

# HGTP12N60D1

April 1995

## 12A, 600V N-Channel IGBT



- 12A, 600V
- Latch Free Operation
- Typical Fall Time <500ns
- High Input Impedance
- Low Conduction Loss

## Description

The IGBT is a MOS gated high voltage switching device combining the best features of MOSFETs and bipolar transistors. The device has the high input impedance of a MOSFET and the low on-state conduction loss of a bipolar transistor. The much lower on-state voltage drop varies only moderately between  $+25^{\circ}$ C and  $+150^{\circ}$ C.

The IGBTs are ideal for many high voltage switching applications operating at frequencies where low conduction losses are essential, such as: AC and DC motor controls, power supplies and drivers for solenoids, relays and contactors.

#### PACKAGING AVAILABILITY

| PART NUMBER | PACKAGE  | BRAND    |  |  |
|-------------|----------|----------|--|--|
| HGTP12N60D1 | TO-220AB | G12N60D1 |  |  |



### Terminal Diagram





LCTD12NE0D1

#### **Absolute Maximum Ratings** $T_{C} = +25^{\circ}C$ , Unless Otherwise Specified

|                                                                         | HGIFIZNOUDI                  | UNITS |
|-------------------------------------------------------------------------|------------------------------|-------|
| Collector-Emitter Voltage BV <sub>CES</sub>                             | 600                          | V     |
| Collector-Gate Voltage $R_{GE} = 1M\Omega$ $BV_{CGR}$                   | 600                          | V     |
| Collector Current Continuous at T <sub>C</sub> = +25°C I <sub>C25</sub> | 21                           | A     |
| at $V_{GE}$ = 15V at $T_C$ = +90°C $I_{C90}$                            | 12                           | A     |
| Collector Current Pulsed (Note 1)I <sub>CM</sub>                        | 48                           | A     |
| Gate-Emitter Voltage Continuous V <sub>GES</sub>                        | ±25                          | V     |
| Switching Safe Operating Area at $T_J = +150^{\circ}C$ SSOA             | 30A at 0.8 BV <sub>CES</sub> | -     |
| Power Dissipation Total at $T_C = +25^{\circ}C$ $P_D$                   | 75                           | W     |
| Power Dissipation Derating T <sub>C</sub> > +25°C                       | 0.6                          | W/ºC  |
| Operating and Storage Junction Temperature Range                        | -55 to +150                  | °C    |
| Maximum Lead Temperature for SolderingTL                                | 260                          | °C    |
|                                                                         |                              |       |

#### NOTE:

1. Repetitive Rating: Pulse width limited by maximum junction temperature.

| HARRIS S  | EMICONDUCTO | R IGBT PRODU | CT IS COVERED | BY ONE OR MO | ORE OF THE FO | LLOWING U.S. F | PATENTS:  |
|-----------|-------------|--------------|---------------|--------------|---------------|----------------|-----------|
| 4,364,073 | 4,417,385   | 4,430,792    | 4,443,931     | 4,466,176    | 4,516,143     | 4,532,534      | 4,567,641 |
| 4,587,713 | 4,598,461   | 4,605,948    | 4,618,872     | 4,620,211    | 4,631,564     | 4,639,754      | 4,639,762 |
| 4,641,162 | 4,644,637   | 4,682,195    | 4,684,413     | 4,694,313    | 4,717,679     | 4,743,952      | 4,783,690 |
| 4,794,432 | 4,801,986   | 4,803,533    | 4,809,045     | 4,809,047    | 4,810,665     | 4,823,176      | 4,837,606 |
| 4,860,080 | 4,883,767   | 4,888,627    | 4,890,143     | 4,901,127    | 4,904,609     | 4,933,740      | 4,963,951 |
| 4.969.027 |             |              |               |              |               |                |           |

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper ESD Handling Procedures.

