

AO4447AL

P-Channel Enhancement Mode Field Effect Transistor

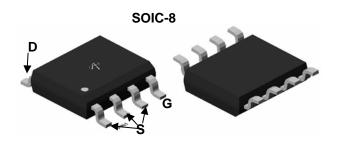
General Description

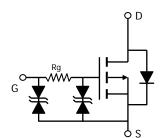
The AO4447AL uses advanced trench technology to provide excellent $R_{\text{DS}(\text{ON})}$ with low gate charge. This device is ideal for load switch and battery protection applications.

- -RoHS Compliant
- -Halogen Free

Features

 $V_{DS}(V) = -30V$


 $I_D = -17A$ $(V_{GS} = -10V)$


 $R_{DS(ON)} < 7m\Omega$ (V_{GS} = -10V)

 $R_{DS(ON)} < 8m\Omega$ (V_{GS} = -4.5V)

 $R_{DS(ON)} < 9m\Omega$ (V_{GS} = -4V)

ESD Protected!

Absolute Maximum Ratings T _J =25°C unless otherwise noted							
Parameter		Symbol	Maximum	Units			
Drain-Source Voltage		V _{DS}	-30	V			
Gate-Source Voltage		V_{GS}	±20	V			
Continuous Drain Current	T _A =25°C		-17				
	T _A =70°C	I _D	-13	А			
Pulsed Drain Current	Ċ	I _{DM}	-160	1			
Power Dissipation ^B	T _A =25°C	P _D	3.1	W			
	T _A =70°C	l D	2.0]			
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	°C			

Parameter	Symbol	Тур	Max	Units	
Maximum Junction-to-Ambient A	t ≤ 10s	D	31	40	°C/W
Maximum Junction-to-Ambient AD	Steady State	$R_{ hetaJA}$	59	75	°C/W
Maximum Junction-to-Lead	Steady State	$R_{\scriptscriptstyle{ hetaJL}}$	16	24	°C/W

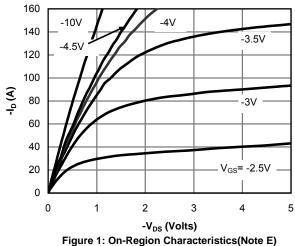
Electrical Characteristics (T_{.I}=25°C unless otherwise noted)

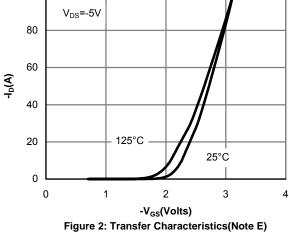
Symbol	Parameter	Parameter Conditions		Тур	Max	Units			
STATIC PARAMETERS									
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$	-30			V			
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =-30V, V _{GS} = 0V			-1	uΑ			
		$T_J = 55^{\circ}C$			-5	μΛ			
I_{GSS}	Gate-Body leakage current	$V_{DS} = 0V$, $V_{GS} = \pm 16V$			±10	μΑ			
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS} I_D = -250 \mu A$	-0.8	-1.3	-1.6	V			
$I_{D(ON)}$	On state drain current	$V_{GS} = -10V, V_{DS} = -5V$	-160			Α			
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =-10V, I _D =-17A		5.5	7				
		T _J =125°C		7	8.5	m0			
		V _{GS} =-4.5V, I _D =-15A		6.5	8	- mΩ -			
		V _{GS} =-4V, I _D =-13A		6.9	9				
g FS	Forward Transconductance	V _{DS} =-5V, I _D =-17A		70		S			
V_{SD}	Diode Forward Voltage	$I_S = -1A, V_{GS} = 0V$		-0.62	-1	V			
I _S	Maximum Body-Diode Continuous Current				-3	Α			
DYNAMIC	PARAMETERS								
C _{iss}	Input Capacitance			4580	5500	pF			
C _{oss}	Output Capacitance	V _{GS} =0V, V _{DS} =-15V, f=1MHz		755		pF			
C _{rss}	Reverse Transfer Capacitance	1		564		pF			
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		160	210	Ω			
SWITCHII	NG PARAMETERS								
Q _g (-10V)	Total Gate Charge			87	105	nC			
Q _g (-4.5V)	Total Gate Charge	\\ - 10\\ \\ - 15\\ \ \ - 17\		41		nC			
Q_{gs}	Gate Source Charge	V _{GS} =-10V, V _{DS} =-15V, I _D =-17A		12.8		nC			
Q_{gd}	Gate Drain Charge	1		17		nC			
t _{D(on)}	Turn-On DelayTime			180		ns			
t _r	Turn-On Rise Time	V _{GS} =-10V, V _{DS} =-15V		260		ns			
$t_{D(off)}$	Turn-Off DelayTime	R_L =-0.9 Ω , R_{GEN} =3 Ω		1.2		μS			
t_f	Turn-Off Fall Time	1		9.7		μS			
t _{rr}	Body Diode Reverse Recovery Time	I _F =-17A, dI/dt=300A/μs		32	40	ns			
Q _{rr}	Body Diode Reverse Recovery Charge			77		nC			

A: The value of $R_{\theta,JA}$ is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design.

COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

B. The power dissipation P_D is based on $T_{J(MAX)}$ =150°C, using \leq 10s junction-to-ambient thermal resistance.


C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150°C. Ratings are based on low frequency and duty cycles to keep initial T_J =25°C.


D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to lead $R_{\theta JL}$ and lead to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300 μs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, assuming a maximum junction temperature of $T_{J(MAX)}$ =150°C. The SOA curve provides a single pulse rating. Rev 0: Aug 2008

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

100

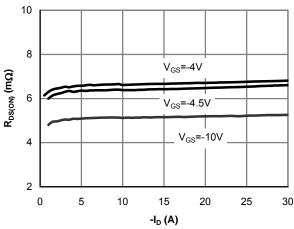


Figure 3: On-Resistance vs. Drain Current and Gate Voltage(Note E)

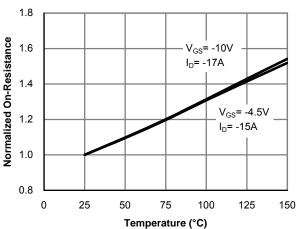


Figure 4: On-Resistance vs. Junction Temperature(Note E)

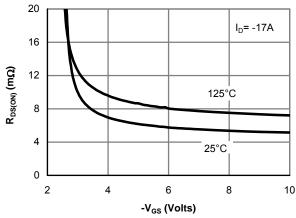


Figure 5: On-Resistance vs. Gate-Source Voltage(Note E)

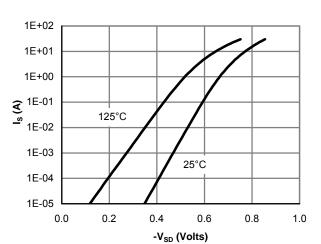


Figure 6: Body-Diode Characteristics(Note E)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

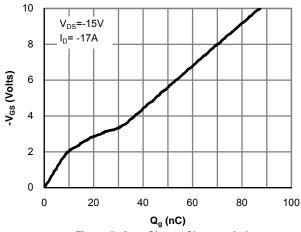


Figure 7: Gate-Charge Characteristics

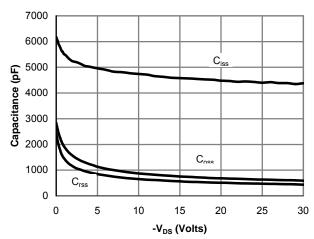


Figure 8: Capacitance Characteristics

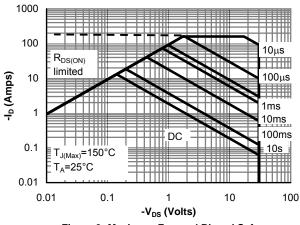


Figure 9: Maximum Forward Biased Safe Operating Area (Note F)

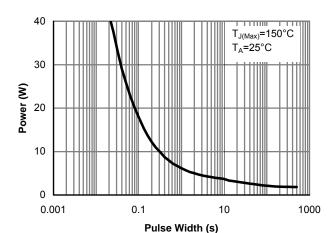


Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note F)

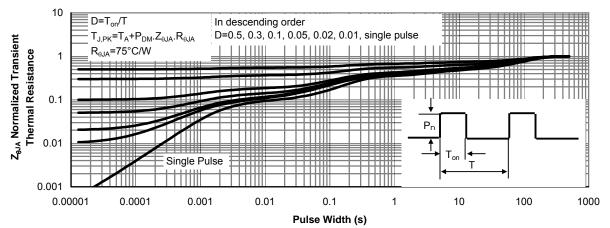
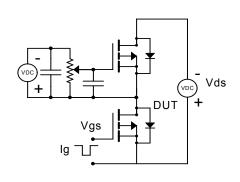
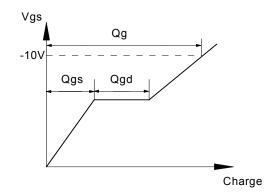
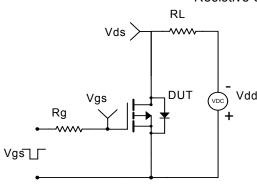
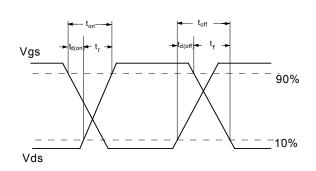
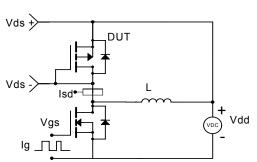
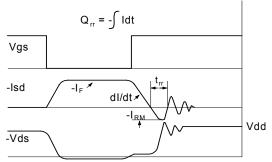




Figure 11: Normalized Maximum Transient Thermal Impedance(Note F)


(


Gate Charge Test Circuit & Waveform




Resistive Switching Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

