
RF/Microwave Multilayer Capacitors (MLC)

700A Series NP0 Porcelain and Ceramic Multilayer Capacitors

FEATURES

- Case A Size (.055" x .055")
- · Low ESR / ESL
- High Q
- · Low Noise
- · Capacitance Range 0.1 pF to 1000 pF
- · Extended WVDC up to 250 VDC
- · Zero TCC
- · High Self-Resonance
- · Established Reliability (QPL)

GENERAL DESCRIPTION

AVX, the industry leader, offers new improved ESR/ESL performance for the 700 A Series RF/Microwave Capacitors. The superior high self- resonance and zero TCC characteristic of this Series provide excellent performance over a broad range of RF and microwave applications requiring minimum drift. High density porcelain and ceramic constructions provide a rugged, hermetic package.

Typical functional applications: Bypass, Coupling, Tuning and DC Blocking.

Typical circuit applications: Filters, Oscillators and Timing

PACKAGING OPTIONS

Tape & Reel

Tape & Reel Vertical Orientation

Cap-Pak® (100 pcs)

ELECTRICAL SPECIFICATIONS

Temperature Coefficient (TCC)	0 ± 30 PPM/°C
Capacitance Range	0.1 pF to 1000 pF
Operating Temperature	-55°C to +125°C*
Quality Factor	Greater than 10,000 (0.1 pF to 100 pF) @ 1 MHz. Greater than 2000 (110 pF to 1000 pF) @ 1 MHz.
Insulation Resistance (IR)	0.1 pF to 470 pF 10 ⁶ Megohms min. @ 25°C at rated WVDC 10 ⁵ Megohms min. @ 125°C at rated WVDC 510 pF to 1000 pF 10 ⁵ Megohms min. @ 25°C at rated WVDC 10 ⁴ Megohms min. @ 125°C at rated WVDC
Working Voltage (WVDC)	See Capacitance Values table
Dielectric Withstanding Voltage (DWV)	250% of rated WVDC for 5 seconds
Aging Effects	None
Piezoelectric Effects	None
Capacitance Drift	± (0.02% or 0.02 pF), whichever is greater

ENVIRONMENTAL CHARACTERISTICS

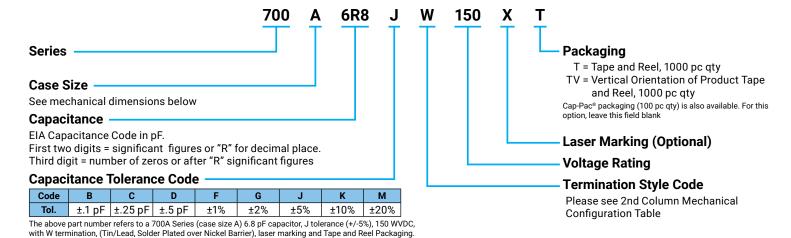
Themal Shock	Mil-STD-202, Method 107, Condition A
Moisture Resistance	Mil-STD-202, Method 106
Low Voltage Humidity	Mil-STD-202, Method 103, condition A, with 1.5 VDC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours
Life Test	MIL-STD-202, Method 108, for 2000 hours, at 125°C. 200% WVDC applied.
Solderability	Mil-STD-202, Method 208
Terminal Strength	Terminations for chips and pellets withstand a pull of 5 lbs. min., 10 lbs. typical, for 5 seconds in direction perpendicular to the termination surface of the capacitor.

RF/Microwave Multilayer Capacitors (MLC)

