for 2000 hours, at 125°C. Voltage applied. 1 pF to 680 pF: at WVDC 820 pF to 2200 pF: 120% of WVDC 2700 pF to 5100 pF: 200% of WVDC

ELECTRICAL AND MECHANICAL **SPECIFICATIONS**

QUALITY FACTOR (Q):

Greater than 10,000 (1 pF to 1000 pF) @ 1 MHz. Greater than 10,000 (1100 pF to 5100 pF) @ 1 KHz.

TEMPERATURE COEFFICIENT OF CAPACITANCE (TCC):

+90 ±30 PPM/°C (-55°C to +125°C)

INSULATION RESISTANCE (IR):

1 pF to 5100 pF:

 10^5 Megohms min. @ +25°C at 500 VDC.

 10^4 Megohms min. @ +125°C at 500 VDC.

WORKING VOLTAGE (WVDC):

See Capacitance Values Table, page 2.

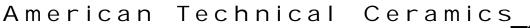
DIELECTRIC WITHSTANDING VOLTAGE (DWV): * See page 2.

RETRACE: Less than ±(0.02% or 0.02 pF), whichever is greater.

AGING EFFECTS: None

PIEZOELECTRIC EFFECTS: None (No capacitance variation with voltage or pressure).

CAPACITANCE DRIFT: ±(0.02% or 0.02 pF), whichever is greater.


OPERATING TEMPERATURE RANGE:

From -55°C to +125°C (No derating of working voltage).

TERMINATION STYLES:

Available in various surface mount and leaded styles. See Mechanical Configurations, page 3.

TERMINAL STRENGTH: Terminations for chips and pellets withstand a pull of 10 lbs. min., 25 lbs. typical, for 5 seconds in direction perpendicular to the termination surface of the capacitor. Test per MIL-STD-202, method 211.

ATC North America 631-622-4700 sales@atceramics.com

ATC Europe +46 8 6800410 sales@atceramics-europe.com sales@atceramics-asia.com ISO 9001 REGISTERED

ATC Asia +86-755-8366-4318

www.atceramics.com

ATC 100 E Capacitance Values

CAP.	CAP.		RATED	WVDC	CAP.	CAP.		RATED	WVDC	CAP.	CAP.		RATED WVDC
CODE	(pF)	TOL.	STD.	EXT.	CODE	(pF)	TOL.	STD.	EXT.	CODE	(pF)	TOL.	
1R0	1.0				180	18				331	330		3600
1R2	1.2				220	22				391	390		
1R5	1.5				270	27				471	470		
1R8	1.8				330	33				561	560		2500
2R2	2.2				390	39				681	680	F, G,	
2R7	2.7	B, C,	3600	7200	470	47		3600	7200	821	820	J, K,	
3R3	3.3	D			560	56	F, G,			102	1000	М	
3R9	3.9				680	68	J, K,			122	1200		1000
4R7	4.7				820	82	M			152	1500		1000
5R6	5.6				101	100				182	1800		
6R8	6.8				121	120				222	2200		
8R2	8.2				151	150			5000	272	2700		
100	10	F, G,			181	180				332	3300	G, J,	500
120	12	J, K,			221	220			3600	472	4700	К, М	
150	15	М			271	270				512	5100		


VRMS = 0.707 X WVDC

 SPECIAL VALUES, TOLERANCES AND MATCHING AVAILABLE.
 EXTENDED WORKING VOLTAGES ARE AVAILABLE FOR COMMERCIAL ORDERS ONLY. ENCAPSULATION OPTION AVAILABLE. PLEASE CONSULT FACTORY.

* DWV: 1 pF to 680 pF: 120% of rated WVDC for 5 secs.

820 pF to 2200 pF: 150% of rated WVDC for 5 secs.

2700 pF to 5100 pF: 250% of rated WVDC for 5 secs.

K tolerance (±10%), 3600 WVDC, with W termination (Tin / Lead, Solder Plated over Nickel Barrier), laser marking and Waffle-packaging.

ATC accepts orders for our parts using designations with or without the "ATC" prefix. Both methods of defining the part number are equivalent, i.e., part numbers referenced with the "ATC" prefix are interchangeable to parts referenced without the "ATC" prefix. Customers are free to use either in specifying or procuring parts from American Technical Ceramics.

۱۸*ι*

For additional information and catalogs contact your ATC representative or call direct at (631) 622-4700.

Consult factory for additional performance data.

