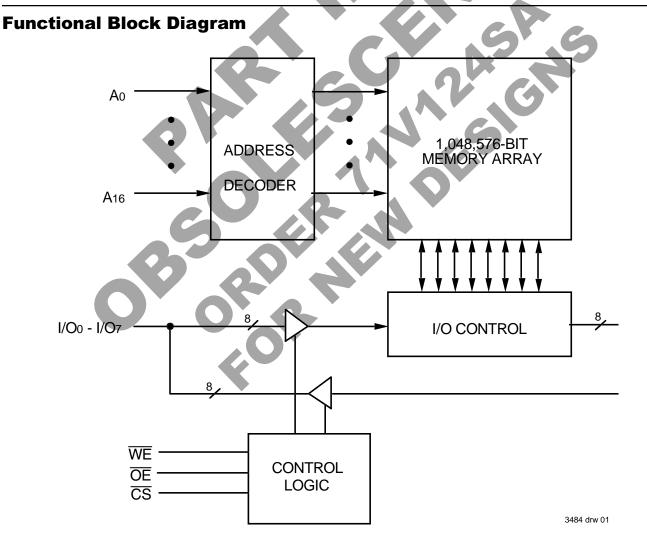


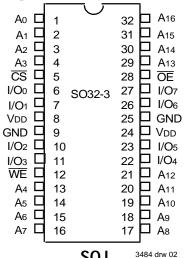
# 3.3V CMOS Static RAM 1 Meg (128K x 8-Bit) Revolutionary Pinout


### Features

- 128K x 8 advanced high-speed CMOS static RAM
- JEDEC revolutionary pinout (center power/GND) for reduced noise
- Commercial (0°C to +70°C) and Industrial (-40°C to +85°C) temperature options
- Equal access and cycle times — Industrial and Commercial: 15/20ns
- One Chip Select plus one Output Enable pin
- Bidirectional inputs and outputs directly
- LVTTL-compatible
- Low power consumption via chip deselect
- Available in 32-pin 400 mil Plastic SOJ.

## Description

The IDT71V124 is a 1,048,576-bit high-speed static RAM organized as 128K x 8. It is fabricated using IDT's high-performance, highreliability CMOS technology. This state-of-the-art technology, combined with innovative circuit design techniques, provides a costeffective solution for high-speed memory needs. The JEDEC center power/GND pinout reduces noise generation and improves system performance.


The IDT71V124 has an output enable pin which operates as fast as 7ns, with address access times as fast as 15ns available. All bidirectional inputs and outputs of the IDT71V124 are LVTTL-compatible and operation is from a single 3.3V supply. Fully static asynchronous circuitry is used; no clocks or refreshes are required for operation. The IDT71V124 is packaged in 32-pin 400 mil Plastic SOJ.



### AUGUST 2000

#### IDT71V124, 3.3V CMOS Static RAM 1 Meg (128K x 8-Bit), Revolutionary Pinout

### **Pin Configuration**



SOJ

### **Top View**

### Truth Table<sup>(1,2)</sup>

| CS                 | ŌĒ | WE | I/O     | Function                    |
|--------------------|----|----|---------|-----------------------------|
| L                  | L  | Н  | DATAOUT | Read Data                   |
| L                  | Х  | L  | DATAIN  | Write Data                  |
| L                  | Н  | Н  | High-Z  | Output Disabled             |
| Н                  | Х  | Х  | High-Z  | Deselected – Standby (IsB)  |
| VHC <sup>(3)</sup> | Х  | Х  | High-Z  | Deselected – Standby (ISB1) |

#### NOTES:

1.  $H = V_{IH}$ ,  $L = V_{IL}$ , x = Don't care.

2.  $V_{LC} = 0.2V$ ,  $V_{HC} = V_{DD} - 0.2V$ . 3. Other inputs  $\geq$ VHC or  $\leq$ VLC.