CAPACITANCE VALUES

Cap.	Cap.	Tol.	Rat WV		Cap.	Cap.	Tol.	Ra ¹ WV	ted 'DC	Cap.	Cap.	Tol.	Rat WV		Cap.	Cap.	Tol.	Rat WV																					
Code	(pF)		STD.	EXT.	Code	(pF)		STD.	EXT.	Code	(pF)	pr)	STD.	EXT.	Code	(pF)		STD.	EXT.																				
0R1	0.1	В		,	2R4	2.4				200	20				151	150																							
0R2	0.2	ь		ED.	2R7	2.7			ED	220	22			VOLTAGE	161	160																							
0R3	0.3	В, С		VOLTAGE	3R0	3.0			GE	240	24			1	181	180																							
0R4	0.4	В, С		LTA	3R3	3.3			LTA	270	27			0	201	200																							
0R5	0.5			00	3R6	3.6	В, С,		0	300	30				221	220																							
0R6	0.6				3R9	3.9	В, С, D		EXTENDED VOLTAGE	330	33			250	241	240																							
0R7	0.7			EXTENDED	4R3	4.3			ND N	360	36			230	271	270		.																					
0R8	8.0				TEI	4R7	4.7			TEI	390	39			Q	301	300		150																				
0R9	0.9		150	150	150	150	150	150	150	150	150	150	150	150	150	150								EX	5R1	5.1			EX	430	43			DE	331	330		100	
1R0	1.0																							5R6	5.6			470	47	F, G,		Ë	361	360	F, G,				
1R1	1.1																250	6R2	6.2		150	250	510	51	J, K,	150	EXTENDED	391	390	J, K,		N/A							
1R2	1.2	100			200	6R8	6.8	В, С,			560	56	M			431	430	M		11,71																			
1R3	1.3	В, С,			7R5	7.5	В, С, Ј, К,			620	62			Ή.	471	470																							
1R4	1.4	D		ЭЕ	8R2	8.2	M		ЭE	680	68			VOLT.	511	510																							
1R5	1.5			7A(9R1	9.1			Z Ž	750	75				561	560																							
1R6	1.6			VOLTAGE	100	10			.70	820	82			200	621	620																							
1R7	1.7				110	11			>	910	91			EXT.	681	680																							
1R8	1.8			DEI	120	12	F, G,		DE	101	100			E	751	750																							
1R9	1.9			EN	130	13	J, K,		EN	111	110				821	820		50																					
2R0	2.0			EXTENDED	150	15	М		EXTENDED VOLTAGE	121	120			N/A	911	910																							
2R1	2.1			E	160	16			Щ	131	130			, .	102	1000																							
2R2	2.2				180	18																																	

vrms = 0.707 x WVDC


Special values, tolerances, higher WVDC and matching available. Please consult factory.

note: extended wvdc does not apply to cdr products.

Capacitance values in bold type indicate porcelain dielectric. All other capacitance values indicate ceramic dielectric.

All 700 A Capacitors are available laser marked with AVX's identification, capacitance code and tolerance.

HOW TO ORDER

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 700A Series NP0 Porcelain and Ceramic Multilayer Capacitors

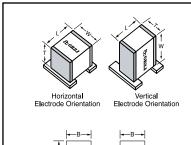
MECHANICAL CONFIGURATION

AVX Series & Case Size	AVX Term.	MIL-PRF-55681	Case Size & Type	Outline ES W/T is a Termination	The state of the s				Termination and Material
& Case Size	Code		α i ype	Surface	Length (L)	Width (W)	Thickness (T)	Overlap (Y)	Materials
700A	w	CDR12BP	A 🕏 Solder Plate	$\begin{array}{c c} Y \to & \downarrow & \downarrow \\ \hline & \underline{w} & \underline{w} \\ \to & \downarrow & \downarrow & \uparrow \to \downarrow & \uparrow & \downarrow \leftarrow \end{array}$.055+.015010 (1.40+0.38-0.25)	.055 ±.015 (1.40 ±0.38)			Tin/ Lead, Solder Plated over Nickel Barrier Termination
700A	Р	CDR12BP	A 😭 Pellet	→ L ← → T ←	.055+.025010 (1.40+0.64-0.25)	.055 ±.015 (1.40 ±0.38)	.057	040, 040, 005	Heavy Tin/ Lead Coated, over Nickel Barrier Termination
700A	Т	N/A	A Solderable Nickel Barrier	Y→ ← ↓ <u>w</u>	.055+.015010 (1.40+0.38-0.25)	.055 ±.015 (1.40 ±0.38)	(1.45) max.	.010+.010005 (0.25+0.25 -0.13)	RoHS Compliant Tin Plated over Nickel Barrier Termination
700A	CA	CDR11BP	A 🕏 Gold Chip	Y→ ← ↓ w	.055+.015010 (1.40+0.38-0.25)	.055 ±.015 (1.40 ±0.38)			RoHS Compliant Gold Plated over Nickel Barrier Termination

