

NPN Silicon RF Transistor*

- For low noise, high-gain amplifiers up to 2 GHz
- For linear broadband amplifiers
- $f_T = 8 \text{ GHz}, F = 1 \text{ dB at } 900 \text{ MHz}$
- * Short term description

ESD (Electrostatic discharge) sensitive device, observe handling precaution!

Туре	Marking	Pin Configuration				Package		
BFP193	RCs	1 = C	2 = E	3 = B	4 = E	•	-	SOT143

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	$V_{\sf CEO}$	12	V
Collector-emitter voltage	V_{CES}	20	
Collector-base voltage	V_{CBO}	20	
Emitter-base voltage	V_{EBO}	2	
Collector current	I _C	80	mA
Base current	I _B	10	
Total power dissipation ¹⁾	P _{tot}	580	mW
<i>T</i> _S ≤ 72°C			
Junction temperature	$ T_{j} $	150	°C
Ambient temperature	T_{A}	-65 150	
Storage temperature	$T_{ m stg}$	-65 150	

Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point ²⁾	R _{thJS}	≤ 135	K/W

 $^{^{1}}T_{\mathrm{S}}$ is measured on the collector lead at the soldering point to the pcb

 $^{^2\}mbox{For calculation}$ of $R_{\mbox{\scriptsize thJA}}$ please refer to Application Note Thermal Resistance

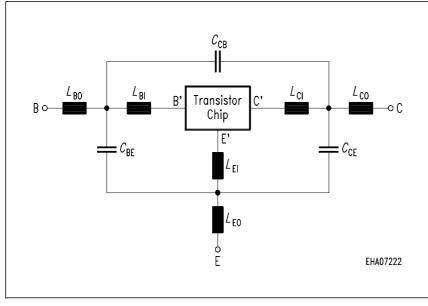
Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
DC Characteristics				•	•
Collector-emitter breakdown voltage	V _{(BR)CEO}	12	-	-	V
$I_{\rm C} = 1 \text{ mA}, I_{\rm B} = 0$, ,				
Collector-emitter cutoff current	I _{CES}	-	-	100	μA
$V_{CE} = 20 \text{ V}, \ V_{BE} = 0$					
Collector-base cutoff current	I _{CBO}	-	-	100	nA
$V_{\rm CB} = 10 \text{ V}, I_{\rm E} = 0$					
Emitter-base cutoff current	l _{EBO}	-	-	1	μA
$V_{EB} = 1 \text{ V}, I_{C} = 0$					
DC current gain-	h _{FE}	70	100	140	-
$I_{\rm C}$ = 30 mA, $V_{\rm CE}$ = 8 V, pulse measured					

Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified

Parameter Parameter $I_A = 25^{\circ}C$, unless $I_A = 25^{\circ}C$, unless $I_A = 25^{\circ}C$	Symbol		Unit		
		min.	typ.	max.	
AC Characteristics (verified by random sampling	g)				
Transition frequency	f_{T}	6	8	-	GHz
$I_{\rm C} = 50 \text{ mA}, \ V_{\rm CE} = 8 \text{ V}, \ f = 500 \text{ MHz}$					
Collector-base capacitance	C_{cb}	-	0.59	0.9	pF
$V_{CB} = 10 \text{ V}, f = 1 \text{ MHz}, V_{BE} = 0,$					
emitter grounded					
Collector emitter capacitance	C _{ce}	-	0.28	-	
$V_{CE} = 10 \text{ V}, f = 1 \text{ MHz}, V_{BE} = 0$,					
base grounded					
Emitter-base capacitance	C _{eb}	-	2.25	-	
$V_{EB} = 0.5 \text{ V}, f = 1 \text{ MHz}, V_{CB} = 0$,					
collector grounded					
Noise figure	F				dB
$I_{\rm C} = 10 \text{ mA}, \ V_{\rm CE} = 8 \text{ V}, \ Z_{\rm S} = Z_{\rm Sopt},$					
f = 900 MHz		-	1	-	
$I_{\rm C} = 10 \text{ mA}, \ V_{\rm CE} = 8 \text{ V}, \ Z_{\rm S} = Z_{\rm Sopt} \ ,$					
f = 1.8 GHz		-	1.6	-	
Power gain, maximum available ¹⁾	G _{ma}				
$I_{\rm C} = 30 \text{ mA}, \ V_{\rm CE} = 8 \text{ V}, \ Z_{\rm S} = Z_{\rm Sopt} \ ,$					
$Z_{L} = Z_{Lopt}$, $f = 900 \text{ MHz}$		-	18	-	
$I_{\rm C} = 30 \text{ mA}, \ V_{\rm CE} = 8 \text{ V}, \ Z_{\rm S} = Z_{\rm Sopt} \ ,$					
$Z_{L} = Z_{Lopt}$, $f = 1.8 \text{ GHz}$		-	12	-	
Transducer gain	S _{21e} ²				dB
$I_{\rm C} = 30 \text{ mA}, \ V_{\rm CE} = 8 \text{ V}, \ Z_{\rm S} = Z_{\rm L} = 50 \Omega$,					
f = 900 MHz		-	14.5	-	
$I_{\rm C} = 30 \text{ mA}, \ V_{\rm CE} = 8 \text{ V}, Z_{\rm S} = Z_{\rm L} = 50\Omega$					
f = 1.8 GHz		-	8.5	-	