AMERICAN TECHNICAL CERAMICS ATC North America

ATC Furope

ATC Asia

631-622-4700 • sales@atceramics.com	+46 8 6800410 • sales@atceramics-europe.com	+86-755-8366-4318 • sales@atceramics-asia.com

w а t С е r а m i С S С 0 m w

ATC 100 E Capacitors: Mechanical Configurations

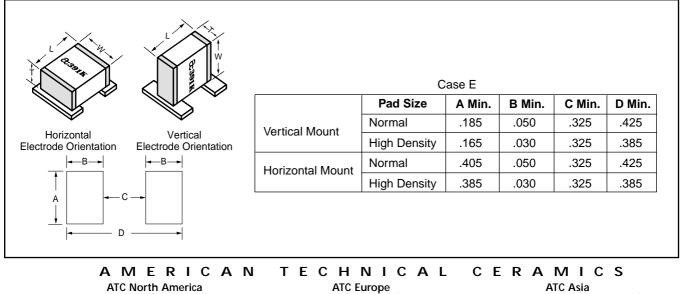
ATC SERIES CONST TERM		CASE SIZE	OUTLINES		Y DIMENSI nches (mm		LEAD AND TERMINATION DIMENSIONS AND MATERIALS		
& CASE SIZE	CODE	& TYPE	W/T IS A TERMINATION SURFACE	LENGTH (L)	WIDTH (W)	THICKNESS (T)	OVERLAP (Y)	MATERIALS	
100E	w	E Solder Plate	$\begin{array}{c c} Y \rightarrow \parallel \leftarrow & \downarrow \\ & & \\ & & \\ & & \\ & & \\ & \rightarrow \mid L \mid \leftarrow \uparrow \rightarrow \mid T \mid \leftarrow \end{array}$.380 +.015010 (9.65 +0.38 -0.25)				Tin/Lead, Solder Plated over Nickel Barrier Termination	
100E	Ρ	E Pellet	$\begin{array}{c} Y \rightarrow \leftarrow & \downarrow \\ & $.380 +.040010 (9.65 +1.02 -0.25)			-	Heavy Tin/Lead Coated, over Nickel Barrier Termination	
100E	Т	E Lead-Free Solderable Nickel Barrier	$\begin{array}{c} Y \rightarrow \leftarrow & \downarrow \\ & $.380 +.015010 (9.65 +0.38 -0.25)				Lead-Free and RoHS Compliant Tin Plated over Nickel Barrier Termination	
100E	СА	E Gold Chip	$\begin{array}{c} Y \rightarrow \leftarrow & \downarrow \\ & $.380 +.015010 (9.65 +0.38 -0.25)	.380 ±.010	.170 (4.32)	.040	Lead-Free and RoHS Compliant Gold Plated over Nickel Barrier Termination	
100E	MS	E Microstrip	$\begin{array}{c c} T_{L} & T_{L} \\ \hline \\ \hline \\ \hline \\ W_{L} \\ \hline \\ W_{L} \\ \hline \\ $		(9.65 ±0.25)	max.	max. (1.02) max. H Sil L _L = .7 W _L (8 T _L = (0 Leads a High Ter Silver-pla Dia.	High Purity Silver Leads $L_L = .750 (19.05) min.$ $W_L = .350 \pm .010$	
100E	AR	E Axial Ribbon	$\begin{array}{c c} & & & \\ & & & \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\$.380 +.035010 - (9.65				$\begin{array}{c} (8.89 \pm 0.25) \\ T_L = .010 \pm .005 \\ (0.25 \pm 0.13) \\ \\ \text{Leads are Attached with} \\ \text{High Temperature Solder.} \end{array}$	
100E	AW	E Axial Wire	$\rightarrow L_L \leftarrow \downarrow$ $w = 0$ $\rightarrow L \leftarrow \uparrow \downarrow$	(9.85 +0.89 -0.25)				Silver-plated Copper Leads Dia. = .032 ±.002 (.813 ±.051) L _L = 2.25 (57.2) min.	
100E	RW	E Radial Wire	$\rightarrow L_{L} \leftarrow$ \downarrow \uparrow \uparrow \downarrow \uparrow \downarrow					Silver-plated Copper Leads Dia. = .032 ±.002 (.813 ±.051) L _L = 1.0 (25.4) min.	

Custom lead styles and lengths are available; consult factory. All leads are high purity silver attached with high temperature solder and are RoHS compliant.