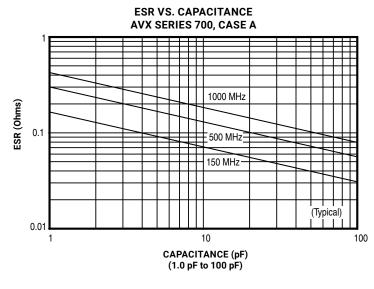
NON-MAGNETIC CONFIGURATION

AVX Series & Case Size	AVX Term.	MIL-PRF-55681	Case Size & Type	Non-Magnetic Configuration	Body Dimensions inches (mm)			Lead and Termination Dimensions and Material		
& Case Size	Code		α Type	Configuration	Length (L)	Width (W)	Thickness (T)	Overlap (Y)	Materials	
700A	WN	Meets Requirements	A Non-Mag Solder Plate	$\begin{array}{c c} Y \to \left \left \leftarrow \right & \downarrow \\ \hline $.055+.025010 (1.40+0.64-0.25)	.055 ±.015 (1.40 ±0.38)			Tin/ Lead, Solder Plated over Non-Magnetic Barrier Termination	
700A	PN	Meets Requirements	A ₩ Non-Mag Pellet	Y→ ← ↓ w	.055+.025010 (1.40+0.64-0.25)	.055 ±.015 (1.40 ±0.38)	.057 (1.45) max.	.010+.010005 (0.25+0.25 -0.13)	Heavy Tin/ Lead Coated, over Non-Magnetic Barrier Termination	
700A	TN	Meets Requirements	A Non-Mag Solderable Barrier	$\begin{array}{c c} Y \to \left \begin{array}{c} \bot \\ \hline \end{array} \right. \\ \to \left \begin{array}{c} \bot \\ \end{array} \right. \\ \downarrow \left[\begin{array}{c} \bot \\ \end{array} \right] \\ \downarrow \left[\begin{array}{c} \bot \\ \\ \end{array} \right] \\ \downarrow \left[\begin{array}{c} \bot \\ \\ \end{array} \right] \\ \downarrow \left[\begin{array}{c} \bot \\ \\ \end{array} \right] \\ \downarrow \left[\begin{array}{c} \bot \\ \\ \\ \end{array} \right] $.055+.015010 (1.40+0.38-0.25)	.055 ±.015 (1.40 ±0.38)			RoHS Compliant Tin Plated over Non-Magnetic Barrier Termination	

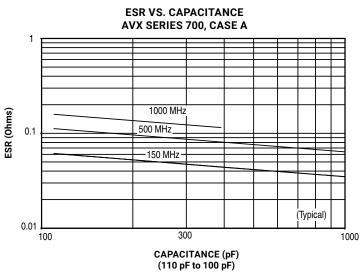
^{*}Capacitors with values greater than 100 pF contain a trace magnetic element that may exhibit weak magnetic properties.

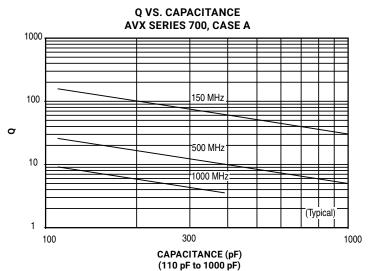

RF/Microwave Multilayer Capacitors (MLC)