Copyright C Harris Corporation 1995

LINITO

|                                      |                       | TEST CONDITIONS                                                                         |                                      | LIMITS |     |      |       |
|--------------------------------------|-----------------------|-----------------------------------------------------------------------------------------|--------------------------------------|--------|-----|------|-------|
| PARAMETERS                           | SYMBOL                |                                                                                         |                                      | MIN    | TYP | MAX  | UNITS |
| Collector-Emitter Breakdown Voltage  | BV <sub>CES</sub>     | $I_{C} = 250 \mu A, V_{GE} = 0 V$                                                       | 600                                  | -      | -   | V    |       |
| Collector-Emitter Leakage Voltage    | I <sub>CES</sub>      | $V_{CE} = BV_{CES}$                                                                     | $T_{\rm C} = +25^{\rm o}{\rm C}$     | -      | -   | 1.0  | μA    |
|                                      |                       | $V_{CE} = 0.8 \text{ BV}_{CES}$                                                         | T <sub>C</sub> = +125 <sup>o</sup> C | -      | -   | 4.0  | mA    |
| Collector-Emitter Saturation Voltage | V <sub>CE(SAT)</sub>  | $I_{C} = I_{C90}, V_{GE} = 15V$                                                         | $T_{C} = +25^{\circ}C$               | -      | 1.9 | 2.5  | V     |
|                                      |                       |                                                                                         | T <sub>C</sub> = +125 <sup>o</sup> C | -      | 2.1 | 2.7  | V     |
| Gate-Emitter Threshold Voltage       | V <sub>GE(TH)</sub>   | $I_{C} = 250 \mu A, V_{CE} = V_{GE}, T_{C} = +25^{\circ}C$                              |                                      | 3.0    | 4.5 | 6.0  | V     |
| Gate-Emitter Leakage Current         | I <sub>GES</sub>      | $V_{GE} = \pm 20V$                                                                      |                                      | -      | -   | ±500 | nA    |
| Gate-Emitter Plateau Voltage         | V <sub>GEP</sub>      | $I_{C} = I_{C90}, V_{CE} = 0.5 \text{ BV}_{CES}$                                        |                                      | -      | 7.2 | -    | V     |
| On-State Gate Charge                 | Q <sub>G(ON)</sub>    | $I_{C} = I_{C90},$<br>$V_{CE} = 0.5 \text{ BV}_{CES}$                                   | V <sub>GE</sub> = 15V                | -      | 45  | 60   | nC    |
|                                      |                       |                                                                                         | V <sub>GE</sub> = 20V                | -      | 70  | 90   | nC    |
| Current Turn-On Delay Time           | t <sub>D(ON)</sub>    | L = 500 $\mu$ H, I <sub>C</sub> = I <sub>C90</sub> , I                                  | R <sub>G</sub> = 25Ω,<br>ºC,         | -      | 100 | -    | ns    |
| Current Rise Time                    | t <sub>RI</sub>       | V <sub>GE</sub> = 15V, T <sub>J</sub> = +150<br>V <sub>CE</sub> = 0.8 BV <sub>CES</sub> |                                      | -      | 150 | -    | ns    |
| Current Turn-Off                     | t <sub>D(OFF)</sub> I |                                                                                         |                                      | -      | 430 | 600  | ns    |
| Current Fall Time                    | t <sub>FI</sub>       |                                                                                         |                                      | -      | 430 | 600  | ns    |
| Turn-Off Energy (Note 1)             | W <sub>OFF</sub>      | 1                                                                                       |                                      | -      | 1.8 | -    | mJ    |
| Thermal Resistance IGBT              | $R_{	extsf{	heta}JC}$ |                                                                                         |                                      | -      | -   | 1.67 | °C/W  |

**Electrical Specifications**  $T_C = +25^{\circ}C$ , Unless Otherwise Specified

NOTE:

 Turn-off Energy Loss (W<sub>OFF</sub>) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the collector current equals zero (I<sub>CE</sub> = 0A). The HGTP12N60D1 was tested per JEDEC standard No. 24-1 Method for Measurement of Power Device Turn-off Switching Loss. This test method produces the true total Turn-off Energy Loss.

## **Typical Performance Curves**









#### **Operating Frequency Information**

Operating frequency information for a typical device (Figure 10) is presented as a guide for estimating device performance for a specific application. Other typical frequency vs collector current ( $I_{CE}$ ) plots are possible using the information shown for a typical unit in Figures 7, 8 and 9. The operating frequency plot (Figure 10) of a typical device shows  $f_{MAX1}$  or  $f_{MAX2}$  whichever is smaller at each point. The information is based on measurements of a typical device and is bounded by the maximum rated junction temperature.

 $f_{MAX1}$  is defined by  $f_{MAX1} = 0.05/t_{D(OFF)I}$ .  $t_{D(OFF)I}$  deadtime (the denominator) has been arbitrarily held to 10% of the onstate time for a 50% duty factor. Other definitions are possible.  $t_{D(OFF)I}$  is defined as the time between the 90% point of the trailing edge of the input pulse and the point where the collector current falls to 90% of its maximum value. Device

turn-off delay can establish an additional frequency limiting condition for an application other than  $T_{JMAX}$ .  $t_{D(OFF)I}$  is important when controlling output ripple under a lightly loaded condition.

 $f_{MAX2}$  is defined by  $f_{MAX2}$  =  $(P_D - P_C)/W_{OFF}$ . The allowable dissipation  $(P_D)$  is defined by  $P_D$  =  $(T_{JMAX} - T_C)/R_{\theta JC}$ . The sum of device switching and conduction losses must not exceed  $P_D$ . A 50% duty factor was used (Figure 10) and the conduction losses  $(P_C)$  are approximated by  $P_C$  =  $(V_{CE} \bullet I_{CE})/2$ .  $W_{OFF}$  is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the collector current equals zero ( $I_{CE}$  = 0A).

The switching power loss (Figure 10) is defined as  $f_{MAX2} \bullet W_{OFF}.$  Turn-on switching losses are not included because they can be greatly influenced by external circuit conditions and components.