AMERICAN TECHNICAL CERAMICS

ATC Europe +46 8 6800410 • sales@atceramics-europe.com

ATC Asia +86-755-8366-4318 • sales@atceramics-asia.com

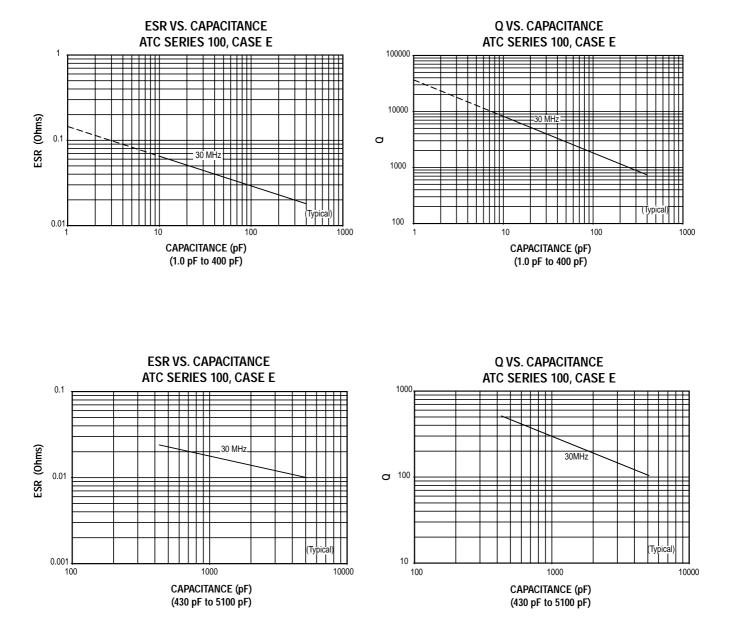

ATC North America 631-622-4700 • sales@atceramics.com www.atceramics.com

ATC 100 E Capacitors: Non-Magnetic Mechanical Configurations

ATC SERIES CASE TERM.		CASE SIZE	OUTLINES		OY DIMENSI		LEAD AND TERMINATION DIMENSIONS AND MATERIALS		
& CASE SIZE	CODE	& TYPE	W/T IS A TERMINATION SURFACE	LENGTH (L)	WIDTH (W)	THICKNESS (T)	OVERLAP (Y)	MATERIALS	
100E	WN	E Non-Mag Solder Plate	$\begin{array}{c} Y \rightarrow \parallel \longleftarrow \qquad \qquad \downarrow \qquad \qquad \\ & & & \\ & & & \\ & & & \\ & & & \\ & \rightarrow \mid \ L \mid \leftarrow \uparrow \rightarrow \mid \top \mid \leftarrow \end{array}$.380 +.015010 (9.65 +0.38 -0.25)				Tin/Lead, Solder Plated over Non-Magnetic Barrier Termination	
100E	PN	E Non-Mag Pellet	$\begin{array}{c} Y \rightarrow \parallel \longleftarrow \qquad \qquad \downarrow \qquad \qquad \\ & & & \\ & & & \\ & & & \\ & \rightarrow \mid \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$.380 +.040010 (9.65 +1.02 -0.25)				Heavy Tin/Lead Coated, over Non-Magnetic Barrier Termination	
100E	TN	E Non-Mag Lead-Free Solderable Barrier	$\begin{array}{c c} Y \rightarrow \leftarrow & \downarrow \\ & & \\ & & \\ & & \\ & & \\ & \rightarrow \ L \ \leftarrow \uparrow \rightarrow \ T \ \leftarrow \end{array}$.380 +.015010 (9.65 +0.38 -0.25)				Lead-Free and RoHS Compliant Tin Plated over Non-Magnetic Barrier Termination	
100E	MN	E Non-Mag Microstrip	$\begin{array}{c c} & \rightarrow & L_{L} & \leftarrow & T_{L} \\ \hline \psi_{L} & & & \downarrow & \downarrow \\ \hline \psi_{L} & & & \downarrow & \downarrow \\ \hline \uparrow & & \downarrow & \downarrow & \downarrow \\ \hline \uparrow & & \downarrow & \downarrow & \downarrow \\ \hline \uparrow & \downarrow & \downarrow & \downarrow \\ \hline \end{pmatrix} \left[L & \downarrow & & \uparrow \downarrow \\ \hline \uparrow & \downarrow & \downarrow \\ \hline \end{array} \right]$.380 ±.010 (9.65 ±0.25)	.170 (4.32) max.	.040 (1.02) max.	High Purity Silver Leads $L_{L} = .750 (19.05) min.$ $W_{L} = .350 \pm .010$ (8.89 ±0.25)	
100E	AN	E Non-Mag Axial Ribbon	$\begin{array}{c c} & & & & \\ \hline \\ \hline$.380 +.035010 - (9.65 +0.89 -0.25)				(6.69 ± 0.25) $T_L = .010 \pm .005$ (0.25 ± 0.13) Leads are Attached with High Temperature Solder.	
100E	BN	E Non-Mag Axial Wire	$\rightarrow L_L \leftarrow \downarrow$ $w \bullet$ $\rightarrow L \leftarrow \uparrow \downarrow$ $W \bullet$					Silver-plated Copper Leads Dia. = .032 ±.002 (.813 ±.051) L _L = 2.25 (57.2) min.	
100E	RN	E Non-Mag Radial Wire						Silver-plated Copper Leads Dia. = .032 ±.002 (.813 ±.051) L _L = 1.0 (25.4) min.	