 $^{{}^{1}}G_{\text{ma}} = |S_{21} / S_{12}| (k-(k^2-1)^{1/2})$

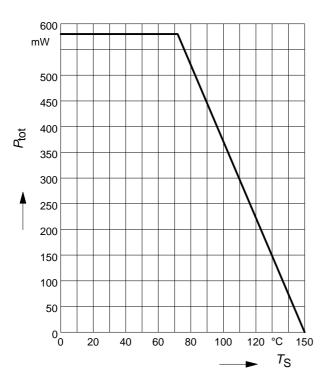

SPICE Parameter (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax):

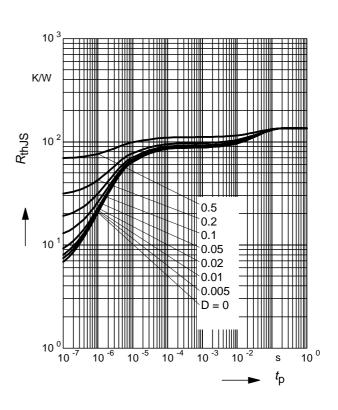
Transitor Chip Data:

IS =	0.2738	fA	BF =	125	-	NF =	0.95341	-
VAF =	24	V	IKF =	0.26949	Α	ISE =	10.627	fA
NE =	1.935	-	BR =	14.267	-	NR =	1.4289	-
VAR =	3.8742	V	IKR =	0.037925	Α	ISC =	0.037409	fA
NC =	0.94371	-	RB =	1.8368	Ω	IRB =	0.91763	mΑ
RBM =	1	Ω	RE =	0.76534	-	RC =	0.11938	Ω
CJE =	1.1824	fF	VJE =	0.70276	V	MJE =	0.48654	-
TF =	18.828	ps	XTF =	0.69477	-	VTF =	8.0	V
ITF =	0.96893	mΑ	PTF =	0	deg	CJC =	935.03	fF
VJC =	1.1828	V	MJC =	0.30002	-	XCJC =	0.053563	-
TR =	1.0037	ns	CJS =	0	fF	VJS =	0.75	V
MJS =	0	-	NK =	0	-	EG =	1.11	eV
XTI =	3	-	FC =	0.72063		TNOM	300	K

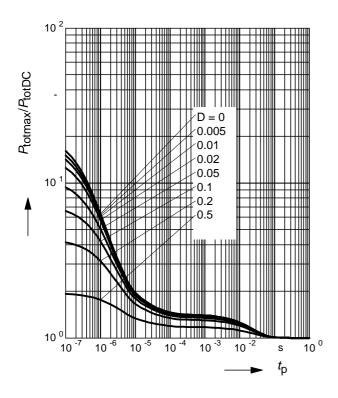
All parameters are ready to use, no scalling is necessary. Extracted on behalf of Infineon Technologies AG by: Institut für Mobil- und Satellitentechnik (IMST)

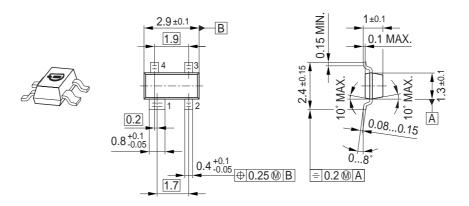
Package Equivalent Circuit:


$L_{BI} =$	0.84	nH			
$L_{BO} =$	0.65	nΗ			
$L_{EI} =$	0.31	nH			
$L_{EO} =$	0.14	nH			
$L_{\rm CI} =$	0.07	nH			
$L_{CO} =$	0.42	nH			
$C_{BE} =$	145	fF			
$C_{CB} =$	19	fF			
$C_{CE} =$	281	fF			
Valid up to 6GHz					

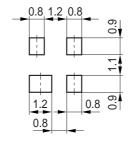

For examples and ready to use parameters please contact your local Infineon Technologies distributor or sales office to obtain a Infineon Technologies CD-ROM or see Internet: http://www.infineon.com/silicondiscretes

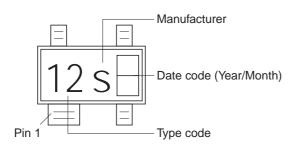
Total power dissipation $P_{tot} = f(T_S)$

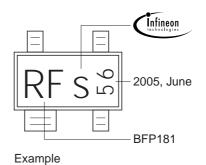

Permissible Pulse Load $R_{thJS} = f(t_p)$


Permissible Pulse Load

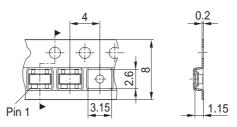
$$P_{\text{totmax}}/P_{\text{totDC}} = f(t_{p})$$




Package Outline



Foot Print


Marking Layout

Standard Packing

Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel

Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 München © Infineon Technologies AG 2005. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.Infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.