700A Series NP0 Porcelain and Ceramic Multilayer Capacitors

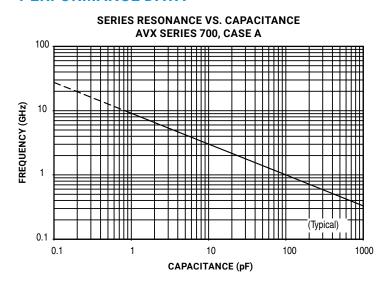

SUGGESTED MOUNTING PAD DIMENSIONS

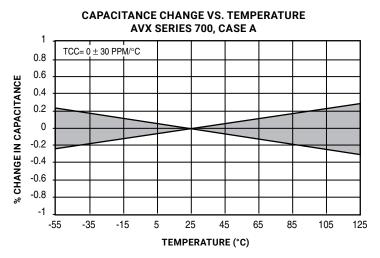


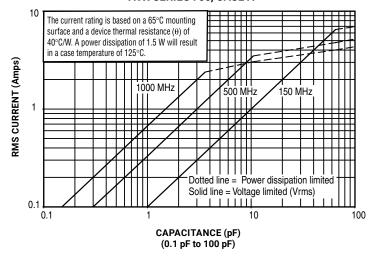

Case A								
Mount Type	Pad Size	A Min.	B Min.	C Min.	D Min.			
Vertical Mount	Normal	.070	.050	.030	.130			
vertical Mount	High Density	.050	.030	.030	.090			
Horizontal Mount	Normal	.080	.050	.030	.130			
HOITZOIILAI MOUIIL	High Density	.060	.030	.030	.090			


Dimensions are in inches.

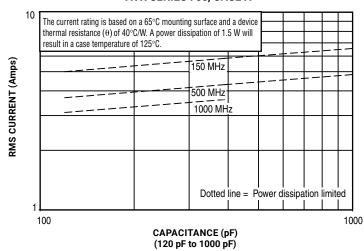
PERFORMANCE DATA

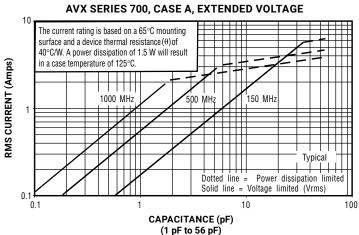

RF/Microwave Multilayer Capacitors (MLC)

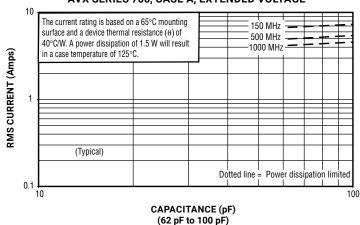

700A Series NP0 Porcelain and Ceramic Multilayer Capacitors



PERFORMANCE DATA




CURRENT RATING VS. CAPACITANCE AVX SERIES 700, CASE A


CURRENT RATING VS. CAPACITANCE AVX SERIES 700, CASE A

CURRENT RATING VS. CAPACITANCE

CURRENT RATING VS. CAPACITANCE AVX SERIES 700, CASE A, EXTENDED VOLTAGE

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 700A Series NP0 Porcelain and Ceramic Multilayer Capacitors

SAMPLE KITS

Kit #	RoHS Compliant	Item Number	Description	Cap. Value Range (pF)	Cap Value (pF) Tol.	Price
Kit 4	-	DK0004	700A Porcelain and Ceramic 16 different values, 15 pc.	0.1 to 2.0	0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.5 ±0.1	6150 40
Kit 4T	ROHS	DK0004T	min. per value	0.1 to 2.0	1.5, 1.8, 2.0 ±0.25	\$158.40
Kit 5	-	DK0005	700A Porcelain and Ceramic 16 different values, 15 pc.	1.0 to 10	1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3,	\$158.40
Kit 5T	ROHS	DK0005T	min. per value	1.0 to 10	10	\$136.40
Kit 6	-	DK0006	700A Porcelain and Ceramic 16 different values, 15 pc. min. per value	10 to 100	10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39,	\$158.40
Kit 6T	RoHS	DK0006T		10 10 100	47, 56, 68, 82, 100 ± 5%	\$158.40
Kit 7	-	DK0007	700A Porcelain and Ceramic	100 to 1000	100, 120, 150, 180, 200, 220, 240, 270 300, 330, 390, 470	\$158.40
Kit 7T	ROHS	DK0007T	16 different values, 15 pc. min. per value	100 to 1000	560, 680, 820, 1000 ±10	\$138.40