Custom lead styles and lengths are available; consult factory. All leads are high purity silver attached with high temperature solder and are RoHS compliant.

Suggested Mounting Pad Dimensions

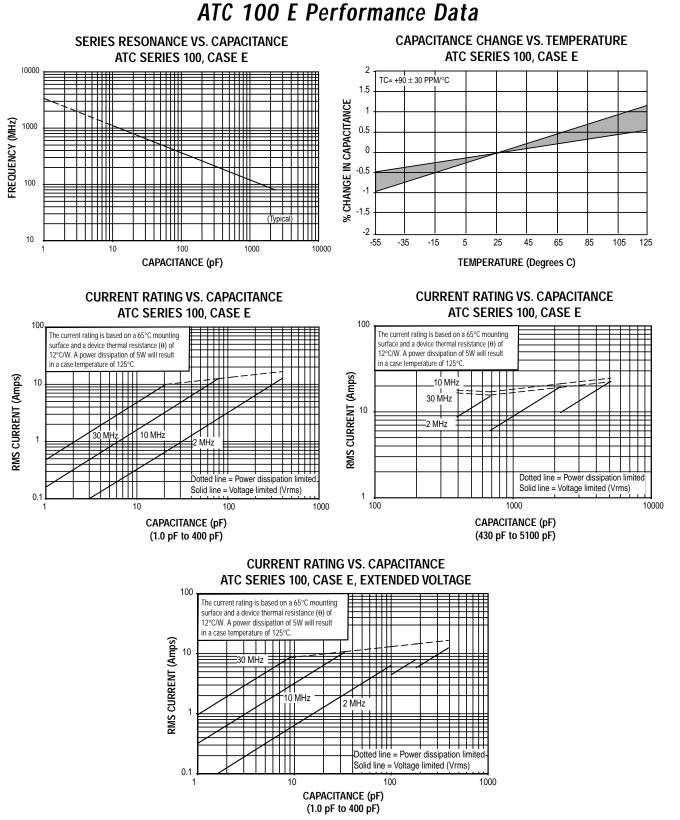


s@atceramics.com +46 8 6800410 • sales@atceramics-europe.com +86-755-8366-4318 www.atceramicseurope.com +86-755-8366-4318

+86-755-8366-4318 • sales@atceramics-

631-622-4700 • sales@atceramics.com

ATC 100 E Performance Data


AMERICAN TECHNICAL CERAMICS ATC North America

ATC Europe +46 8 6800410 • sales@atceramics-europe.com

ATC Asia +86-755-8366-4318 • sales@atceramics-asia.com

w w w а tceramics.c o m .

631-622-4700 • sales@atceramics.com

Sales of ATC products are subject to the terms and conditions contained in American Technical Ceramics Corp. Terms and Conditions of Sale (ATC document #001-992 Rev. A 10/03). Copies of these terms and conditions will be provided upon request. They may also be viewed on ATC's website at www.atceramics.com/aboutatc/terms_conditions_sale.html

ATC has made every effort to have this information as accurate as possible. However, no responsibility is assumed by ATC for its use, nor for any infringements of rights of third parties which may result from its use. ATC reserves the right to revise the content or modify its product line without prior notice.

© 1996 American Technical Ceramics Corp. All Rights Reserved.

ATC # 001-809 Rev. G 12/04

