Vishay

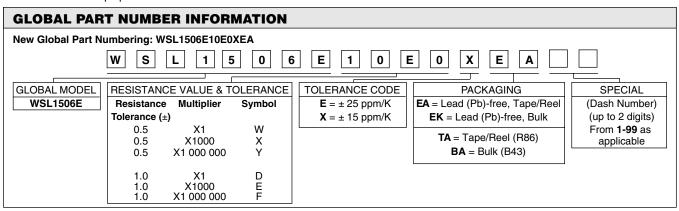
Power Metal Strip® Flip Chip (Extended Range) **Patents Pending**

FEATURES

- SMD alternative for low power leaded wirewound resistors
- Excellent stability in different environmental conditions (< 0.5 % change in resistance)
- Superior overload and pulse handling capability as compared to thin film (as much as 2 x better)

- Low TCR, down to ± 15 ppm/K
 Low noise: < 0.01 μV(rms)/Volt
 Voltage coefficient: < 0.00001 %/Volt (< 0.1 ppm/V)
- Very low inductance: < 0.08 μH

STANDARD ELECTRICAL SPECIFICATIONS							
GLOBAL MODEL	SIZE INCH	POWER RATING P _{70°C}	LIMITING ELEMENT VOLTAGE ¹) MAX V≅	TEMPERATURE COEFFICIENT ppm/K	TOLERANCE %	RESISTANCE RANGE ²⁾	E-SERIES
WSL1506E	1506	0.25	63	15, 25	0.5, 1	0R5 - 10K	96
WSL2010E	2010	0.5	100	15, 25	0.5, 1	0R5 - 10K	96
WSL2512E	2512	1.0	100	15, 25	0.5, 1	0R5 - 10K	96

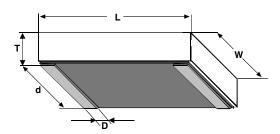

- Ask about further value ranges, tighter tolerances and TCR's.
- · Power rating depends on the max, temperature at the solder point, the component placement density and the substrate material
- 4-Digit Marking, according to MIL-PRF-55342 (except as noted in Ordering Information table), on top side
- 1) Rated voltage: \sqrt{PxR}
- 2) Contact factory using e-mail address at bottom of this page for resistance values available between 0R5 10R for 1506 and 0R5 100R for 2010 and 2512

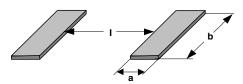
TECHNICAL SPECIFICATIONS					
PARAMETER	UNIT	WSL1506E	WSL2010E	WSL2512E	
Rated Dissipation at 70 °C	W	0.25	0.5	1.0	
Limiting Element Voltage ¹⁾	V≅	63	100	100	
Insulation Voltage (1 min)	Vdc/ac peak	200	200	200	
Thermal Resistance	K/W	≤ 220 ³⁾	≤ 88 ³⁾	≤ 65 ³⁾	
Insulation Resistance	MΩ		> 10 ⁶		
Category Temperature Range	°C	- 55/+ 150			
Weight/1000 pcs	g	12	25	35	

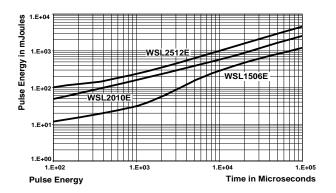
³⁾ Depending on solder pad dimensions

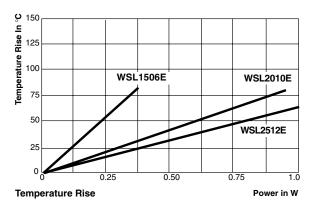
PACKAGING					
MODEL	REEL				
MODEL	TAPE WIDTH	DIAMETER	PIECES/REEL	CODE	
WSL1506E	12 mm/Embossed Plastic	180 mm/7"	4000	EA	
WSL2010E	12 mm/Embossed Plastic	180 mm/7"	4000	EA	
WSL2512E	12 mm/Embossed Plastic	180 mm/7"	2000	EA	

Embossed Carrier Tape per EIA-481-1.2

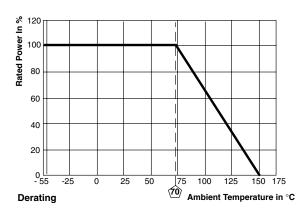





Power Metal Strip Flip Chip (Extended Range) Patents Pending


Vishay

DIMENSIONS



SIZE	DIMENSIONS in inches [millimeters]					
INCH	L	W	T _{max}	D	d	
1506	0.15 ± 0.005	0.062 ± 0.003	0.025	0.012 ± 0.003	0.059 ± 0.003	
	[3.81 ± 0.13]	[1.57 ± 0.08]	[0.64]	$[0.30 \pm 0.08]$	[1.50 ± 0.08]	
2010	0.200 ± 0.005	0.100 ± 0.003	0.025	0.020 ± 0.003	0.097 ± 0.003	
	[5.08 ± 0.13]	[2.54 ± 0.08]	[0.64]	$[0.51 \pm 0.08]$	[2.46 ± 0.08]	
2512	0.250 ± 0.005	0.126 ± 0.003	0.025	0.024 ± 0.003	0.123 ± 0.003	
	$[6.35 \pm 0.13]$	$[3.20 \pm 0.08]$	[0.64]	[0.61 ± 0.08]	[3.12 ± 0.08]	

SIZE	SOLDER PAD DIMENSIONS in inches [millimeters]			
INCH	а	b	I	
1506	0.015 [0.38]	0.062 [1.57]	0.118 [3.00]	
2010	0.023 [0.58]	0.100 [2.54]	0.153 [3.89]	
2512	0.027 [0.69]	0.126 [3.20]	0.196 [4.98]	

Pulse Energy Plot:

This represents the energy in each of 50 pulses, with a 1 second rest between pulses, that it takes to shift the WSL....E resistance \pm (0.50 % + 0.01 Ω).

PERFORMANCE				
TEST	ST CONDITIONS OF TEST			
Thermal Shock	- 55 °C to + 150 °C, 100 cycles, 15 minutes at each extreme	± (0.20 % + 0.01 Ω)		
Short Time Overload	5 x rated power for 5 seconds	$\pm (0.20 \% + 0.01 \Omega)$		
Low Temperature Storage	- 65 °C for 24 hours	± (0.20 % + 0.01 Ω)		
High Temperature Exposure	1000 hours at + 150 °C	\pm (0.50 % + 0.01 Ω)		
Moisture Resistance	MIL-STD-202, Method 106, 0 % power, 7a and 7b not required	$\pm (0.50 \% + 0.01 \Omega)$		
Load Life	1000 hours at rated power, + 70 °C, 1.5 hours "ON", 0.5 hours "OFF"	\pm (0.50 % + 0.01 Ω)		
Vibration	MIL-STD-202, Method 204D	$\pm (0.10 \% + 0.01 \Omega)$		
Mechanical Shock	100 G's for 6 milliseconds, 5 pulses	$\pm (0.10 \% + 0.01 \Omega)$		
Resistance to Soldering Heat	+ 260 °C solder, 10 - 12 seconds dwell, 25 mm/second emergence	\pm (0.50 % + 0.01 Ω)		

Document Number: 20033 Revision: 22-Sep-06

Legal Disclaimer Notice

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

www.vishay.com Revision: 08-Apr-05