QUAD 2-INPUT MULTIPLEXER WITH 3-STATE OUTPUTS

The MC74F257 is a quad 2-input multiplexer with 3-state outputs. Four bits of data from two sources can be selected using a common Data Select input. The four outputs present the selected data in true (non-inverted) form. The outputs may be switched to a high impedance state with a HIGH on the common Output Enable ($\overline{\mathrm{OE})}$ input, allowing the outputs to interface directly with bus oriented systems.

- Multiplexer Expansion by Tying Outputs Together
- Non-Inverting 3-State Outputs
- Input Clamp Diodes Limit High-Speed Termination Effects
- AC Enhanced Version of the F257

CONNECTION DIAGRAM

LOGIC DIAGRAM

FUNCTION TABLE

Output Enable	Select Input	Data Inputs		Outputs
$\overline{\mathrm{OE}}$	S	$\mathrm{I}_{\mathbf{0}}$	$\mathrm{I}_{\mathbf{1}}$	Z
H	X	X	X	Z
L	H	X	L	L
L	H	X	H	H
L	L	L	X	L
L	L	H	X	H

$\mathrm{H}=$ HIGH Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$\mathrm{X}=$ Don't Care
$\mathrm{Z}=$ High Impedance

MC74F257A

QUAD 2-INPUT MULTIPLEXER WITH 3-STATE OUTPUTS

FAST $^{\text {™ }}$ SCHOTTKY TTL

GUARANTEED OPERATING RANGES

Symbol		Marameter		Min	Typ	Max
V_{CC}	Supply Voltage	74	4.5	5.0	5.5	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Ambient Temperature Range	74	0	25	70	${ }^{\circ} \mathrm{C}$
I_{OH}	Output Current - High	74			-3.0	mA
I_{OL}	Output Current - Low	74			24	mA

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Symbol	Parameter		Limits			Unit	Test Conditions	
			Min	Typ	Max			
V_{IH}	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8	V	Guaranteed Input LOW Voltage	
$\mathrm{V}_{\text {IK }}$	Input Clamp Diode Voltage				-1.2	V	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$
V_{OH}	Output HIGH Voltage	74	2.4	3.3		V	$\mathrm{I}^{\mathrm{OH}}=-3.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=4.50 \mathrm{~V}$
		74	2.7	3.3		V	$\mathrm{I}^{\mathrm{OH}}=-3.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
V_{OL}	Output LOW Voltage			0.35	0.5	V	$\mathrm{IOL}=24 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$
IOZH	Output OFF Current - HIGH				50	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$	$\mathrm{V}_{C C}=\mathrm{MAX}$
IOZL	Output OFF Current - LOW				-50	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$	$\mathrm{V}_{C C}=\mathrm{MAX}$
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current				20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$	$\mathrm{V}_{C C}=\mathrm{MAX}$
					100		$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$	
IIL	Input LOW Current				-0.6	mA	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$	$\mathrm{V}_{C C}=\mathrm{MAX}$
Ios	Output Short Circuit Current (Note 2)		-60		-150	mA	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	$\mathrm{V}_{C C}=\mathrm{MAX}$
${ }^{\text {I CCH }}$	Power Supply Current			9.0	15	mA	$\begin{aligned} & \mathrm{S}, \mathrm{I}_{1 \mathrm{x}}=4.5 \mathrm{~V} \\ & \overline{\mathrm{OE}, \mathrm{I}_{0 \mathrm{x}}=\mathrm{GND}} \end{aligned}$	$V_{C C}=$ MAX
${ }^{\text {I CCL }}$				14.5	22		$\begin{aligned} & \mathrm{I}_{1 \mathrm{x}}=4.5 \mathrm{~V} \\ & \overline{\mathrm{OE}, \mathrm{I}_{0 \mathrm{x},} \mathrm{~S}=\mathrm{GND}} \end{aligned}$	
ICCZ				15	23		$\begin{aligned} & \mathrm{S}, \mathrm{I}_{0 \mathrm{x}}=\mathrm{GND} \\ & \mathrm{OE}, \mathrm{I}_{1 \mathrm{x}}=4.5 \mathrm{~V} \end{aligned}$	

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under guaranteed operating ranges.
2. Not more than one output should be shorted at a time, nor for more than 1 second.

FUNCTIONAL DESCRIPTION

The F257A is a quad 2 -input multiplexer with 3 -state outputs. It selects four bits of data from two sources under control of a Common Data Select input. When the Select input is LOW, the $\mathrm{I}_{0 x}$ inputs are selected and when Select is HIGH, the $l_{1 x}$ inputs are selected. The data on the selected inputs appears at the outputs in true (non-inverted) form. The device is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input. The logic equations for the outputs are shown below:
$\mathrm{Z}_{\mathrm{a}}=\overline{\mathrm{OE}} \bullet\left(\mathrm{I}_{\mathrm{a}} \bullet \mathrm{S}+\mathrm{I}_{0 \mathrm{a}} \bullet \overline{\mathrm{S}}\right)$
$Z_{b}=\overline{O E} \cdot\left(1_{1 b} \cdot S+I_{0 b} \cdot \bar{S}\right)$
$\mathrm{Z}_{\mathrm{C}}=\overline{\mathrm{OE}} \bullet\left(\mathrm{I}_{1 \mathrm{c}} \bullet \mathrm{S}+\mathrm{I}_{0 \mathrm{c}} \bullet \overline{\mathrm{S}}\right)$
$\mathrm{Zd}=\overline{\mathrm{OE}} \bullet\left(\mathrm{I}_{1 \mathrm{~d}} \bullet \mathrm{~S}+\mathrm{I}_{0 \mathrm{~d}} \bullet \overline{\mathrm{~S}}\right)$
When the Output Enable input ($\overline{\mathrm{OE})}$ is HIGH, the outputs are forced to a high impedance OFF state. If the outputs are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure the Output Enable signals to 3-state devices whose outputs are tied together are designed so there is no overlap.

MC74F257A

AC CHARACTERISTICS

Symbol	Parameter					Unit
		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{v}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
		Min	Max	Min	Max	
$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$	Propagation Delay $I_{n} \text { to } Z_{n}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	ns
$\begin{aligned} & \hline \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay S to Z_{n}	$\begin{aligned} & \hline 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{gathered} \hline 10.5 \\ 8.0 \end{gathered}$	ns
$\begin{aligned} & \text { tPZH } \\ & \text { tpZL } \end{aligned}$	Output Enable Time	$\begin{aligned} & \hline 2.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6.5 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 8.0 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \text { tpHZ } \\ & \text { tpLZ } \end{aligned}$	Output Disable Time	$\begin{aligned} & \hline 2.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \\ & \hline \end{aligned}$	ns