## Capacitance

(TA = +25°C, f = 1.0MHz, SOJ package)

| Symbol | Parameter <sup>(1)</sup> | Conditions | Max. | Unit        |
|--------|--------------------------|------------|------|-------------|
| Cin    | Input Capacitance        | Vin = 3dV  | 8    | pF          |
| Cvo    | I/O Capacitance          | Vout = 3dV | 8    | pF          |
|        |                          |            |      | 3484 tbl 03 |

NOTE:

1. This parameter is guaranteed by device characterization, but is not production tested.

# **DC Electrical Characteristics**

| $DD = 3.3V \pm$ | 10%, Commercial and Industrial Temperature | e Ranges)                                                        |      |       | _    |  |
|-----------------|--------------------------------------------|------------------------------------------------------------------|------|-------|------|--|
|                 |                                            | IDT71V                                                           |      | IV124 |      |  |
| Symbol          | Parameter                                  | Test Condition                                                   | Min. | Max.  | Unit |  |
| Iu              | Input Leakage Current                      | VDD = Max., VIN = GND to VDD                                     |      | 5     | μA   |  |
| ILO             | Output Leakage Current                     | $V_{DD} = Max., \overline{CS} = V_{IH}, V_{OUT} = GND to V_{DD}$ | _    | 5     | μA   |  |
| Vol             | Output Low Voltage                         | IOL = 8mA, $VDD = Min$ .                                         |      | 0.4   | V    |  |
| Vон             | Output High Voltage                        | IOH = $-8mA$ , VDD = Min.                                        | 2.4  |       | V    |  |

# Absolute Maximum Ratings<sup>(1)</sup>

| Symbol               | Rating                                  | Value                  | Unit        |
|----------------------|-----------------------------------------|------------------------|-------------|
| Vterm <sup>(2)</sup> | Terminal Voltage with<br>Respect to GND | $-0.5$ to $+4.1^{(2)}$ | V           |
| Та                   | Operating Temperature                   | 0 to +70               | ٥C          |
| Tbias                | Temperature Under Bias                  | -55 to +125            | ٥C          |
| Tstg                 | Storage Temperature                     | -55 to +125            | ٥C          |
| Рт                   | Power Dissipation                       | 0.5                    | W           |
| Ιουτ                 | DC Output Current                       | 50                     | mA          |
|                      |                                         |                        | 3484 tbl 02 |

NOTES:

4.

3484 tbi (

Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. 2. VTERM must not exceed VDD + 0.5V.

# **Recommended Operating Temperature and Supply Voltage**

| Grade      | Temperature    | GND | Vdd         |
|------------|----------------|-----|-------------|
| Commercial | 0°C to +70°C   | 0V  | See Below   |
| Industrial | -40°C to +85°C | 0V  | See Below   |
|            |                |     | 2494 61 025 |

3484 tbl 02a

# Recommended DC Operating Conditions

| Symbol            | Parameter          | Min.                | Тур. | Max.     | Unit |  |
|-------------------|--------------------|---------------------|------|----------|------|--|
| Vdd               | Supply Voltage     | 3.0                 | 3.3  | 3.6      | ۷    |  |
| GND               | Ground             | 0                   | 0    | 0        | ۷    |  |
| ViH               | Input High Voltage | 2.0                 |      | VDD +0.3 | ۷    |  |
| VIL               | Input Low Voltage  | -0.3 <sup>(1)</sup> |      | 0.8      | ۷    |  |
| NOTE: 3484 tbl 04 |                    |                     |      |          |      |  |

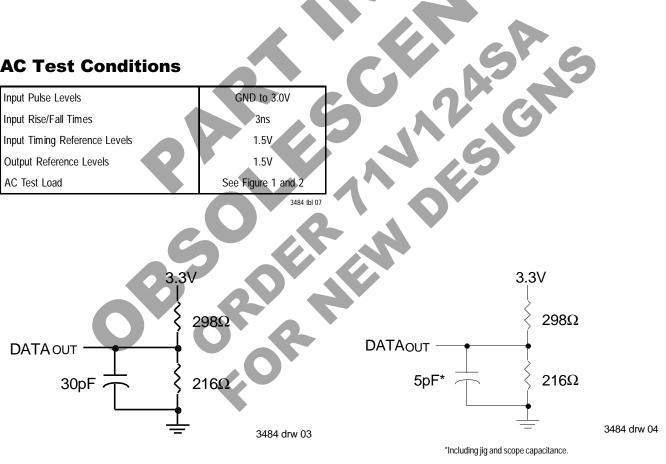
NOTE:

