Am27S185/27S185A

8,192-Bit (2048x4) Bipolar PROM

DISTINCTIVE CHARACTERISTICS

- Ultra-fast access time "A" version (35 ns Max.) Fast access time Standard version (50 ns Max.) — allow tremendous system speed improvements
- Platinum-Silicide fuses guarantee high reliability, fast programming and exceptionally high programming yields (typ > 98%)
- AC performance is factory tested utilizing programmed test words and columns
- Voltage and temperature compensated providing extremely flat AC performance over military range
- Member of generic PROM series utilizing standard programming algorithm

GENERAL DESCRIPTION

BLOCK DIAGRAM

The Am27S185 (2048 words by 4 bits) is a Schottky TTL Programable Read-Only Memory (PROM).

This device has three-state outputs, compatible with lowpower Schottky bus standards capable of satisfying the requirements of a variety of microprogrammable controls, mapping functions, code conversion, or logic replacement. Easy-word depth expansion is facilitated by an active LOW (G) output enable.

Three-State Part Number	Am27	S185A	Am27S185		
Address Access Time	35 ns	45 ns	50 ns	55 ns	
Operating Range	с	м	с	м	

Publication # Rex. Amendment 03192 D /0 Issue Date: January 1989

PRODUCT SELECTOR GUIDE

5-178

CONNECTION DIAGRAMS Top View

LCC**

Note: Pin 1 is marked for orientation. *Also available in an 18-pin Flatpack. Pinout identical to DIPs. **Also available in a 28-pin square PLCC. Pinout identical to LCC.

LOGIC SYMBOL

Am27S185/27S185A

ORDERING INFORMATION

Standard Products

Valid Co	ombinations
AM27S185	PC, PCB, DC DCB, FC, FCB, LC, LCB,
AM27S185A	LC-S, LCB-S, JC, JCB

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, to check on newly released combinations, and to obtain additional data on AMD's standard military grade products.

MILITARY ORDERING INFORMATION

APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combination) for APL products is formed by a combination of: **a. Device Number b. Speed Option** (if applicable)

Valid Co	mbinations
AM27S185	/BVA, /BYC, /BUA, /B3A,
AM27S185A	/BUA, /BJA,

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check for newly released valid combinations.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

MILITARY BURN-IN

Military burn-in is in accordance with the current revision of MIL-STD-883, Test Method 1015, Conditions A through E. Test conditions are selected at AMD's option.

PIN DESCRIPTION

Ag-A10 Address Inputs

The 11-bit field presented at the address inputs selects one of 2,048 memory locations to be read from.

Q0-Q3 Data Output Port

The outputs whose state represents the data read from the selected memory locations.

G Output Enable

Provides direct control of the Q-output buffers. Outputs disabled forces all three-state outputs to a floating or highimpedance state.

Enable = G Disable = G V_{CC} Device Power Supply Pin

The most positive of the logic power supply pins.

GND Device Power Supply Pin The most negative of the logic power supply pins.

Am27S185/27S185A

ABSOLUTE MAXIMUM RATINGS

Storage Temperature65 to +150°C
Ambient Temperature with Power Applied
Supply Voltage
DC Voltage Applied to Outputs
(Except During Programming)0.5 V to +V _{CC} Max. DC Voltage Applied to Outputs
During Programming 21 V
Output Current into Outputs During Programming (Max. Duration of 1 sec)
DC Input Voltage
DC Input Current

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices	×
Ambient Temperature	(T _A)0 to +75°C +4.75 V to +5.25 V

Military (M) Devices Case Temperature (T_C)-55 to +125°C Supply Voltage (VCC) +4.5 V to +5.5 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

*Military products 100% tested at $T_C = +25^{\circ}C$, +125°C, and -55°C.

DC CHARACTERISTICS over operating ranges unless otherwise specified (for APL Products, Group A, Subgroups 1, 2, 3 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions		Min.	Тур.	Max.	Unit
VOH (Note 1)	Output HIGH Voltage	V _{CC} = Min., I _{OH} = -2.0 mA VIN = V _H or V _{IL}		2.4			v
VOL	Output LOW Voltage	V _{CC} = Min., I _{OL} = 16 mA VIN = VIH or VIL				0.50	v
VIH	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs (Note 2)		2.0			v
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs (Note 2)				0.8	V
μ <u>.</u>	Input LOW Current	V _{CC} = Max., V _{IN} = 0.45 V			L	-0.250	mA
<u>чс</u> łин	Input HIGH Current	V _{CC} = Max., V _{IN} = V _{CC}				40	μΑ
ISC (Note 1)	Output Short Circuit Current	V _{CC} = Max. V _{OUT} = 0.0 V (Note 3)		-20		-90	mA
lcc	Power Supply Current	All inputs = GND Vcc = Max.				150	mA
Vi	Input Clamp Voltage	V _{CC} = Min., I _{IN} = -18 mA				-1.2	V
ICEX Output Leakage Current		Voc = Max.	Vo = Voc			40	هي ا
	Output Leakage Current	VG = 2.4 V VO = 0.4 V				-40	
Cin	Input Capacitance	V _{IN} = 2.0 V @ f = 1 MHz (Note 4) V _{CC} = 5 V., T _A = 25°C			5.0		DF
Cout	Output Capacitance	Vout = 2.0 V @ f = 1 MHz (Note 4) Voc = 5 V., $T_A = 25^{\circ}C$			8.0		

Notes: 1. This applies to three-state devices only. 2. V_{IL} and V_{IH} are input conditions of output tests and are not themselves directly tested. V_{IL} and V_{IH} are absolute voltages with respect to device ground and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

without suitable equipment. 3. Not more than one output should be shorted at a time. Duration of the short circuit test should not be more than one second. 4. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS over operating ranges unless otherwise specified (for APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted*)

Parameter No. Symbol	Parameter	Version	COM'L		MIL		
	Description		Min.	Max.	Min.	Max.	Unit
1	1 TAVQV Address Valid to Output Valid Access Time	A		35		45	
			STD		50		55
2	TGVQZ Delay from Output Enable Valid to Output Hi-Z	A		25		30	
	STD		25		30	ns	
3 TGVQV Delay from Output Enable Valid to O	Delay from Output Enable Valid to Output Valid	A		25		30	
		STD		25		30	ns

See also Switching Test Circuit.

5-184

Notes: 1. Tests are performed with input transition time of 5 ns or less, timing reference levels of 1.5 V, and input pulse levels of 0 to 3.0 V.

SWITCHING TEST CIRCUIT

Notes: 1. TAVQV is tested with switch S₁ closed and C_L = 50 pF. 2. For three-state outputs, TGVQV is tested with C_L = 50 pF to the 1.5 V level: S₁ is open for high-impedance to HIGH tests and closed for high-impedance to LOW tests. TGVQ2 is tested with C_L = 5 pF. HIGH to high-impedance tests are made to an output steady state HIGH voltage -0.5 V with S₁ open; LOW to high-impedance tests are made to the steady state LOW + 0.5 V level with S₁ closed.

Am27S185/27S185A

Powered by ICminer.com Electronic-Library Service CopyRight 2003

SWITCHING WAVEFORMS

KEY TO SWITCHING WAVEFORMS

Ŀ

WF021621