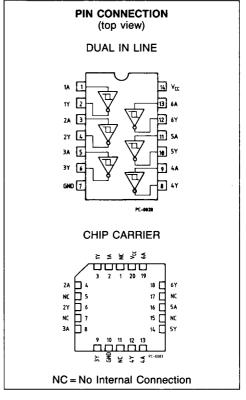

HEX SCHMITT TRIGGER INVERTER


DESCRIPTION

The T54LS14/T74LS14 contains six logic inverters which accept standard TTL input signals and provide standard TTL output levels. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. Additionally, they have greater a noise margin than conventional inverters.

Each circuit contains a Schmitt trigger followed by a Darlington level shifter and a phase splitter that drives a TTL totem-pole output. The Schmitt trigger uses positive feedback to effectively speed-up slow input transitions, and provide different input threshold voltages for positive and negative-going transitions. This hysteresis between the positive-going and negative-going input thresholds (typically 800 mV) is determined internally by resistor ratios and is essentially insensitive to temperature and supply voltage variations.

LOGIC DIAGRAM AND TRUTH TABLE

Α	Υ
L	Н
Н	L

L = LOW Voltage Level H = HIGH Voltage Level

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit	
Vcc	Supply Voltage	-0.5 to 7	٧	
VI	Input Voltage, Applied to Input	- 0.5 to 15	٧	
Vo	Output Voltage, Applied to Output	- 0.5 to 10	V	
lj	Input Current, Into Inputs	-30 to 5	mA	
lo	Output Current, Into Outputs	50	mA	

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

GUARANTEED OPERATING RANGES

Part Numbers		Supply Voltage					
rait Numbers	Min	Тур	Max	Temperature			
T54LS14D2	4.5 V	5.0 V	5.5 V	- 55°C to +125°C			
T74LS14XX	4.75 V	5.0 V	5.25 V	0°C to +70°C			

XX = package type.

72

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

	Symbol Parameter		Limits			Test Conditions		1
Symbol			Min.	Тур.	Max.	(Note 1)		Units
V _{T+}	Positive-Going Treshol Voltage	ld	1.4	1.6	1.9	V _{CC} = 5.0V		V
V _T -	Negative-Going Treshold Voltage		0.5	0.8	1.0	V _{CC} = 5.0V		V
$\overline{V_{T+}-V_{T-}}$	Hysteresis		0.4	0.8		V _{CC} = 5.0V	· · · · · · · · · · · · · · · · · · ·	V
V _{CD}	Input Clamp Diode Vo	Itage		- 0.65	- 1.5	V _{CC} = MIN,I _{IN} = - 18mA		V
V _{OH}	Output HIGH Voltage	54	2.5	3.4		$V_{CC} = MIN_{JOH} = -400\mu A, V_{IN} = 0.5V$		V
		74	2.7	3.4		VCC = WIII1,IO	$H = -400\mu A, V_{IN} = 0.5V$	"
V _{OL}	Output LOW Voltage	54,74		0.25	0.4	I _{OL} = 4.0mA	V _{CC} = MIN, V _{IN} = 1.9V	
		74		0.35	0.5	I _{OL} = 8.0mA		\ \ \ \
I _{T+}	Input Current at Positive-Going Thresh	old		-0.14		$V_{CC} = 5.0V, V_{IN} = V_{T+}$		mA
J _T _	Input Current at Negative-Going Threst	nold		-0.18		$V_{CC} = 5.0V, V_{IN} = V_{T-}$		mA
I _{IH}	Input HIGH Current			1.0	20 0.1	$V_{CC} = MAX, V_{IN} = 2.7V$ $V_{CC} = MAX, V_{IN} = 7.0V$		μA mA
I _{IL}	Input LOW Current				-0.4	V _{CC} = MAX, V _{IN} = 0.4V		mA
los	Output Short Circuit C (Note 2)	urrent	- 20		- 100	V _{CC} = MAX, V _{OUT} = 0V		mA
Іссн	Supply Current HIGH			8.6	16	V _{CC} = MAX,V _{IN} = 0V		mA
ICCL	Supply Current LOW			12	21	V _{CC} = MAX,V _{IN} = 4.5V		mA

AC CHARACTERISTICS: TA=25°C

Symbol	Parameter	Limits				
Syllibol	Parameter	Min.	Тур.	Max.	Test Conditions	Units
t _{PLH}	Turn Off Delay, Input to Output		15	22	V _{CC} = 5.0V	ns
t _{PHL}	Turn On Delay, Input to Output		15	22	C _L = 15pF	ns

Notes:

1) For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operating ranges.

2) Not more than one output should be shorted at a time.

3) Typical values are at $V_{CC} = 5.0V$, $T_A = 25$ °C.

73

Fig. 1

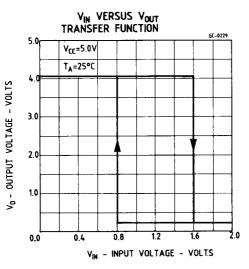


Fig. 2

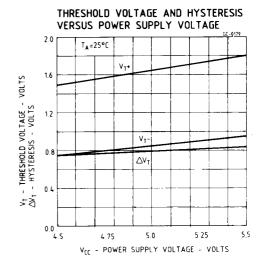


Fig. 3

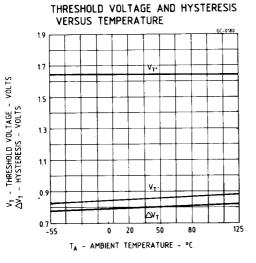
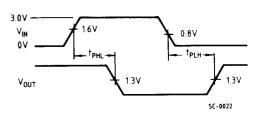



Fig. 4