1. VIL (min.) = -1V for pulse width less than 5ns, once per cycle.

3484 tbl 06

## **DC Electrical Characteristics**<sup>(1)</sup>

 $(VDD = 3.3V \pm 10\%, VLC = 0.2V, VHC = VDD - 0.2V)$ 


|        |                                                                                                                                                                       | 71V124S15 |      | 71V124S20 |      |      |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------|-----------|------|------|
| Symbol | Parameter                                                                                                                                                             | Com'l.    | Ind. | Com'l.    | Ind. | Unit |
| Icc    | Dynamic Operating Current $\overline{\text{CS}} \leq \text{ViL}$ , Outputs Open, VDD = Max., f = fMAX <sup>(2)</sup>                                                  | 100       | 120  | 95        | 115  | mA   |
| Isb    | Standby Power Supply Current (TTL Level) $\overline{\text{CS}} \ge \text{Vih}$ , Outputs Open, VDD = Max., f = fmax <sup>(2)</sup>                                    | 35        | 40   | 30        | 35   | mA   |
| ISB1   | Full Standby Power Supply Current (CMOS Level)<br>$\overline{CS} \ge V_{HC}$ , Outputs Open, VDD = Max., f = 0 <sup>(2)</sup><br>VIN $\le V_{LC}$ or VIN $\ge V_{HC}$ | 5         | 7    | 5         | 7    | mA   |

NOTES:

1. All values are maximum guaranteed values.

2. fmax = 1/trc (all address inputs are cycling at fmax); f = 0 means no address input lines are changing.





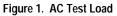
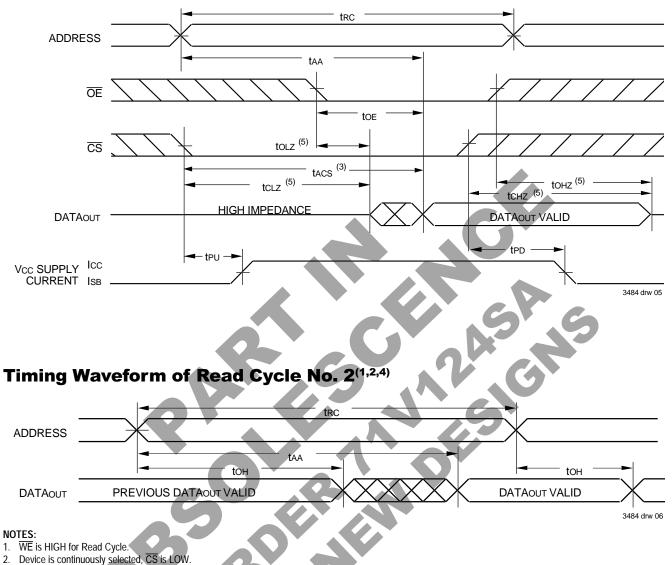



Figure 2. AC Test Load (for tclz, tolz, tchz, tohz, tow, and twhz)

# AC Electrical Characteristics (VDD = 3.3V ± 10%, Commercial and Industrial Ranges)


|                     |                                    | 71V1 | 24S15        | 71V124S20 |          |      |
|---------------------|------------------------------------|------|--------------|-----------|----------|------|
| Symbol              | Parameter                          | Min. | Max.         | Min.      | Max.     | Unit |
| READ CYCLE          |                                    |      | -            | -         | -        |      |
| trc                 | Read Cycle Time                    | 15   |              | 20        |          | ns   |
| taa                 | Address Access Time                |      | 15           |           | 20       | ns   |
| tacs                | Chip Select Access Time            |      | 15           |           | 20       | ns   |
| ta.z <sup>(1)</sup> | Chip Select to Output in Low-Z     | 3    |              | 3         |          | ns   |
| tснz <sup>(1)</sup> | Chip Deselect to Output in High-Z  | 0    | 7            | 0         | 8        | ns   |
| toe                 | Output Enable to Output Valid      |      | 7            |           | 8        | ns   |
| tolz <sup>(1)</sup> | Output Enable to Output in Low-Z   | 0    | _            | 0         |          | ns   |
| tонz <sup>(1)</sup> | Output Disable to Output in High-Z | 0    | 5            | 0         | 7        | ns   |
| toн                 | Output Hold from Address Change    | 4    | 57           | 4         | <b>—</b> | ns   |
| tpu <sup>(1)</sup>  | Chip Select to Power-Up Time       | 0    | <b>)</b> — , | 0         | _        | ns   |
| tpd <sup>(1)</sup>  | Chip Deselect to Power-Down Time   | F    | 15           |           | 20       | ns   |
| WRITE CYCL          | E                                  |      |              |           |          |      |
| twc                 | Write Cycle Time                   | 15   | 2-           | 20        |          | ns   |
| taw                 | Address Valid to End of Write      | 12   |              | 15        |          | ns   |
| tcw                 | Chip Select to End of Write        | 12   |              | 15        |          | ns   |
| tas                 | Address Set-up Time                | 0    |              | 0         |          | ns   |
| twp                 | Write Pulse Width                  | 12   |              | 15        |          | ns   |
| twr                 | Write Recovery Time                | 0    |              | 0         |          | ns   |
| tow                 | Data Valid to End of Write         | 8    |              | 9         |          | ns   |
| tDH                 | Data Hold Time                     | 0    |              | 0         |          | ns   |
| tow <sup>(1)</sup>  | Output Active from End of Write    | 3    |              | 4         |          | ns   |
| twHz <sup>(1)</sup> | Write Enable to Output in High-Z   | 0    | 5            | 0         | 8        | ns   |

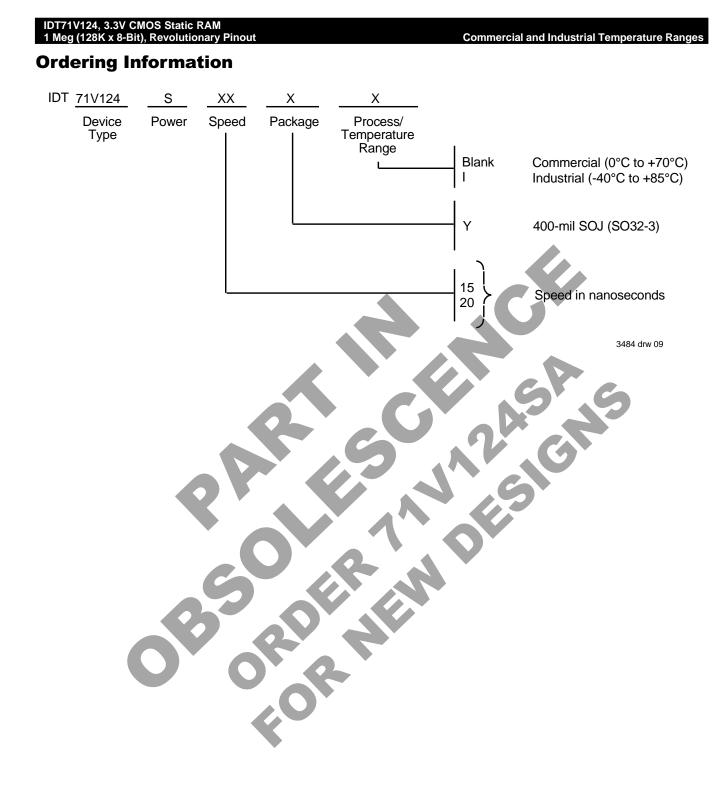
NOTE:

1. This parameter guaranteed with the AC load (Figure 2) by device characterization, but is not production tested.


3484 tbl 08

## Timing Waveform of Read Cycle No. 1<sup>(1)</sup>




- Address must be valid prior to or coincident with the later of CS transition LOW; otherwise taa is the limiting parameter.
- 4. OE is LOW.
- 5. Transition is measured ±200mV from steady state.

# Timing Waveform of Write Cycle No.1 (WE Controlled Timing)<sup>(1,2,4)</sup>



#### NOTES:

- 1. A write occurs during the overlap of a LOW  $\overline{CS}$  and a LOW  $\overline{WE}$ .
- OE is continuously HIGH. During a WE controlled write cycle with OE LOW, twp must be greater than or equal to twHz + tow to allow the I/O drivers to turn off and data to be placed on the bus for the required tow. If OE is HIGH during a WE controlled write cycle, this requirement does not apply and the minimum write pulse is the specified twp.
  During this period, I/O pins are in the output state, and input signals must not be applied.
- 4. If the CS LOW transition occurs simultaneously with or after the WE LOW transition, the outputs remain in a high impedance state. CS must be active during the tcw write period.
- 5. Transition is measured ±200mV from steady state.



## **Datasheet Document History**

#### 11/1/99

Updated to new format

- Pg. 2 Expressed commercial and industrial temperature ranges on DC Electrical table
- Pg. 2 Added Recommended Operating Temperature and Supply Voltage table
- Pg. 4 Expressed commercial and industrial ranges on AC Electrical table
- Pg. 4 Revised footnotes and notes on AC Electrical table
- Pg. 6 Revised footnotes on Write Cycle No. 1 diagram
- Pg. 8 Added datasheet document history

08/30/00

Part in obsolescence; order part 71V124SA. See PDN# S-0004





*CORPORATE HEADQUARTERS* 2975 Stender Way Santa Clara, CA 95054 *for SALES:* 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com for Tech Support: sramhelp@idt.com 800-544-7726, x4033

The IDT logo is a registered trademark of Integrated Device Technology, Inc.